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Part 2 
-Ultracold Fermi gas and renormalization-

• Understanding the basics of BCS-BEC crossover
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Why is the horizontal axis the inverse scattering length 𝒂𝒔
−𝟏?



Outline

• Theoretical model

• UV divergence and renormalization

• Physical interpretation of the scattering length

• Short summary
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Model Hamiltonian
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𝐻0 = න 𝑑3𝒓 ෍

𝜎=↑,↓

𝜓𝜎
† 𝒓 −

𝛁𝟐

2𝑚
− 𝜇 + 𝒰(𝒓) 𝜓𝜎(𝒓)

𝑉 =
1

2
෍

𝜎,𝜎′

න 𝑑3𝒓 න 𝑑3𝒓′ 𝜓𝜎
† 𝒓 𝜓

𝜎′
† 𝒓′ 𝑈𝜎𝜎′ 𝒓 − 𝒓′ 𝜓𝜎′ 𝒓′ 𝜓𝜎(𝒓)

𝐻 = 𝐻0 + 𝑉
Kinetic term:

Interaction term:

We take ℏ = 𝑘B = 1

𝜎: fermion spin (↑: + Τ1 2 , ↓: − Τ1 2) 

𝑚: fermion mass

𝜓𝜎 𝒓 : fermion field operator

𝜇: fermion chemical potential

𝒰(𝒓): single-particle potential

*In ultracold atoms, 𝜎 represents two hyperfine states

𝜓↑(𝒓)

𝜓↓
†(𝒓)

“annihilate”

“create”



Contact-type interaction
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𝑉 =
1

2
෍

𝜎,𝜎′

න 𝑑3𝒓 න 𝑑3𝒓′ 𝜓𝜎
† 𝒓 𝜓

𝜎′
† 𝒓′ 𝑈𝜎𝜎′ 𝒓 − 𝒓′ 𝜓𝜎′ 𝒓′ 𝜓𝜎(𝒓)

Interaction term:



Contact-type interaction
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Short-range attraction

𝑉 =
1

2
෍

𝜎,𝜎′

න 𝑑3𝒓 න 𝑑3𝒓′ 𝜓𝜎
† 𝒓 𝜓

𝜎′
† 𝒓′ 𝑈𝜎𝜎′ 𝒓 − 𝒓′ 𝜓𝜎′ 𝒓′ 𝜓𝜎(𝒓)

Interaction term:

𝑉 =
𝑔

2
෍

𝜎,𝜎′

න 𝑑3𝒓 𝜓𝜎
† 𝒓 𝜓

𝜎′
† 𝒓 𝜓𝜎′ 𝒓 𝜓𝜎(𝒓)

𝑔 < 0 : attractive coupling strength 𝑈𝜎𝜎′ 𝒓 − 𝒓′ ≃ 𝑔𝛿(𝒓 − 𝒓′)

−|𝑔|𝛿(𝒓 − 𝒓′)

|𝒓 − 𝒓′|



Contact-type interaction
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Short-range attraction

𝑉 =
1

2
෍

𝜎,𝜎′

න 𝑑3𝒓 න 𝑑3𝒓′ 𝜓𝜎
† 𝒓 𝜓

𝜎′
† 𝒓′ 𝑈𝜎𝜎′ 𝒓 − 𝒓′ 𝜓𝜎′ 𝒓′ 𝜓𝜎(𝒓)

Interaction term:

𝑉 =
𝑔

2
෍

𝜎,𝜎′

න 𝑑3𝒓 𝜓𝜎
† 𝒓 𝜓

𝜎′
† 𝒓 𝜓𝜎′ 𝒓 𝜓𝜎(𝒓)

𝑔 < 0 : attractive coupling strength

𝜓𝜎 𝒓 , 𝜓𝜎(𝒓) = 2𝜓𝜎 𝒓 𝜓𝜎 𝒓 = 0

𝜓𝜎
† 𝒓 , 𝜓𝜎

†(𝒓) = 2𝜓𝜎
† 𝒓 𝜓𝜎

† 𝒓 = 0

Anti-commutation of fermion operator

𝑉 = 𝑔 න 𝑑3𝒓 𝜓↑
† 𝒓 𝜓↓

† 𝒓 𝜓↓ 𝒓 𝜓↑(𝒓)

𝑈𝜎𝜎′ 𝒓 − 𝒓′ ≃ 𝑔𝛿(𝒓 − 𝒓′)

−|𝑔|𝛿(𝒓 − 𝒓′)

|𝒓 − 𝒓′|



Fock-state representation
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𝜓𝜎 𝒓 = ෍

𝛼

Ψ𝛼 𝒓 𝑐𝛼𝜎 𝜓𝜎
† 𝒓 = ෍

𝛼

Ψ𝛼
∗ 𝒓 𝑐𝛼𝜎

†

−
𝛁2

2𝑚
+ 𝒰 𝒓 Ψ𝛼 𝒓 = 𝐸𝛼Ψ𝛼 𝒓

Expanding the field operators with respect to eigenstate of non-interacting Hamiltonian 

Ψ𝛼 𝒓 :eigenstate

𝑐𝛼𝜎: fermion annihilation operator

𝑐𝛼𝜎
†

: fermion creation operator

Uniform case: 𝒰 𝒓 = 0

𝛼 → 𝒌 (momentum) Ψ𝛼 𝒓 →
1

𝐿3
𝑒𝑖𝒌⋅𝒓 (plane wave)

𝐿: system size



Momentum representation
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𝐻0 = න 𝑑3𝒓 ෍

𝜎=↑,↓

𝜓𝜎
† 𝒓 −

𝛁𝟐

2𝑚
− 𝜇 𝜓𝜎(𝒓)

𝜓𝜎 𝒓 =
1

𝐿3
෍

𝒌

𝑒𝑖𝒌⋅𝒓𝑐𝒌𝜎 𝜓𝜎
† 𝒓 =

1

𝐿3
෍

𝒌

𝑒−𝑖𝒌⋅𝒓𝑐𝒌𝜎
†

Equivalent to the Fourier transformation

=
1

𝐿3
න 𝑑3𝒓 ෍

𝜎=↑,↓

෍

𝒌,𝒌′

𝑒−𝑖 𝒌−𝒌′ ⋅𝒓 𝑐𝒌𝜎
† 𝑘2

2𝑚
− 𝜇 𝑐𝒌𝜎

= ෍

𝒌,𝜎

𝜉𝒌𝑐𝒌𝜎
† 𝑐𝒌𝜎

𝜉𝒌 =
𝑘2

2𝑚
− 𝜇: single-particle kinetic energy measured from 𝜇

Kinetic term:

∗
1

𝐿3 න 𝑑3𝑟 𝑒−𝑖 𝒌−𝒌′ ⋅𝒓 = 𝛿𝒌,𝒌′



Momentum representation
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𝐻0 = ෍

𝒌,𝜎

𝜉𝒌𝑐𝒌𝜎
† 𝑐𝒌𝜎

𝜓𝜎 𝒓 =
1

𝐿3
෍

𝒌

𝑒𝑖𝒌⋅𝒓𝑐𝒌𝜎 𝜓𝜎
† 𝒓 =

1

𝐿3
෍

𝒌

𝑒−𝑖𝒌⋅𝒓𝑐𝒌𝜎
†

Equivalent to the Fourier transformation

Kinetic term:

𝑉 = 𝑔 න 𝑑3𝒓 𝜓↑
† 𝒓 𝜓↓

† 𝒓 𝜓↓ 𝒓 𝜓↑(𝒓)Interaction term:

= 𝑔 ෍

𝒌1,𝒌2,𝒌3,𝒌4

න 𝑑3𝒓 𝑒−𝑖 𝑏1+𝒌2−𝒌3−𝒌4 ⋅𝒓𝑐𝒌1↑
† 𝑐𝒌2↓

† 𝑐𝒌3↓𝑐𝒌4↑

= 𝑔 ෍

𝒌,𝒌′,𝑷 

𝑐𝒌+𝑷/2↑
† 𝑐−𝒌+𝑷/2↓

† 𝑐−𝒌′+𝑷/2↓𝑐𝒌′+𝑷/2↑

𝒌 𝒌′ : outgoing (incoming) relative momentum 

𝑷: center-of-mass momentum of two particles



Simple and valid Hamiltonian, but…
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𝐻 = ෍

𝒌,𝜎

𝜉𝒌𝑐𝒌𝜎
† 𝑐𝒌𝜎 + 𝑔 ෍

𝒌,𝒌′,𝑷 

𝑐𝒌+𝑷/2↑
† 𝑐−𝒌+𝑷/2↓

† 𝑐−𝒌′+𝑷/2↓𝑐𝒌′+𝑷/2↑

𝒌 𝒌𝟎𝟎

Typical nuclear force (momentum space) Contact-type interaction

−𝑔
attractive

repulsive

Attractive interaction works at 

any high relative momenta

PRL 99, 022001 (2007).

Ultraviolet divergence!



Renormalization of coupling constant
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𝒌 𝒌𝟎𝟎

Typical nuclear force (momentum space) Contact-type interaction

−𝑔
attractive

repulsive

Λ
To avoid the UV divergence, we introduce a momentum cutoff Λ



Renormalization of coupling constant
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𝒌 𝒌𝟎𝟎

Typical nuclear force (momentum space) Contact-type interaction

−𝑔
attractive

repulsive

Λ
To avoid the UV divergence, we introduce a momentum cutoff Λ

Λ could be determined by short-range physics (e.g., repulsive core, effective range)



Renormalization of coupling constant
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𝒌 𝒌𝟎𝟎

Typical nuclear force (momentum space) Contact-type interaction

−𝑔
attractive

repulsive

Λ
To avoid the UV divergence, we introduce a momentum cutoff Λ

Λ could be determined by short-range physics (e.g., repulsive core, effective range)

At sufficiently low energy system, physical quantities should not depend on Λ

e.g., S-wave scattering length 𝒂𝒔



Two-body scattering (𝜇 = 0)

16

𝜙𝒌 = 𝑐𝒌↑
† 𝑐−𝒌↓

† |0⟩

Two-particle state with zero CoM momentum P=0

𝜓𝒌 = 𝑇𝑡exp −𝑖 න
−∞

0

𝑒𝛿𝑡 ෠𝑉 𝑡 𝑑𝑡 |𝜙𝒌⟩

After repeated two-body scattering (perturbation theory but infinite sum)

෠𝑉 𝑡 = 𝑒𝑖𝐻0𝑡𝑉𝑒−𝑖𝐻0𝑡: interaction representation of 𝑉

𝛿: infinitesimal positive number for adiabatic switch-on

Scattering amplitude

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
⟨𝜙𝒌′ 𝑉 𝜓𝒌⟩ መ𝑆 𝑉|𝜙𝒌⟩

|𝜓𝒌⟩

|𝜙𝒌′⟩

incoming outgoing

(elastic:  |𝒌| = |𝒌′|)

𝑇𝑡: time-order product



𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

Scattering amplitude

Contact-type interaction at P = 0



𝜙𝒌′ 𝑉 𝜙𝒌 = 0 𝑐−𝒌′↓𝑐𝒌′↑𝑉𝑐𝒌↑
† 𝑐−𝒌↓

† 0 = 𝑔 

𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

Scattering amplitude

Contact-type interaction at P = 0

1st order perturbation with respect to 𝒈 𝒌′ −𝒌′

𝒌 −𝒌

𝑔



𝜙𝒌′ 𝑉 𝜙𝒌 = 0 𝑐−𝒌′↓𝑐𝒌′↑𝑉𝑐𝒌↑
† 𝑐−𝒌↓

† 0 = 𝑔 

𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

−𝑖 න
−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌

= −𝑖𝑔2 න
−∞

0

𝑑𝑡 𝑒𝛿𝑡 ෍

𝒑

⟨0|𝑐−𝒌′↓𝑐𝒌′↑𝑐
𝒌′↑
† 𝑐

−𝒌′↓
† 𝑐−𝒑↓𝑐𝒑↑𝑒𝑖𝐻0𝑡𝑐𝒑↑

† 𝑐−𝒑↓
† 𝑐−𝒌↓𝑐𝒌↑𝑒𝑖𝐻0𝑡𝑐𝒌↑

† 𝑐−𝒌↓
† |0⟩

Scattering amplitude

Contact-type interaction at P = 0

1st order perturbation with respect to 𝒈

2nd  order perturbation with respect to 𝒈

𝒌′ −𝒌′

𝒌 −𝒌

𝑔

𝒌′ −𝒌′

𝒌 −𝒌

𝑔

𝑔

𝒑 −𝒑



𝜙𝒌′ 𝑉 𝜙𝒌 = 0 𝑐−𝒌′↓𝑐𝒌′↑𝑉𝑐𝒌↑
† 𝑐−𝒌↓

† 0 = 𝑔 

𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

−𝑖 න
−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌

= −𝑖𝑔2 න
−∞

0

𝑑𝑡 𝑒𝛿𝑡 ෍

𝒑

⟨0|𝑐−𝒌′↓𝑐𝒌′↑𝑐
𝒌′↑
† 𝑐

−𝒌′↓
† 𝑐−𝒑↓𝑐𝒑↑𝑒𝑖𝐻0𝑡𝑐𝒑↑

† 𝑐−𝒑↓
† 𝑐−𝒌↓𝑐𝒌↑𝑒𝑖𝐻0𝑡𝑐𝒌↑

† 𝑐−𝒌↓
† |0⟩

Scattering amplitude

Contact-type interaction at P = 0

1st order perturbation with respect to 𝒈

2nd  order perturbation with respect to 𝒈

= −𝑖𝑔2 ෍

𝒑

න
−∞

0

𝑑𝑡 𝑒𝛿𝑡+𝑖 2𝜀𝒑−2𝜀𝒌 𝑡 = −𝑔2 ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿

𝒌′ −𝒌′

𝒌 −𝒌

𝑔

𝒌′ −𝒌′

𝒌 −𝒌

𝑔

𝑔

𝒑 −𝒑

𝜀𝒌 =
𝑘2

2𝑚
: single-particle kinetic energy

𝐻0 𝜙𝒌 = 2𝜀𝒌|𝜙𝒌⟩
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𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

Scattering amplitude

Contact-type interaction at P = 0

3rd  order perturbation with respect to 𝒈

−𝑖 2

2!
න

−∞

0

𝑑𝑡𝑎 න
−∞

0

𝑑𝑡𝑏𝑒𝛿(𝑡𝑎+𝑡𝑏) ⟨0|𝑇𝑡𝑉 ෠𝑉 𝑡𝑎
෠𝑉 𝑡𝑏 |0⟩

= −𝑖 2 න
−∞

0

𝑑𝑡1 න
−∞

𝑡1

𝑑𝑡2𝑒𝛿(𝑡1+𝑡2) ⟨0|𝑉 ෠𝑉 𝑡1
෠𝑉 𝑡2 |0⟩

𝒌 −𝒌

𝑔

𝑔𝒑′ −𝒑′

𝒌′ −𝒌′

𝑔𝒑 −𝒑

𝑇𝑡 𝑉 𝑡𝑎 𝑉 𝑡𝑏 = ൝
෠𝑉 𝑡𝑎

෠𝑉 𝑡𝑏 ≡ ෠𝑉 𝑡1
෠𝑉(𝑡2) 𝑡𝑎 > 𝑡𝑏

𝑉 𝑡𝑏 𝑉(𝑡𝑎) ≡ ෠𝑉 𝑡1
෠𝑉(𝑡2) 𝑡𝑏 > 𝑡𝑎
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𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

Scattering amplitude

Contact-type interaction at P = 0

3rd  order perturbation with respect to 𝒈

−𝑖 2

2!
න

−∞

0

𝑑𝑡𝑎 න
−∞

0

𝑑𝑡𝑏𝑒𝛿(𝑡𝑎+𝑡𝑏) ⟨0|𝑇𝑡𝑉 ෠𝑉 𝑡𝑎
෠𝑉 𝑡𝑏 |0⟩

= −𝑖 2 න
−∞

0

𝑑𝑡1 න
−∞

𝑡1

𝑑𝑡2𝑒𝛿(𝑡1+𝑡2) ⟨0|𝑉 ෠𝑉 𝑡1
෠𝑉 𝑡2 |0⟩

= −𝑖 2𝑔3 න
−∞

0

𝑑𝑡1 න
−∞

𝑡1

𝑑𝑡2𝑒𝛿(𝑡1+𝑡2) ෍

𝒑,𝒑′

⟨0|𝑐−𝒌′↓𝑐𝒌′↑𝑐
𝒌′↑
† 𝑐

−𝒌′↓
† 𝑐−𝒑↓𝑐𝒑↑𝑒𝑖𝐻0𝑡

× 𝑐𝒑↑
† 𝑐−𝒑↓

† 𝑐−𝒑′↓𝑐𝒑′↑𝑒𝑖𝐻0𝑡𝑐
𝒑′↑
† 𝑐

−𝒑′↓
† 𝑐−𝒌↓𝑐𝒌↑𝑒𝑖𝐻0𝑡𝑐𝒌↑

† 𝑐−𝒌↓
† |0⟩

𝒌 −𝒌

𝑔

𝑔𝒑′ −𝒑′

= 𝑔3 ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿
෍

𝒑′

1

2𝜀𝒌 − 2𝜀𝒑′ + 𝑖𝛿

𝒌′ −𝒌′

𝑔𝒑 −𝒑

= −𝑖 2𝑔3 න
−∞

0

𝑑𝑡1 න
−∞

𝑡1

𝑑𝑡2𝑒𝛿(𝑡1+𝑡2) ෍

𝒑,𝒑′

𝑒
𝑖 2𝜀𝒑−2𝜀

𝒑′ 𝑡1+𝑖 2𝜀
𝒑′−2𝜀𝒌 𝑡1
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𝜙𝒌′ 𝑉 𝜓𝒌 = 𝑔 + 𝑔Π 2𝜀𝒌 𝑔 + 𝑔Π 2𝜀𝒌 𝑔Π 2𝜀𝒌 𝑔 + ⋯

𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

Scattering amplitude

Contact-type interaction at P = 0

𝑔
𝑔

𝑔

𝑔

𝑔

𝑔

= + + − ⋯Π 2𝜀𝒌

Π 2𝜀𝒌

Π 2𝜀𝒌

Π 2𝜀𝒌 = ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿

Retarded pair propagator 
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𝜙𝒌′ 𝑉 𝜓𝒌 = 𝑔 + 𝑔Π 2𝜀𝒌 𝑔 + 𝑔Π 2𝜀𝒌 𝑔Π 2𝜀𝒌 𝑔 + ⋯

𝑉 = 𝑔 ෍

𝒌,𝒌′ 

𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜓𝒌 = −

𝑚

4𝜋
𝜙𝒌′ 𝑉 𝜙𝒌 − 𝑖 න

−∞

0

𝑑𝑡 𝜙𝒌′ 𝑉 ෠𝑉 𝑡 𝜙𝒌 + ⋯

Scattering amplitude

Contact-type interaction at P = 0

𝑔
𝑔

𝑔

𝑔

𝑔

𝑔

= + + − ⋯

𝑔

𝑔

+=𝑇
𝑇

𝑇 𝒌, 𝒌′; 2𝜀𝒌 ≡ 𝜙𝒌′ 𝑉 𝜓𝒌 = 𝑔 + 𝑔Π(2𝜀𝒌)𝑇(𝒌, 𝒌′; 2𝜀𝒌)

T matrix

Π 2𝜀𝒌

Π 2𝜀𝒌

Π 2𝜀𝒌

Π 2𝜀𝒌 = ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿

Retarded pair propagator 

Π 2𝜀𝒌



Ultraviolet divergence
Retarded pair propagator shows an UV divergence

Π 2𝜀𝒌 = ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿



Ultraviolet divergence
Retarded pair propagator shows an UV divergence

Π 2𝜀𝒌 = ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿

෍

𝒑=
2𝜋
𝐿 (𝑛𝑥,𝑛𝑦,𝑛𝑧)

𝑓 𝒑 =
𝐿

2𝜋

3

න 𝑑3𝒑 𝑓(𝒑)Replacing the momentum summation 

with the integration (large 𝐿 limit)



Ultraviolet divergence
Retarded pair propagator shows an UV divergence
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Π 2𝜀𝒌 = ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿

෍

𝒑=
2𝜋
𝐿 (𝑛𝑥,𝑛𝑦,𝑛𝑧)

𝑓 𝒑 =
𝐿

2𝜋

3

න 𝑑3𝒑 𝑓(𝒑)Replacing the momentum summation 

with the integration (large 𝐿 limit)

Π 2𝜀𝒌 = −
1

2𝜋 3 න
0

Λ

4𝜋𝑝2𝑑𝑝
𝑚

𝑝2 − 𝑘2 − 𝑖𝛿

= −
𝑚

2𝜋2 න
0

Λ

𝑑𝑝 1 +
𝑘2

𝑝2 − 𝑘2 − 𝑖𝛿

Λ≫𝑘
−

𝑚

2𝜋2 Λ + න
0

∞

𝑑𝑝
𝑘2

𝑝2 − 𝑘2 − 𝑖𝛿

*𝐿 = 1 is taken



Ultraviolet divergence
Retarded pair propagator shows an UV divergence
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Π 2𝜀𝒌 = ෍

𝒑

1

2𝜀𝒌 − 2𝜀𝒑 + 𝑖𝛿

෍

𝒑=
2𝜋
𝐿 (𝑛𝑥,𝑛𝑦,𝑛𝑧)

𝑓 𝒑 =
𝐿

2𝜋

3

න 𝑑3𝒑 𝑓(𝒑)Replacing the momentum summation 

with the integration (large 𝐿 limit)

Π 2𝜀𝒌 = −
1

2𝜋 3 න
0

Λ

4𝜋𝑝2𝑑𝑝
𝑚

𝑝2 − 𝑘2 − 𝑖𝛿

= −
𝑚

2𝜋2 න
0

Λ

𝑑𝑝 1 +
𝑘2

𝑝2 − 𝑘2 − 𝑖𝛿

Λ≫𝑘
−

𝑚

2𝜋2 Λ + න
0

∞

𝑑𝑝
𝑘2

𝑝2 − 𝑘2 − 𝑖𝛿

*𝐿 = 1 is taken

= −
𝑚

2𝜋2 Λ +
𝑘2

2
න

−∞

∞

𝑑𝑝
1

(𝑝 − 𝑘 − 𝑖𝛿)(𝑝 + 𝑘 + 𝑖𝛿)

Re[𝑝]

Im[𝑝]

𝑘 + 𝑖𝛿

−𝑘 − 𝑖𝛿

= −
𝑚

2𝜋2 Λ +
𝜋

2
𝑖𝑘

Contour integral

Large 𝚲 cannot be taken,

but T matrix is non-divergent
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𝑓 𝒌, 𝒌′ = ෍

ℓ=0

2ℓ + 1 𝑓ℓ 𝒌, 𝒌′ 𝑃ℓ(cos 𝜃)

Partial wave expansion of the scattering amplitude

𝑃ℓ cos 𝜃 : Legendre polynomial for the relative angle 𝜃 between 𝒌 and 𝒌′

ℓ: relative angular momentum of two particles

𝜃

𝒌

𝒌′
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𝑘cot𝛿𝑘 = −
1

𝑎𝑠
+

1

2
𝑘2𝑟e ≃ −

1

𝑎𝑠
 (𝑟e ≃ 0)

Phase shift (effective range expansion)
S-wave Scattering amplitude

𝑓ℓ=0 𝒌, 𝒌′ =
1

𝑘cot𝛿𝑘 − 𝑖𝑘

𝑎𝑠 : S-wave scattering length
≃

1

−1/𝑎𝑠 − 𝑖𝑘

𝑓 𝒌, 𝒌′ = ෍

ℓ=0

2ℓ + 1 𝑓ℓ 𝒌, 𝒌′ 𝑃ℓ(cos 𝜃)

Partial wave expansion of the scattering amplitude

𝑃ℓ cos 𝜃 : Legendre polynomial for the relative angle 𝜃 between 𝒌 and 𝒌′

ℓ: relative angular momentum of two particles

𝜃

𝒌

𝒌′
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𝑘cot𝛿𝑘 = −
1

𝑎𝑠
+

1

2
𝑘2𝑟e ≃ −

1

𝑎𝑠
 (𝑟e ≃ 0)

Phase shift (effective range expansion)
S-wave Scattering amplitude

𝑓ℓ=0 𝒌, 𝒌′ =
1

𝑘cot𝛿𝑘 − 𝑖𝑘

𝑎𝑠 : S-wave scattering length
≃

1

−1/𝑎𝑠 − 𝑖𝑘

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝑇(𝒌, 𝒌′; 2𝜀𝒌)

𝑓 𝒌, 𝒌′ = ෍

ℓ=0

2ℓ + 1 𝑓ℓ 𝒌, 𝒌′ 𝑃ℓ(cos 𝜃)

Partial wave expansion of the scattering amplitude

𝑃ℓ cos 𝜃 : Legendre polynomial for the relative angle 𝜃 between 𝒌 and 𝒌′

ℓ: relative angular momentum of two particles

𝜃

𝒌

𝒌′

𝑇 𝒌, 𝒌′; 2𝜀𝒌 =
𝑔

1 − 𝑔Π(2𝜀𝒌)
=

1

1
𝑔 +

𝑚
2𝜋2 Λ +

𝜋
2 𝑖𝑘

𝑚

4𝜋𝑎𝑠
+

𝑚

4𝜋
𝑖𝑘 =

1

𝑔
+

𝑚Λ

2𝜋2 +
𝑚

4𝜋
𝑖𝑘
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𝑘cot𝛿𝑘 = −
1

𝑎𝑠
+

1

2
𝑘2𝑟e ≃ −

1

𝑎𝑠
 (𝑟e ≃ 0)

Phase shift (effective range expansion)
S-wave Scattering amplitude

𝑓ℓ=0 𝒌, 𝒌′ =
1

𝑘cot𝛿𝑘 − 𝑖𝑘

𝑎𝑠 : S-wave scattering length
≃

1

−1/𝑎𝑠 − 𝑖𝑘

𝑓 𝒌, 𝒌′ = −
𝑚

4𝜋
𝑇(𝒌, 𝒌′; 2𝜀𝒌)

𝑓 𝒌, 𝒌′ = ෍

ℓ=0

2ℓ + 1 𝑓ℓ 𝒌, 𝒌′ 𝑃ℓ(cos 𝜃)

Partial wave expansion of the scattering amplitude

𝑃ℓ cos 𝜃 : Legendre polynomial for the relative angle 𝜃 between 𝒌 and 𝒌′

ℓ: relative angular momentum of two particles

𝜃

𝒌

𝒌′

𝑇 𝒌, 𝒌′; 2𝜀𝒌 =
𝑔

1 − 𝑔Π(2𝜀𝒌)
=

1

1
𝑔 +

𝑚
2𝜋2 Λ +

𝜋
2 𝑖𝑘

𝑚

4𝜋𝑎𝑠
+

𝑚

4𝜋
𝑖𝑘 =

1

𝑔
+

𝑚Λ

2𝜋2 +
𝑚

4𝜋
𝑖𝑘

𝑚

4𝜋𝑎𝑠
=

1

𝑔
+

𝑚Λ

2𝜋2

Renormalization of 𝒈 to 𝒂𝒔



Outline

• Theoretical model

• UV divergence and renormalization

• Physical interpretation of the scattering length

• Short summary
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Meaning of S-wave scattering length

35

𝜓𝒌 𝒓
𝑟→∞

𝑒𝑖𝒌⋅𝒓 +
𝑓ℓ=0 𝒌, 𝒌′

𝑟
𝑒𝑖𝑘𝑟

𝑘→0
1 −

𝑎𝑠

𝑟

Asymptotic wave function Low-momentum limit
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𝜓𝒌 𝒓
𝑟→∞

𝑒𝑖𝒌⋅𝒓 +
𝑓ℓ=0 𝒌, 𝒌′

𝑟
𝑒𝑖𝑘𝑟

𝑘→0
1 −

𝑎𝑠

𝑟

Asymptotic wave function Low-momentum limit

≈

Re𝜓𝒌(𝒓)

1

𝒂𝒔 < 𝟎: weakly attractive 

              (without a bound state)

0

Meaning of S-wave scattering length
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𝜓𝒌 𝒓
𝑟→∞

𝑒𝑖𝒌⋅𝒓 +
𝑓ℓ=0 𝒌, 𝒌′

𝑟
𝑒𝑖𝑘𝑟

𝑘→0
1 −

𝑎𝑠

𝑟

Asymptotic wave function Low-momentum limit

≈

Re𝜓𝒌(𝒓)

1

𝒂𝒔 < 𝟎: weakly attractive 

              (without a bound state)

≈

Re𝜓𝒌(𝒓)

1

0

0

𝒂𝒔 > 𝟎: strongly attractive 

             (with a bound state, i.e., node ●)

weakly repulsive

● One cannot distinguish two possibilities 

from the elastic scattering 

Meaning of S-wave scattering length
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𝜓𝒌 𝒓
𝑟→∞

𝑒𝑖𝒌⋅𝒓 +
𝑓ℓ=0 𝒌, 𝒌′

𝑟
𝑒𝑖𝑘𝑟

𝑘→0
1 −

𝑎𝑠

𝑟

Asymptotic wave function Low-momentum limit

≈

Re𝜓𝒌(𝒓)

1

𝒂𝒔 < 𝟎: weakly attractive 

              (without a bound state)

≈

Re𝜓𝒌(𝒓)

1

0

0

𝒂𝒔 > 𝟎: strongly attractive 

             (with a bound state, i.e., node ●)

weakly repulsive

● One cannot distinguish two possibilities 

from the elastic scattering 

Meaning of S-wave scattering length𝒂𝒔 < 𝟎: weakly attractive 

              BCS regime

𝒂𝒔 > 𝟎: strongly attractive 

              BEC regime



Two-body problem

39

−
𝛁2

𝑚
+ 𝑔𝛿 𝒓 Ψ2 𝒓 = 𝐸Ψ2(𝒓)

Let us check the relationship between the sign of 𝑎𝑠 and the existence of bound state

Two-body Schrodinger equation:

𝒓: relative distance between two particles

Ψ2(𝒓): two-particle wave function



Two-body problem
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−
𝛁2

𝑚
+ 𝑔𝛿 𝒓 Ψ2 𝒓 = 𝐸Ψ2(𝒓)

Let us check the relationship between the sign of 𝑎𝑠 and the existence of bound state

Two-body Schrodinger equation:

𝒓: relative distance between two particles

Ψ2(𝒓): two-particle wave function

Ψ2 𝒓 = ෍

𝒌

𝜒𝒌𝑒𝑖𝒌⋅𝒓Fourier transformation: 𝜒𝒌: Fourier coefficient



Two-body problem
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−
𝛁2

𝑚
+ 𝑔𝛿 𝒓 Ψ2 𝒓 = 𝐸Ψ2(𝒓)

Let us check the relationship between the sign of 𝑎𝑠 and the existence of bound state

Two-body Schrodinger equation:

𝒓: relative distance between two particles

Ψ2(𝒓): two-particle wave function

Ψ2 𝒓 = ෍

𝒌

𝜒𝒌𝑒𝑖𝒌⋅𝒓Fourier transformation:

෍

𝒌

𝑘2

𝑚
+ 𝑔𝛿 𝒓 − 𝐸 𝜒𝒌𝑒𝑖𝒌⋅𝒓 = 0

𝜒𝒌: Fourier coefficient



Two-body problem
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−
𝛁2

𝑚
+ 𝑔𝛿 𝒓 Ψ2 𝒓 = 𝐸Ψ2(𝒓)

Let us check the relationship between the sign of 𝑎𝑠 and the existence of bound state

Two-body Schrodinger equation:

𝒓: relative distance between two particles

Ψ2(𝒓): two-particle wave function

Ψ2 𝒓 = ෍

𝒌

𝜒𝒌𝑒𝑖𝒌⋅𝒓Fourier transformation:

෍

𝒌

𝑘2

𝑚
+ 𝑔𝛿 𝒓 − 𝐸 𝜒𝒌𝑒𝑖𝒌⋅𝒓 = 0

Multiplying 𝑒−𝑖𝒑⋅𝒓 and integrating it with 𝒓

𝑝2

𝑚
− 𝐸 𝜒𝒑 = −𝑔 ෍

𝒌

𝜒𝒌 ≡ −𝑔Ψ2(𝟎)

𝜒𝒌: Fourier coefficient



Two-body problem
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−
𝛁2

𝑚
+ 𝑔𝛿 𝒓 Ψ2 𝒓 = 𝐸Ψ2(𝒓)

Let us check the relationship between the sign of 𝑎𝑠 and the existence of bound state

Two-body Schrodinger equation:

𝒓: relative distance between two particles

Ψ2(𝒓): two-particle wave function

Ψ2 𝒓 = ෍

𝒌

𝜒𝒌𝑒𝑖𝒌⋅𝒓Fourier transformation:

෍

𝒌

𝑘2

𝑚
+ 𝑔𝛿 𝒓 − 𝐸 𝜒𝒌𝑒𝑖𝒌⋅𝒓 = 0

Multiplying 𝑒−𝑖𝒑⋅𝒓 and integrating it with 𝒓

𝑝2

𝑚
− 𝐸 𝜒𝒑 = −𝑔 ෍

𝒌

𝜒𝒌 ≡ −𝑔Ψ2(𝟎)

𝜒𝒌: Fourier coefficient

𝜒𝒌 = −
𝑔Ψ2(𝟎)

Τ𝑘2 𝑚 − 𝐸
Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 − 𝐸



44

Two-body problem

Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 − 𝐸

Two-body wave function

1 = −𝑔 ෍

𝒌

1

Τ𝑘2 𝑚 − 𝐸

𝒓 → 𝟎

Two-body bound state = negative energy state 𝑬 = −𝑬𝐛

𝐸b > 0: two-body binding energy
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Two-body problem

Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 − 𝐸

Two-body wave function

1 = −𝑔 ෍

𝒌

1

Τ𝑘2 𝑚 − 𝐸

𝒓 → 𝟎

Two-body bound state = negative energy state 𝑬 = −𝑬𝐛

𝐸b > 0: two-body binding energy

1 = −
𝑚𝑔

2𝜋 3 න
0

Λ

4𝜋𝑘2𝑑𝑘
1

𝑘2 + 𝑚𝐸b

: UV divergence!
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Two-body problem

Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 − 𝐸

Two-body wave function

1 = −𝑔 ෍

𝒌

1

Τ𝑘2 𝑚 − 𝐸

𝒓 → 𝟎

Two-body bound state = negative energy state 𝑬 = −𝑬𝐛

𝐸b > 0: two-body binding energy

1 = −
𝑚𝑔

2𝜋 3 න
0

Λ

4𝜋𝑘2𝑑𝑘
1

𝑘2 + 𝑚𝐸b

: UV divergence!

1

𝑔
=

𝑚

4𝜋𝑎𝑠
−

𝑚Λ

2𝜋2
≡

𝑚

4𝜋𝑎𝑠
− ෍

𝒌 ≤Λ

𝑚

𝑘2

Renormalization relation

−
𝑚

4𝜋𝑎𝑠
= ෍

𝒌

𝑚

𝑘2 + 𝑚𝐸b
−

𝑚

𝑘2

Regularized equation for 𝑬𝐛
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𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

𝑚

𝑘2 + 𝑚𝐸b
−

𝑚

𝑘2
=

𝑚 𝑚𝐸b

4𝜋

Regularized equation for 𝑬𝐛

= −
𝑚

2𝜋 3
න

0

Λ

4𝜋𝑘2𝑑𝑘
1

𝑘2 + 𝑚𝐸b
−

1

𝑘2

= −
𝑚

2𝜋2
න

0

Λ

𝑑𝑘
𝑘2

𝑘2 + 𝑚𝐸b
− 1 =

𝑚

2𝜋2
න

0

Λ

𝑑𝑘
𝑚𝐸b

𝑘2 + 𝑚𝐸b



Binding energy and scattering length

48

𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

𝑚

𝑘2 + 𝑚𝐸b
−

𝑚

𝑘2
=

𝑚 𝑚𝐸b

4𝜋

Regularized equation for 𝑬𝐛

= −
𝑚

2𝜋 3
න

0

Λ

4𝜋𝑘2𝑑𝑘
1

𝑘2 + 𝑚𝐸b
−

1

𝑘2

= −
𝑚

2𝜋2
න

0

Λ

𝑑𝑘
𝑘2

𝑘2 + 𝑚𝐸b
− 1 =

𝑚

2𝜋2
න

0

Λ

𝑑𝑘
𝑚𝐸b

𝑘2 + 𝑚𝐸b

𝑘 = 𝑚𝐸btan𝜃 𝑑𝑘 = 𝑚𝐸b

𝑑𝜃

cos2𝜃

=
𝑚 𝑚𝐸b

2𝜋2
න

0

tan−1 Λ

𝑚𝐸b 𝑑𝜃 =
𝑚 𝑚𝐸b

2𝜋2
tan−1

Λ

𝑚𝐸b

Λ≫ 𝑚𝐸b 𝑚 𝑚𝐸b

4𝜋

𝐸b =
1

𝑚𝑎𝑠
2 𝜃(𝑎𝑠)

𝑬𝒃 ≠ 𝟎 only for 𝒂𝒔 > 𝟎
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𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

𝑚

𝑘2 + 𝑚𝐸b
−

𝑚

𝑘2
=

𝑚 𝑚𝐸b

4𝜋

Regularized equation for 𝑬𝐛

= −
𝑚

2𝜋 3
න

0

Λ

4𝜋𝑘2𝑑𝑘
1

𝑘2 + 𝑚𝐸b
−

1

𝑘2

= −
𝑚

2𝜋2
න

0

Λ

𝑑𝑘
𝑘2

𝑘2 + 𝑚𝐸b
− 1 =

𝑚

2𝜋2
න

0

Λ

𝑑𝑘
𝑚𝐸b

𝑘2 + 𝑚𝐸b

𝑘 = 𝑚𝐸btan𝜃 𝑑𝑘 = 𝑚𝐸b

𝑑𝜃

cos2𝜃

=
𝑚 𝑚𝐸b

2𝜋2
න

0

tan−1 Λ

𝑚𝐸b 𝑑𝜃 =
𝑚 𝑚𝐸b

2𝜋2
tan−1

Λ

𝑚𝐸b

Λ≫ 𝑚𝐸b 𝑚 𝑚𝐸b

4𝜋

𝐸b =
1

𝑚𝑎𝑠
2 𝜃(𝑎𝑠)

𝑬𝒃 ≠ 𝟎 only for 𝒂𝒔 > 𝟎
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Binding energy and scattering length

𝑔c = −
2𝜋2

𝑚Λ
𝐸b → 0 at 𝑎𝑠 → ∞

Critical coupling for bound state

In 3D, sufficiently large coupling is required 

for the formation of bound state
1

𝑔
=

𝑚

4𝜋𝑎𝑠
−

𝑚Λ

2𝜋2

𝐸b =
1

𝑚𝑎𝑠
2 𝜃(𝑎𝑠)

Renormalization relation

Binding energy
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Binding energy and scattering length

𝑔c = −
2𝜋2

𝑚Λ

1

𝑔
=

𝑚

4𝜋𝑎𝑠
−

𝑚Λ

2𝜋2

𝐸b =
1

𝑚𝑎𝑠
2 𝜃(𝑎𝑠)

Binding energy

Renormalization relation

𝐸b → 0 at 𝑎𝑠 → ∞

Critical coupling for bound state

In 3D, sufficiently large coupling is required 

for the formation of bound state

𝑔/𝑔c 𝑔/𝑔c

𝑎
𝑠
 [

a.
u

.]

𝐸
b

 [
a.

u
.]

Similar to Fano-Feshbach resonance!
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Binding energy and scattering length

𝑔c = −
2𝜋2

𝑚Λ
𝐸b → 0 at 𝑎𝑠 → ∞

Critical coupling for bound state

In 3D, sufficiently large coupling is required 

for the formation of bound state

𝑔/𝑔c 𝑔/𝑔c

𝑎
𝑠
 [

a.
u

.]

𝐸
b

 [
a.

u
.]

𝑎𝑠 → ±∞

Unitary limit

Because of divergent 𝑎𝑠, there is no length 

scale characterizing the interaction strength, 

regardless of their strong interaction

1

𝑔
=

𝑚

4𝜋𝑎𝑠
−

𝑚Λ

2𝜋2

𝐸b =
1

𝑚𝑎𝑠
2 𝜃(𝑎𝑠)

Renormalization relation

Similar to Fano-Feshbach resonance!

Binding energy
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Binding energy and scattering length

𝑔c = −
2𝜋2

𝑚Λ
𝐸b → 0 at 𝑎𝑠 → ∞

Critical coupling for bound state

In 3D, sufficiently large coupling is required 

for the formation of bound state

𝑔/𝑔c 𝑔/𝑔c

𝑎
𝑠
 [

a.
u

.]

𝐸
b

 [
a.

u
.]

𝑎𝑠 → ±∞

Unitary limit

Because of divergent 𝑎𝑠, there is no length 

scale characterizing the interaction strength, 

regardless of their strong interaction

𝐸 = 𝜉𝐸FG

Unitary Fermi gas
𝐸FG: internal energy 

of free Fermi gas

𝜉 ≃ 0.37 (exp. ) : Bertsch parameter

EOS is independent of any parameter except for

1

𝑔
=

𝑚

4𝜋𝑎𝑠
−

𝑚Λ

2𝜋2

𝐸b =
1

𝑚𝑎𝑠
2 𝜃(𝑎𝑠)

Renormalization relation

Similar to Fano-Feshbach resonance!

Binding energy



Localized two-body wave function 

Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 + 𝐸b

Bound-state wave function

Ψ2 𝒓 =
𝑚|𝑔|Ψ2(𝟎)

4𝜋2 න
0

𝜋

sin𝜃𝑑𝜃 න
0

∞

𝑘2𝑑𝑘
𝑒𝑖𝑘𝑟cos𝜃

𝑘2 + 𝑎𝑠
−2 (𝐸b = 1/𝑚𝑎𝑠

2)



Localized two-body wave function 

Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 + 𝐸b

Bound-state wave function

Ψ2 𝒓 =
𝑚|𝑔|Ψ2(𝟎)

4𝜋2 න
0

𝜋

sin𝜃𝑑𝜃 න
0

∞

𝑘2𝑑𝑘
𝑒𝑖𝑘𝑟cos𝜃

𝑘2 + 𝑎𝑠
−2

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

−1

1

𝑑𝑡 න
0

∞

𝑑𝑘
𝑘2𝑒−𝑖𝑘𝑟𝑡

𝑘2 + 𝑎𝑠
−2 =

𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

0

∞

𝑑𝑘
𝑘2

𝑘2 + 𝑎𝑠
−2 −

𝑒−𝑖𝑘𝑟𝑡

𝑖𝑘𝑟
𝑡=−1

𝑡=1
(𝑡 = −cos𝜃)

(𝐸b = 1/𝑚𝑎𝑠
2)



Localized two-body wave function 
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Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 + 𝐸b

Bound-state wave function

Ψ2 𝒓 =
𝑚|𝑔|Ψ2(𝟎)

4𝜋2 න
0

𝜋

sin𝜃𝑑𝜃 න
0

∞

𝑘2𝑑𝑘
𝑒𝑖𝑘𝑟cos𝜃

𝑘2 + 𝑎𝑠
−2

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

−1

1

𝑑𝑡 න
0

∞

𝑑𝑘
𝑘2𝑒−𝑖𝑘𝑟𝑡

𝑘2 + 𝑎𝑠
−2 =

𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

0

∞

𝑑𝑘
𝑘2

𝑘2 + 𝑎𝑠
−2 −

𝑒−𝑖𝑘𝑟𝑡

𝑖𝑘𝑟
𝑡=−1

𝑡=1
(𝑡 = −cos𝜃)

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
න

−∞

∞

𝑑𝑘
𝑘𝑒𝑖𝑘𝑟

𝑘2 + 𝑎𝑠
−2

𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
=

𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
ර

𝐶

𝑑𝑘
𝑘𝑒𝑖𝑘𝑟

(𝑘 + 𝑖/𝑎𝑠)(𝑘 − 𝑖/𝑎𝑠)

(𝐸b = 1/𝑚𝑎𝑠
2)

Re[𝑘]

Im[𝑘]

+𝑖/𝑎𝑠

−𝑖/𝑎𝑠

Contour integral
𝐶
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Ψ2 𝒓 = −𝑔Ψ2(𝟎) ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 + 𝐸b

Bound-state wave function

Ψ2 𝒓 =
𝑚|𝑔|Ψ2(𝟎)

4𝜋2 න
0

𝜋

sin𝜃𝑑𝜃 න
0

∞

𝑘2𝑑𝑘
𝑒𝑖𝑘𝑟cos𝜃

𝑘2 + 𝑎𝑠
−2

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

−1

1

𝑑𝑡 න
0

∞

𝑑𝑘
𝑘2𝑒−𝑖𝑘𝑟𝑡

𝑘2 + 𝑎𝑠
−2 =

𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

0

∞

𝑑𝑘
𝑘2

𝑘2 + 𝑎𝑠
−2 −

𝑒−𝑖𝑘𝑟𝑡

𝑖𝑘𝑟
𝑡=−1

𝑡=1
(𝑡 = −cos𝜃)

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
න

−∞

∞

𝑑𝑘
𝑘𝑒𝑖𝑘𝑟

𝑘2 + 𝑎𝑠
−2

𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
=

𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
ර

𝐶

𝑑𝑘
𝑘𝑒𝑖𝑘𝑟

(𝑘 + 𝑖/𝑎𝑠)(𝑘 − 𝑖/𝑎𝑠)

(𝐸b = 1/𝑚𝑎𝑠
2)

Re[𝑘]

Im[𝑘]

+𝑖/𝑎𝑠

−𝑖/𝑎𝑠

Contour integral
𝐶

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
× 2𝜋𝑖

𝑒−𝑟/𝑎𝑠

2

= 𝑚 𝑔 Ψ2 𝟎 ×
1

4𝜋𝑟
𝑒−𝑟/𝑎𝑠



Localized two-body wave function 
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Ψ2 𝒓 = −𝑔Ψ2 𝟎 ෍

𝒌

𝑒𝑖𝒌⋅𝒓

Τ𝑘2 𝑚 + 𝐸b
∝

1

4𝜋𝑟
𝑒−𝑟/𝑎𝑠

Bound-state wave function

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

−1

1

𝑑𝑡 න
0

∞

𝑑𝑘
𝑘2𝑒−𝑖𝑘𝑟𝑡

𝑘2 + 𝑎−2
=

𝑚|𝑔|Ψ2(𝟎)

4𝜋2
න

0

∞

𝑑𝑘
𝑘2

𝑘2 + 𝑎−2
−

𝑒−𝑖𝑘𝑟𝑡

𝑖𝑘𝑟
𝑡=−1

𝑡=1

=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
න

−∞

∞

𝑑𝑘
𝑘𝑒𝑖𝑘𝑟

𝑘2 + 𝑎−2

𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
=

𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
ර

𝐶

𝑑𝑘
𝑘𝑒𝑖𝑘𝑟

(𝑘 + 𝑖/𝑎)(𝑘 − 𝑖/𝑎)

(𝐸b = 1/𝑚𝑎𝑠
2)

Contour integral=
𝑚|𝑔|Ψ2(𝟎)

4𝜋2𝑖𝑟
× 2𝜋𝑖

𝑒−𝑟/𝑎

2

= 𝑚 𝑔 Ψ2 𝟎 ×
1

4𝜋𝑟
𝑒−𝑟/𝑎

≈

Re𝜓𝒌(𝒓)

1

0 ●≈

ReΨ2(𝒓)

0 𝒓 𝒓

Bound state (𝐸 = −𝐸𝑏 < 0) Scattering state (𝐸 > 0)

≃ 1 −
𝑎𝑠

𝑟∼ 𝒂𝒔

Bound state wave function (ground state) is localized with the size 𝑎𝑠

Note that it is different from the elastic scattering state (corresponding to excited state)



Why 1/(𝑘F𝑎𝑠)?
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𝑘F = 3𝜋2𝜌
1/3

: Fermi momentum for given 𝝆

𝜌 = ෍

𝒌 ≤𝑘F

1 : Particle number density

mean interparticle distance 𝑑 ≃ 𝜌− Τ1 3 ∝ 𝑘F
−1

𝑑 ∼ 𝑘F
−1

𝑎𝑠
𝑎𝑠

𝑎𝑠

Τ𝑑 𝑎𝑠 ≃ Τ1 𝑘F𝑎𝑠 ≫ 1Τ𝑑 𝑎𝑠 ≃ Τ1 𝑘F𝑎𝑠 ≲ 1Τ1 𝑘F𝑎𝑠 < 0

No bound states 

(BCS Cooper pair)

Pairs are strongly overlapped

(crossover regime)

Pairs are point-like

(molecular BEC)

Fermi sphere



Renormalization group perspective

Cutoff Λ and coupling constant 𝑔 are not observable

60

Λ is assumed to be an RG scale and 𝑔 can be tuned 

such that actual observables are unchanged



Renormalization group perspective

Cutoff Λ and coupling constant 𝑔 are not observable
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Λ is assumed to be an RG scale and 𝑔 can be tuned 

such that actual observables are unchanged

𝜕

𝜕Λ
𝑓 𝒌, 𝒌′ =

𝜕

𝜕Λ
𝑇 𝒌, 𝒌′; 2𝜀𝒌 = 0

Scattering amplitude

RG equation:



Renormalization group perspective

Cutoff Λ and coupling constant 𝑔 are not observable
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Λ is assumed to be an RG scale and 𝑔 can be tuned 

such that actual observables are unchanged

𝜕

𝜕Λ
𝑓 𝒌, 𝒌′ =

𝜕

𝜕Λ
𝑇 𝒌, 𝒌′; 2𝜀𝒌 = 0

Scattering amplitude

RG equation:

𝜕

𝜕Λ

1

𝑔
+

𝑚

2𝜋2 Λ +
𝜋

2
𝑖𝑘

−1

= −
1

𝑔
+

𝑚

2𝜋2 Λ +
𝜋

2
𝑖𝑘

−2

−
1

𝑔2

𝜕𝑔

𝜕Λ
+

𝑚

2𝜋2 = 0



Renormalization group perspective

Cutoff Λ and coupling constant 𝑔 are not observable
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Λ is assumed to be an RG scale and 𝑔 can be tuned 

such that actual observables are unchanged

𝜕

𝜕Λ
𝑓 𝒌, 𝒌′ =

𝜕

𝜕Λ
𝑇 𝒌, 𝒌′; 2𝜀𝒌 = 0

Scattering amplitude

RG equation:

𝜕

𝜕Λ

1

𝑔
+

𝑚

2𝜋2 Λ +
𝜋

2
𝑖𝑘

−1

= −
1

𝑔
+

𝑚

2𝜋2 Λ +
𝜋

2
𝑖𝑘

−2

−
1

𝑔2

𝜕𝑔

𝜕Λ
+

𝑚

2𝜋2 = 0

𝑢 =
𝑚Λ

2𝜋2 𝑔

𝜕𝑢

𝜕s
=

𝜕Λe−𝑠

𝜕𝑠

𝑚

2𝜋2 𝑔 +
𝑚

2𝜋2 Λ
𝑚

2𝜋2 𝑔2

𝜕𝑢

𝜕𝑠
= −𝑢 − 𝑢2

Λ → Λ𝑠 ≡ Λ𝑒−𝑠

Dimensionless running coupling

Dimensionless running scale



Renormalization group perspective
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Λ is assumed to be an RG scale and 𝑔 can be tuned such that actual observables are unchanged

RG equation:

𝑢 =
𝑚Λ

2𝜋2 𝑔

𝜕𝑢

𝜕𝑠
= −𝑢 − 𝑢2

Λ → Λ𝑠 ≡ Λ𝑒−𝑠

Dimensionless running coupling

Dimensionless running scale

RG flow: 𝑢
0−1

*Arrow indicates the flow 

direction with increasing s

See also P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).
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Λ is assumed to be an RG scale and 𝑔 can be tuned such that actual observables are unchanged

RG equation:

𝑢 =
𝑚Λ

2𝜋2 𝑔

𝜕𝑢

𝜕𝑠
= −𝑢 − 𝑢2

Λ → Λ𝑠 ≡ Λ𝑒−𝑠

Dimensionless running coupling

Dimensionless running scale

RG flow: 𝑢
0−1

・𝑢 = −1: UV unstable fixed point

・𝑢 = 0: IR (infrared) stable fixed point

Free gas limit (no bound states)

𝑔𝑐 = −
2𝜋2

𝑚Λ
: critical coupling

Bound-state formation

*Arrow indicates the flow 

direction with increasing s

See also P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).



Outline

• Theoretical model

• UV divergence and renormalization

• Physical interpretation of the scattering length

• Short summary

66



Outline

• Theoretical model

• UV divergence and renormalization

• Physical interpretation of the scattering length

• Short summary

67



Summary of Part 2
• Contact-type interaction model is quite simple and relevant to describe 

physics in ultracold Fermi gases.

• However, we have encountered an UV divergence.

• Accordingly, the coupling constant should be renormalized such that 
experimental observables (e.g., scattering amplitude) are reproduced. 
The interaction strength is then characterized by the scattering length.
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