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Part 2
-Ultracold Fermi gas and renormalization-

* Understanding the basics of BCS-BEC crossover
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* Theoretical model



Model Hamiltonian
H:HO—|—V Wetake h = kg = 1

Kinetic term:

VZ
Ho = [ @ ) pi) (— i+ u(r)) o)

o=T1
Y ‘ () ey
o: fermion spin (T: +1/2,1: —1/2) "o
m: fermion mass
Y, (r): fermion field operator “create”
p: fermion chemical potential -~ gbj (r)
U(T): single-particle potential (\_/' g ‘

*In ultracold atoms, o represents two hyperfine states

Interaction term:

V= %Z [ or [ @ Lol V0o (v = 7 o



Contact-type interaction

Interaction term:

V=33 [ @ [ @ pl e a0 =) @



Contact-type interaction

Interaction term:

V=33 [ @ [ @ pl e a0 =) @

I
g < 0 : attractive coupling strength  |U__(r — ") =~ g6(r — r")

v = %2 | @ r gl @b, o)

r—r

—

t—|glo@r—17)




Contact-type interaction

Interaction term:

V=33 [ @ [ @ pl e a0 =) @

I
g < 0 : attractive coupling strength  |U__(r — ") =~ g6(r — r")

v = %2 | @ r gl @b, o)

A Anti-commutation of fermion operator

{We(), Ys(M} = 25 (r)P,(r) = 0
' (i), wim) = 20wl = o

r—r
—

V=g f &3l @ @ @) )

t—|glo@r—17)




Fock-state representation

Expanding the field operators with respect to eigenstate of non-interacting Hamiltonian

Vo) = ) Welear P30 = ) Walr)cl,

2
¥, (r) :eigenstate (— ZV_m + ’Ll(r)) ¥Y,(r) =E¥Y,(r)

Cqo:. fermion annihilation operator

claz fermion creation operator

Uniform case: U(r) =0

1 .
a = k (momentum) g _(y) > —e*7 (plane wave)

VI3

L: system size



Momentum representation

Equivalent to the Fourier transformation

_ 1 iker Froy 1 ikt
lpa(r) _\/_L_SZB k Cko l/)a(r) —\/?Ze k Cko

2
Kinetic term: H, = jd3r z 1/)2(1‘)( v )1/)0(1‘)

“2m
o=T,

1 3 —i(k-k')r T k?
=L—sferZe e \ gy ~ H ) Cleor

o="T1 kK’
= kaT Cr 1 3. ,—i(k—k'):
ko™io 73 d°re" "=k
k.o

kZ

& = pynl & single-particle kinetic energy measured from u



Momentum representation

Equivalent to the Fourier transformation

_ 1 iker Froy 1 ikt
lpa(r) _\/_L_SZB k Cko l/)a(r) —\/?Ze k Cko

Kinetic term: Hy = Z ka,taCkg
k,o

Interaction term: V = g f d3r 1/);r (r)t/JIr (MY, ()Y1(1)

_ 3,. ,—i(b1tky,—ks—ky)r,.T T
=g Z Jd re (b1+kz—k3—ka) CleCk2¢Ck3iCk4T
kq,k;. k3 k,

_ T T
=9 z Cr+P/21C—k+P/2LC—K' +P/2LCk' +P /21
ki P

k (k'): outgoing (incoming) relative momentum

P: center-of-mass momentum of two particles



Simple and valid Hamiltonian, but...

.l.

_ T T
H = Z $kCroCho T 9 Z Cr+P/21C—k+P/2LC~K' +P/2.Ck' +P /21
k,o

kk'.P

Typical nuclear force (momentum space)

A

repulsive

0

300

Ve (r) [MeV]

> k

attractive

rim)

. PRL 99, 022001 (2007).

Contact-type interaction

A

0

-9

> k

Attractive interaction works at
any high relative momenta

= Ultraviolet divergence!



Renormalization of coupling constant

Typical nuclear force (momentum space) Contact-type interaction

repulsive

> k

attractive

To avoid the UV divergence, we introduce a momentum cutoff A
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Renormalization of coupling constant

Typical nuclear force (momentum space) Contact-type interaction

repulsive

attractive

To avoid the UV divergence, we introduce a momentum cutoff A

A could be determined by short-range physics (e.g., repulsive core, effective range)
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Renormalization of coupling constant

Typical nuclear force (momentum space) Contact-type interaction

repulsive

attractive

To avoid the UV divergence, we introduce a momentum cutoff A
A could be determined by short-range physics (e.g., repulsive core, effective range)

At sufficiently low energy system, physical quantities should not depend on A

e.g., S-wave scattering length ag

15



Two-body scattering (1 = 0)

Two-particle state with zero CoM momentum P=(
|61) = cirely10)

After repeated two-body scattering (perturbation theory but infinite sum)
i) = Trexp [—i j_oooe&V(t)dt] [0y

T;: time-order product
V(t) = etHotye~tHot: interaction representation of V
& infinitesimal positive number for adiabatic switch-on

Scattering amplitude

m incoming |Y¥k) outgoing
fk k') = _E«bk’lvllpk) |¢k>—>@—>@>§> 1P’

(elastic: |k| = |Kk']|)



Contact-type interaction at P =0

— T 1
V=g z CrrC_klC—k'LCK1
Ik’

Scattering amplitude

Fll, ) = =5 (9w lV i) = —%l(wvwbk) ~i j

0
dt(dp |V V()| pr) + -+



Contact-type interaction at P =0

— T 1
V=g z CrrC_klC—k'LCK1
Ik’

Scattering amplitude

Fll, ) = =5 (9w lV i) = —%l(wvwbk) ~i j

0
dt(dp |V V()| pr) + -+

/ 1
15t order perturbation with respect to g k k

<¢k’|V|¢k> = <0 |C_k’lck’TVCZTCikl| 0> =g e



Contact-type interaction at P =0

— T 1
V=g z CrrC_klC—k'LCK1
Ik’

Scattering amplitude

0
FUK) = = (ulVIe) = == (DelVion) =i | delielv 7(0)|i) +

41T

15t order perturbation with respect to g

(BwlVien) = <0 ecncwvedicly| 0> =9

2" order perturbation with respect to g

0 ~
i f dt{p |V V(0| dr)

0
_ng j dt 86tZ<O|C—k’lck’TC:{-’chk’lC—piCpT
—00
p

iHot T

-k’

pTCTplC— LCeretHo c;(rTc 1 [0)
k' —K
g
p 4
g



Contact-type interaction at P =0

— T 1
V=g z CrrC_klC—k'LCK1
Ik’

Scattering amplitude
m m 0 .
k) = == (Vi) = —E[(cbk'IVICPk) — i j de(dp |V V(0| i) +

/ 1
15t order perturbation with respect to g k k

<¢k’|V|¢k> = <0 |C_k’lck’TVCZTCikl| 0> =g e

2" order perturbation with respect to g

0 ~
i f dt(¢kr|V 7))

_ St T T piHot - T T T
k' —K

— _ 5t+l(2£ —2&g)t z
‘g zj dte ! —Y 28k—2€ +ié Y

Holdr) = 2exldr) T s
k% . . .. g

& = single-particle kinetic energy



Contact-type interaction at P =0

— T 1
V=g z CrrC_klC—k'LCK1
Ik’

Scattering amplitude

0
Fle k) = = (i IVI) = —%l(d)mvwk} -i| dt(ie]V (Ol +

34 order perturbation with respect to g

(=2 [0 0 ) )
o | dta | deedta 0Ty P @)io)

0 ty
— (-0)? f dt, j dt,e8C+ta) (077 (¢,)7 (£,)]0)

V)V (ty) = VDV () ta >t

Te[V(t)V (tp)] = {V(tb)V(ta) =V(t)V(ty) t, >t,




Contact-type interaction at P =0
— T T
V=g z CrrC—k1C-K'LCK'T
kK’

Scattering amplitude

Fll, ) = =5 (9w lV i) = —%l(wvwbk) ~i j

0
dt(p |V V()| pr) + -+

kl
34 order perturbation with respect to g

(—=i)? (O 0 R R
1 j dtaf dt,e®Cattv) (0|TVV (t )V (tp)|0)

t1

0
— (-0)? f dt, [ deyet@tt OV (e)P(8)]0)

— 00

0 ty k
= (_l-)zggj dt1J dtyedtatt2) E (0|C—k’iCk’TCZ’TCjk’ic—plcme
—00 —o0 y
p.p

iHot

Tt iHot T .1 iHot T T
X CptCopiCp1Cp1€ 0 CpryCpyr CokiChr€ 0 Cpp € [0)

0 ty , .
_ (_l-)zg3j dtlf dt286(t1+t2)2 el(ZSp—Zsp/)t1+l(2£p/—Zek)t1
—00 —00 1

p.p
=4
2e — 26y + 10 La2ey — 26 + 10
P P




é . N
Contact-type interaction at P=0 Retarded pair propagator
— T .1 1
V=g z CrrCklC—k'LCK1 [(2g,) = z ,
\. J

Scattering amplitude

0
Flk k') = —%(qbkrlvwk) = —% [(cbkerlqbk) — i j Oodt(qbk/|V 7(6)|pr) +

<¢k’|V|l/)k> =g+ gll(2e) g + gll(2&,) gl (2e4)g + -+

23



( . N
Contact-type interaction at P=0 Retarded pair propagator
1
V=g z Cl-chCikLC—k’lck’T (2¢,) = z
k .
\\ J

Scattering amplitude

0
flk k) = —%(cbkrIVIt/Jk) = —%l(qbkrIVIqbk) - ij_oodt(qsk,w 7(t)|pr) + -

<¢k’|V|l/)k> =g+ gll(2e) g + gll(2&,) gl (2e4)g + -+

T matrix

T > ........ 9 . < LT
[M(2¢)

....... g\ .




Ultraviolet divergence

Retarded pair propagator shows an UV divergence

1
M2e) = )
(&) 2e — 28, + 10
P




Ultraviolet divergence

Retarded pair propagator shows an UV divergence

1
M2e) = )
(&) 2e — 28, + 10
P

3
{ Replacing the momentum summation z fp) = ( % > f d3p f(») J

with the integration (large L limit) 21T
p=7 (Nx,nynz)




Ultraviolet divergence

Retarded pair propagator shows an UV divergence

1
e :Z
(2&r) 2e — 28, + 10
p

3
Replacing the momentum summation z fp) = ( L > j d3p f(p)
with the integration (large L limit) 2T

2T
pzT(nx»ny»nz)

1 A , m
(271)3[0 Anp dppz k2 _is L=Tistaken

o P k? A»k M A+f°°d k?
PItT o2 k2 —is| ™ T 2n2 . Pz —is

H(ng) = —

A

T o2
2T 0

27



Ultraviolet divergence

Retarded pair propagator shows an UV divergence

1
)
(1) 2e — 28, + 10
P

3
Replacing the momentum summation z f(p) = <%> j d*p f(p)

with the integration (large L limit) 2
pzT(nx,ny,nz)

1 A , m
(271)3[0 Anp dppz k2 _is L=Tistaken

. m Ad . k> A»k M A+f°°d k?
B 27‘[20 P p? —k? —i8 T 2m2 0 ppz—kz—i(S

H(ng) = —

__mE J g 1 Contour integral
" on? Poo—k—id)(p + k +i6) Im(p]
o m Large A cannot be taken,
=" (A+oik . )
21> 2 but 7 matrix is non-divergent = Re[p]

—k —i5 28



Partial wave expansion of the scattering amplitude

Flk k') = Z(ze +1)f,(k, k') Py(cos )
£=0
£: relative angular momentum of two particles
P,(cos 6): Legendre polynomial for the relative angle 8 between k and k'

29



Partial wave expansion of the scattering amplitude k'

f(k k') = Z(Zf + 1) fp(k, k") P;(cos 0) \9
£=0 i
£: relative angular momentum of two particles k /

P,(cos 6): Legendre polynomial for the relative angle 8 between k and k'

S-wave Scattering amplitude
(Phase shift (effective range expansion) )
—o(k, k") = ,
fecolk k) = 4 e — ik 1 1 1
kcotd, = ——+=-k“r, = —— (1. = 0)
1 a, 2 ag
= —1/ag — ik a. : S-wave scattering length
- J

30



Partial wave expansion of the scattering amplitude k'

fle k) = ) (26 + Dfy(k, k') Py(cos 0) \9
£=0 i
£: relative angular momentum of two particles k /
P,(cos 6): Legendre polynomial for the relative angle 8 between k and k'
S-wave Scattering amplitude
G’hase shift (effective range expansion) )
—olk, k") = ,
fecolk k) = 4 e — ik 1 1 1
kcotd, = ——+=-k“r, = —— (1. = 0)
1 a, 2 ag
= —1/ag — ik a. : S-wave scattering length
’ \_ J
g 1
/ m / T(k k';2¢ ) = =
f(k;k)=——T(k;k;2€k)J SR T gl 2e) T 1, m .
[ i g+ anz (A +7ik)
m m 1 mA m

31



Partial wave expansion of the scattering amplitude k'

fle k) = ) (26 + Dfy(k, k') Py(cos 0) \9
£=0 i
£: relative angular momentum of two particles k /
P,(cos 6): Legendre polynomial for the relative angle 8 between k and k'
S-wave Scattering amplitude
G’hase shift (effective range expansion) )
—olk, k") = ,
fecolk k) = 4 e — ik 1 1 1
kcotd, = ——+=-k“r, = —— (1. = 0)
1 a, 2 ag
= —1/ag — ik a. : S-wave scattering length
’ \_ J
g 1
/ m / T(k k';2¢ ) = =
k,k')=——T(kk’;2 Iy ack _
[f( )=—-T( %)J 1 — gll(2g) 1+£(A+Eik)
g 2w 2

Renormalization of g to ag

$ m 1 mA
Ata, g 2m?

32
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* Short summary



Outline

* Physical interpretation of the scattering length



Meaning of S-wave scattering length

Asymptotic wave function Low-momentum limit
r—o . ok, k") . k—0 ag
(1) a elk-r_l_ff 0 otkr 51 ==

r r



Meaning of S-wave scattering length

Asymptotic wave function Low-momentum limit
r—o . ok, k") . k—0 ag
1/Jk(r)—>e""r+f'? > etkr —1-—
r

S
‘e
.

\ a; < 0: weakly attractive

1 | (without a bound state)




Meaning of S-wave scattering length

Asymptotic wave function Low-momentum limit

! -
eik-r+f{’=0(k'k)eikr k_?l As

T r

Yr(r) =

S
‘e
.

\ a; < 0: weakly attractive

1 | (without a bound state)

a; > 0: strongly attractive
(with a bound state, i.e., node @)

1 ................................................... Weakly repulsive

> One cannot distinguish two possibilities

‘‘‘‘ from the elastic scattering
37



llllllllllllllllllllllllllllllllllllllll

M e ol Molecular | gas < 0: weakly attractive ength

Fermi /i Bosegas : = BCS regime

| Eas > 0: strongly attractiveé it

= BEC regime :
\ ag < 0: weakly attractive
.............................................................. (without a bound state)
— U >
Rey (1)

a; > 0: strongly attractive
(with a bound state, i.e., node @)

................................................... Weakly repulsive

> One cannot distinguish two possibilities

from the elastic scattering
38



Two-body problem

Let us check the relationship between the sign of ag and the existence of bound state

2
Two-body Schrodinger equation: l— py + g6(r) |V, (r) = E¥Y,(r)

1: relative distance between two particles

Y, (r): two-particle wave function



Two-body problem

Let us check the relationship between the sign of ag and the existence of bound state

2
Two-body Schrodinger equation: l— py + g6(r) |V, (r) = E¥Y,(r)

1: relative distance between two particles

Y, (r): two-particle wave function

Fourier transformation: Y, (r) = Z ek xx: Fourier coefficient
k




Two-body problem

Let us check the relationship between the sign of ag and the existence of bound state

2
Two-body Schrodinger equation: l— py + g6(r) |V, (r) = E¥Y,(r)

1: relative distance between two particles

Y, (r): two-particle wave function

Fourier transformation: Y, (r) = Z ek xx: Fourier coefficient
k

» 2 [%2 +96(r) - E] xie™r =
k



Two-body problem

Let us check the relationship between the sign of ag and the existence of bound state

2
Two-body Schrodinger equation: l— py + g6(r)|¥,(r) = EWY, (1)

1: relative distance between two particles

Y, (r): two-particle wave function

Fourier transformation: Y, (r) = 2 ek xx: Fourier coefficient
k

Multiplying e “%P'" and integrating it with
2

» Zk:[%z+g5(r)—E]Xke“""= » (%—E>Xp=—gzk:xk5—g‘l’z(0)



Two-body problem

Let us check the relationship between the sign of ag and the existence of bound state

2
Two-body Schrodinger equation: l— py + g6(r)|¥,(r) = EWY, (1)

1: relative distance between two particles

Y, (r): two-particle wave function

Fourier transformation: Y, (r) = 2 ek xx: Fourier coefficient
k

Multiplying e “%P'" and integrating it with
2

» Zk: [%2+g5(r) - E]Xke“"" = » (%— E)Xp = —gzk:)(k = —g'¥,(0)

g¥,(0)

etkr
Xk = — kZ/m — l'PZ(r) = _glPZ(O)Z kZ/m —F




Two-body problem

Two-body wave function

r—-0

1
— 1:_gzk:k2/m—E

ikr
Y, (r) = —ng(o)z kz/em _E
k

Two-body bound state = negative energy state E = —E}

Ey, > 0: two-body binding energy

44



Two-body problem

Two-body wave function

r—-0

pikT 1
‘Pz(r):—ng(o)zk:kz/m_bj m—) 1:_ng2/m—E

Two-body bound state = negative energy state E = —E}

Ey, > 0: two-body binding energy

: UV divergence!

A
m
1=__"9 f4nk2dk
0

- (2n)3 k? + mEy

45



Two-body problem

Two-body wave function

r—-0

pikT 1
LPZ(r):_g‘PZ(O)zk:kz/m—E m—) 1:_ng2/m—E

Two-body bound state = negative energy state E = —E}

Ey, > 0: two-body binding energy

1= -9 f A4 k*dk : UV divergence!
 (2m)3 ), & k? + mE, 5 '
Renormalization relation Regularized equation for E)j,

1 m mA m

L _ _ m m m m
g 4ma, 2n? A4mag k? > — Ama, Z [kz +mE, kz]

|k|<A

46



Binding energy and scattering length

Regularized equation for E},

4mag z lkz + mEy, kzl

—L j4k2dk 1t 1
~ (2n)3 & k? + mE, k?

m A

2
=——| dk -1 — | dk
212 J, <k2 + mEj, ) 2n? ), k? 4+ mE,




Binding energy and scattering length

Regularized equation for E}, Ep # 0onlyforas, > 0
1
m m m
== - Ep = —6(as)
ATra, - k? + mE, k? ma;s
S j "amkae (—— .
- (2m)3 ), & k? + mE, k?
SN (Y (S WO L (PR
- 2m? ), k% + mE, S 2m2 ),  k? 4+ mE,
do
{ = ./ EbtanH dk = \V Eb cos20 ]

m,/mE jtan 1 mE m,/mEb et A\ A»mE, m\/mEy,
212 212 [mE, 41



Binding energy and scattering length

Regularized equation for E}, Ep # 0onlyforas, > 0

m m m] mJmE 1
ATrag - k? + mE, k? A1 mag




Binding energy and scattering length

Binding energy Critical coupling for bound state
21
Eb:magg(aS) E, - 0atas > o » gcz—m

Renormalization relation

In 3D, sufficiently large coupling is required
1 m mA y larg phng q

for the formation of bound state

g - Amag 212

50



Binding energy and scattering length

Binding energy
1
Eb = 2 Q(as)
mas

Renormalization relation
1 m mA

g - Amag 212

X OSimilar to Fano-Feshbach resonance!
T T T

Critical coupling for bound state

2m?
E, - 0atas > o » e = ———

In 3D, sufficiently large coupling is required
for the formation of bound state

(a)

—1U T ]

u
&
&

T




Binding energy and scattering length

Binding energy
1
Eb = 2 Q(Cls)
mas

Renormalization relation
1 m mA

g - Amag 212

Critical coupling for bound state

E, - 0atas > o » e = ———

In 3D, sufficiently large coupling is required
for the formation of bound state

X 0Similar to Fano—F§shbach Iresonance!/
(a) ’

Unitary limit

a;, = oo

\

Because of divergent a,, there is no length
scale characterizing the interaction strength,
regardless of their strong interaction

/




Binding energy and scattering length

Binding energy
1
Eb = 2 Q(Cls)
mas

Renormalization relation
1 m mA

g - Amag 212

Critical coupling for bound state

E, - 0atas > o » Ic

In 3D, sufficiently large coupling is required

for the formation of bound state

1

OSimilar to Fano—F§shbach lresonance!/
(a) ’

Unitary limit \

a;, = oo

Because of divergent a,, there is no length
scale characterizing the interaction strength,
regardless of their strong interaction

Unitary Fermi gas

E = fEFG of free Fermi gas

Egg: internal energy

EOS is independent of any parameter exceptfj

¢ = 0.37 (exp.) : Bertsch parameter

A . —a —



Localized two-body wave function

Bound-state wave function

eik—r
Y = —g¥, (0 Z
2(1) g¥,(0) k2/m + Ey,
k
mlgl‘l’z(o) T . 00 , ikrcos@
Y, (r) = 02 : sm@d@jo k*dk P (E, = 1/ma?)



Localized two-body wave function

Bound-state wave function

elk-r

() = —g¥(0) )
k

/m+Eb

m|g|¥,(0) ™ ° ikrcos@
Y, (r) = = i sdeHJO k<dk K+ a? (Ep, = 1/ma?)
(t = —cos0)
B m|g|‘P2(O)j1 dtjoodk kZe~tkrt m|g|lP2(0)j°°dk k2 o—ikrt] =
= 412 1 0 k2 + aS_2 N 4172 0 k2 + as—z ikr -




Localized two-body wave function

Bound-state wave function

eik—r

W = —

2(1) g‘pz(")ZkZ/m +E,

m|g|¥,(0) ™ ° ikrcos@

(t = —cos8)

_m|g|tpz(0)j j dk ~ikrt m|g|lP2(0)j°°dk k2 o—ikrt] =
A kz +ag” 4?2 )y T k%+a;?|  ikr

t=—1
_ mlgl¥2(0) j e ke mlg|¥2(0) _ mlg|¥,(0) 55 " gk
Ameir k2 +ag?  4mtir am2ir (k + l/as)(k i/ag)

Contour integral



Localized two-body wave function

Bound-state wave function

eik—r

W = —

2(1) gLPZ(O)Zk:kZ/m +E,

m|g|¥,(0) ™ ° ikrcos@

(t = —cos8)

_m|g|lP2(O)j j dk ~ikrt m|g|lP2(0)j°°dk k2 o—ikrt] =
A kz +ag” 4?2 )y T k%+a;?|  ikr

t=—1
_ mlgl¥2(0) j e ke mlg|¥2(0) _ mlg|¥,(0) j£ " gk
Ameir k2 +ag?  4mtir am2ir (k + l/as)(k i/ag)

m|g|¥,(0 e T/
= l91%2( )x 271Ti Contour integral

Alir

1
= Y, (0) x —e~"/as
m|g|¥2(0) x —e




Localized two-body wave function

Bound-state wave function

eik—r 1 /a
¥o(r) = _glPZ(O)Zkz/m+Eb “amr
k

Bound state wave function (ground state) is localized with the size a,
Note that it is different from the elastic scattering state (corresponding to excited state)

Bound state (E = —E, < 0) Scattering state (E > 0)
ReW, (1) Re (1)
A A
1 ..............................................................
o L— 2 r ol 2 —e— > r
o ) @
/
e 9 -9 _ -




Why 1/(kFaS)7

0.5
1/3 . .
04 l\églszcgir | kp=(37%p) /3. Fermi momentum for given p
SQ], liquid I ]
=02} —  p= Z 1  :Particle number density
0.1 ' ' | |kl<kp
------- T supernu R 13 o oot
0.3 1 0 i > ™= mean interparticle distance d =~ p x kg
BCS<«—— (kpa,)'——>BEC
1/(kpas) <0 d/a;, =~ 1/(kga) S 1 d/a; =~ 1/(kpag) > 1
No bound states Pairs are strongly overlapped Pairs are point-like
(BCS Cooper pair) (crossover regime) (molecular BEC)

Fermi sphere




Renormalization group perspective
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Renormalization group perspective

Cutoff A and coupling constant g are not observable

A 1s assumed to be an RG scale and g can be tuned
such that actual observables are unchanged
Scattering amplitude

RG equation: 0 (kk’)—aT(kk"Z )=20
Auation: o/ Ue k) =g T k5 280 =
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Renormalization group perspective

Cutoff A and coupling constant g are not observable

A 1s assumed to be an RG scale and g can be tuned
such that actual observables are unchanged
Scattering amplitude

0 0
RG tion: |— N =— s =
equation aAf(k, k') aAT(k’ k';2e,) =0

2 L R O ) e
an|g " 22 \" T 2" ~ g T a2\ T2 g2oA " 2m2) "
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Renormalization group perspective

Cutoff A and coupling constant g are not observable

A 1s assumed to be an RG scale and g can be tuned
such that actual observables are unchanged
Scattering amplitude

0 0
RG tion: |— N =— s =
equation aAf(k, k') aAT(k’ k';2e,) =0

2 L R O ) e
an|g " 22 \" T 2" ~ g T a2\ T2 g2oA " 2m2) "

Dimensionless running coupling

A ou 0JAe™® ( m N m A m

m = g g

= — ds ds \2m? 2m? 2m? )
Y= on2d

Dimensionless running scale ou

A— A, =Ne”S EE
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Renormalization group perspective

See also P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

A 1s assumed to be an RG scale and g can be tuned such that actual observables are unchanged

ou

RG equation: [— —=
ds

—u—-u

—1 0
RG flow: ——e—@—>—>—>—@)—c—c—— U

* Arrow indicates the flow
direction with increasing s

Dimensionless running coupling

mA

U= g2

Dimensionless running scale
A-> A, =Ae”s



Renormalization group perspective

See also P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

A 1s assumed to be an RG scale and g can be tuned such that actual observables are unchanged

. du 5
RG equation: |— = —yy — 1y
ds
S 0
RG flow: . u

Bound-state formation
*Arrow indicates the flow . . .
direction with increasing s @ u = —1: UV unstable fixed P omt

2

Dimensionless running coupling gec = — %: critical coupling

mA

Uu=5.29 ® u = 0: IR (infrared) stable fixed point

Dimensionless running scale = Free gas limit (no bound states)
A-> Ag=Ne ™S



Outline

* Theoretical model
* UV divergence and renormalization
* Physical interpretation of the scattering length

* Short summary



Outline

* Short summary



Summary of Part 2

Contact-type interaction model is quite simple and relevant to describe
physics in ultracold Fermi gases.

However, we have encountered an UV divergence.

Accordingly, the coupling constant should be renormalized such that
experimental observables (e.g., scattering amplitude) are reproduced.
The interaction strength 1s then characterized by the scattering length.

10 T T T — 11U 1 1

(a) (b)

0.4+ -

I 0 1 ; 1
1.5 2 0 0.5 1.5 2

. 1 1
Weak attraction 9/ 9c Strong attraction Weak attraction g/9gc Strong attraction
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