Jan. 12-16, 2025

9 4 UTOky O

The 2nd Nuclear Physics Tortoise Lecture Series (NPTLS) 2026

Pairing In ultracold atoms
and neutron star

Hiroyuki Tajima
The University of Tokyo, Japan



Self-introduction: Hiroyuki Tajima

[ 2012-2017 Keio Univ. (Ohashi group, cond-mat, Japan?
2017-2019 RIKEN ( Hatsuda group, nucl-th, Japan)

2019-2021 Kochi Univ. (lida group, nucl-th, Japan)

k2021-recent Univ. Tokyo (Liang group, nucl-th, Japan) )

Prof. Y. Ohashi Prof. T. Hatsuda

Textbook in Japanese (Aug. 2025)

BRIz BID

0% e

I

i

VEILRLEDEZr L= HATITIN

M HZ =

« %Y en

https://www.kyoritsu-pub.co.jp/book/b10136511.html

2



Self-introduction: Hiroyuki Tajima
Ultracold atoms to neutron star matter

Unitary Fermi gas/
BEC-BCS crossover
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More (but not too) “macroscopic” physics
between ultracold atoms and neutron stars

arXiv:2007.00926 arXiv:2510.19841
(Published in Bulletin of Kochi Univ.) (submitted to Phys. Rev. E)
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Plan of the lecture

* Bulk nuclear matter from a perspective of ultracold atomic physics
« What Is an ultracold atom? Why is it useful?
* What is an outcome to nuclear physics from ultracold atom physics?

N WDNE

Introduction to ultracold atom as a quantum simulator of nuclear systems
Ultracold Fermi gas and renormalization

Exercise 1. BCS-Eagles-Leggett theory for the BCS-BEC crossover
Hands-on exercise of mean-field description

Pairing fluctuations beyond mean-field theory

Exotic superfluid and nucleon superfluid

Exercise 2: Minimal framework for critical-temperature curve
Hadron-quark crossover from an ultracold-atom perspective



Part 1
-Introduction to ultracold atoms as a
gquantum simulator of nuclear systems-

Neutron star matter
Ultracold atoms

A. L. Watts, et al., RMP 88, 021001 (2016).

= \What is an ultracold atoms? Useful for nuclear physics?



Outline

* Nuclear matter and neutron star
* Ultracold atom as a “Toy model” for nuclear system
 Ultracold Fermi gas and pure neutron matter

 Short summary



Outline

* Nuclear matter and neutron star



Nuclear many-body problem

« Many-body system consisting of neutrons and protons

Nucleon (spin-1/2 fermion) Nuclear matter

usually infinite size, homogeneous

‘ ’ proton
“isospin” L~
‘ ’ neutron '

Nuclei (finite-size system)

po = 0.16 fm~3: nuclear saturation density



Proton number

Neutron star

* “Super-gigantic nucler” with radius 10km and 2 solar mass

Nuclear matter is directly relevant to
the internal structure of neutron stars

Nuclear chart
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Nuclear matter equation of state
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nucleus

nuclear matter

H. Tamura, JPS Conf. Proc. 1, 011003 (2014).
po = 0.16 fm™3: nuclear saturation density 13



Nuclear matter equation of state

URFACE and INTERIOR
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Superfluid In a neutron star

Nucleon superfluids affect the observed phenomena

Cooling Curve Pulsar Glitch
107 AL LA IR RLLLL B LLLY LLRLALLL, IR LLLL IR Q
[ Slow cooling 1 A
L = = = = = = q=25
- Fast cooling —_——— == q=26 1
i ———— = =27

QAQ()

T [K]

Q(t)

e
N ] RN
"\
Paired ~ . \
N ~ R
N 9 ~ _ _
Ry >~ - ~
Normal N - ~ \\
LTSN
105 T R R R A ..\\x L b
1 10 100 1000 10* o> 10®% 107
Age [yrs] 1

D. Page, Fifty Years of Nuclear BCS 324-447 (2013). van Eysden, C. A. (2011), PhD thesis, The University of Melbourne



Superfluid In a neutron star

Nucleon superfluids affect the observed phenomena

Cooling Curve Glitch in “ultracold atoms”
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Nucleon superfluidity

Nucleons (neutrons and protons) may exhibit the BCS pairing due to the attractive nuclear force

Phase shift of NN scattering Nucleon pairing gaps in unpolarized matter
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Nucleon superfluidity

Nucleons (neutrons and protons) may exhibit the BCS pairing due to the attractive nuclear force

ucleon pairing gaps in unpolarized matter
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Strong dineutron correlations In
neutron-rich nuclel
Surface Localization of the Dineutron in Li
O° Y. Kubota et al., Phys. Rev.
o Lett. 125, 252501 (2020)
Dineutron cluster in 8He (0,%)

o P Neutron pair 0?
_ °° emission ‘ *

o E B 8He(0,") with a condenstate-like ®
a + 2n + 2n cluster structure

(188 B (1))

0.5 1 15
/Y977 hpiEFOEBER (fm)

-

fHe RI Beam

Z. H. Yang, et al., Phys. Rev. Lett. 131, 242501 (2023) 1



Outline

* Nuclear matter and neutron star
* Ultracold atom as a “Toy model” for nuclear system
 Ultracold Fermi gas and pure neutron matter

 Short summary



Outline

* Ultracold atom as a “Toy model” for nuclear system



Infinite nuclear matter
as a toy model for nuclel

* “Toy model”, but not so easy...

Nuclear force

300 T T T T T T T T T T T T T T T T T T T T
1SO channel -
200 -
 repulsive
100 + core _
O
| CD Bonn
L Reid93
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0 0.5 1 1.5 2 25

PRL 99, 022001 (2007).

Isovector and isoscalar interactions

‘_ -’ proton
‘ ’ neutron

Three-body force
N N N

N N N 22



Is 1t similar to fermions with
contact interaction?

* “Toy model”, but not so easy...

[MeV]

Nuclear force \\ """"" Sqcramel Isovector and isoscalar interactions
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Ultracold Fermi gases
-Toy model for toy model-

...But various tunable parameters and many observables in experiments

Solid Lithium

Nilamhend

o Oven
T = 600K

Laser
Cooling

Credits: NASA/iGoal Animation

T <100nK

https://www.omu.ac.jp/sci/laserQ/resli/index.html
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Bose and Fermi atomic gases

Velocity distribution Fermi pressure in
in Bose-Einstein condensate guantum degenerate gases
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Phys. Rev. Lett. 86, 5409 (2001).

&y .'.\""-

DI/ :
E-A Cornell C.E. Wleman W. Ketterle )
Bose atoms (’Li, 8’Rb, 174Yb,...) Fermi atoms (5Li, 4°K, 173YD,...)
'Li = 3 protons + 4 neutrons + 3 electrons 6Li = 3 protons + 3 neutrons + 3 electrons

= (10 fermions) = (9 fermions)



Low dimension and lattice geometry

EDITORS' SUGGESTION
Two-Dimensional
Homogeneous Fermi Gases

A homogeneous ultracold 2D Fermi gas is trapped
in a box potential, which has advantages over
harmonically trapped ones for probing strongly
interacting systems.

Optical lattice and 1D tube

Klaus Hueck et al.
Phys. Rev. Lett. 120, 060402 (2018)

High-resolution trap potential

' £ 600..“.»”

4
.
L
L

ExC
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I. Bloch, Nat. Phys. 1, 23 (2005).
http://quantumgases.lens.unifi.it/exp/li



http://quantumgases.lens.unifi.it/exp/li

Interaction potential V(r)

Fano-Feshbach resonance
Engineering two-body force

>

Open channel (spin triplet)
OLj OLj

Im; = +1,mg = —1/2) |m; = 0,mg = —1/2)

Inter-particle distance r



Interaction potential V(r)

>

Fano-Feshbach resonance
Engineering two-body force

Closed channel (spin singlet) 2-channel mixing occurs due
to the hyperfine interaction

Zeeman
__________________ Incident energy 4 L field B

Open channel (spin triplet)

Im; = +1,mg = —1/2) |m; = 0,mg = —1/2)

Inter-particle distance r



Fano-Feshbach resonance
Engineering two-body force

Atoms Interacts with each other via an intermediate state
= attraction can be tuned by an external magnetic field
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Fano-Feshbach resonance
Engineering two-body force

Atoms interacts with each other via an intermediate state Effective attraction

= attraction can be tuned by an external magnetic field g2

Interaction potential V/(r)

Voir = —

A “Mediator” of effective interaction
. . O
open & — open

f o e
molecule
[ |

Q- Vy
0 _ _ > open open
Inter-particle distance r




Fano-Feshbach resonance
Engineering two-body force

Feshbach resonance in a ®Li Fermi gas  B-dependence near Feshbach resonance

600
Strong W
400} attraction ' ag (B) = Apg <1 + res )
_ ; _ B - By
L/Resonance B,

< EE— - Resonance width W, = 262.3G

scattering length a,[nm]

200} Background scattering length ay,, = —1582a,
Weak
400} attraction 1 as can be controlled precisely by tuning B
600 - .
600 800 1000 1200

Magnetic field B [G] G. Ziirn, et al., PRL 110, 135301 (2013).



Tunable Interaction near the
Fano-Feshbach resonance
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Tunable Interaction near the
Fano-Feshbach resonance

— 600 , . Pairing
g i 0.5 ' 7
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Magnetic field B [G] Y. Ohashi, HT, and P. van Wyk, Prog. Part.

Nucl. Phys. 111, 103739 (2020).

p V(@) =-Us()

Ground state




Tunable Interaction near the
Fano- Feshbach resonance
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Ground-state of Fermi systems

Electrons, neutron, proton, quark, etc...

Ideal Fermi gases

Fermi sphere

Momentum space



Ground-state of Fermi systems

Attraction

—U # 0
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[ Cooper pair
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Electrons, neutron, proton, quark, etc...

BCS Ground state @
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Momentum space



Ground-state of Fermi systems

Electrons, neutron, proton, quark, etc...
Attraction

—U=0 BCS Ground state

~

g Cooper pair

I

Momentum space



Ground-state of Fermi systems

Electrons, neutron, proton, quark, etc...

Attraction
—U # ( Bose-Einstein Condensate
" Molecule ) (BEC)




Superfluidity and BCS-BEC crossover

« BCS-BEC crossover Is realized by tuning the scattering length
 Such a phenomenon can occur In neutron matter?

Phase diagram of the BCS-BEC crossover

0.5 - g
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0.4 i
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&LHO 3 q ; T
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http://astro.riken. jp/wordpress/?page_id=1425

Observation of BCS-BEC
crossover in a K Fermi gas
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C. Regal, et al., PRL 92, 040403 (2004).



Outline

* Nuclear matter and neutron star
* Ultracold atom as a “Toy model” for nuclear system
 Ultracold Fermi gas and pure neutron matter

 Short summary



Outline

 Ultracold Fermi gas and pure neutron matter



Similarity between
neutron matter and cold atom

* The low density neutron matter is also dominated by
the s-wave scattering like an ultracold Fermi gas

Phase shift (effective range expansion) Phase shift of NN scattering

1 1 5
kCOt5k = —a— +Ek T off
S

a. S-wave scattering length
reoff. effective range

S [deg]

As LoD -18.5 fm _m__
Teff ~0 2.8 fm e
0 0.5 1 1.5
density ~10° cm™3 ~0.17 fm™3 K(fm
A. Gezerlis, et al, arXiv : 1406.6109v2

—1 - oo :
(kras) — O~ c0~0) * kg: Fermi momentum



Ultracold Fermi gases

Quantum simulator for neutron matter

* The low-density neutron matter can be simulated In
ultracold atomic Fermi gas experiments

M. Horikoshi, M. Koashi, HT, Y. Ohashi, and M. Kuwata-Gonokami, PRX, 7, 041004 (2017).
Precise measurement of cold atom EOS

Theory

4 V() =-Us()
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Ultracold Fermi gases

Quantum simulator for neutron matter

* The low-density neutron matter can be simulated In
ultracold atomic Fermi gas experiments

M. Horikoshi, M. Koashi, HT, Y. Ohashi, and M. Kuwata-Gonokami, PRX, 7, 041004 (2017).
EOS of neutron matter and cold atom

Precise measurement of cold atom EOS

Theory

SLi(exp.)
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Ultracold atom side

E
—=f() x

EFG B kFaS

3
EFG = gpglr.‘ kF = (377:2,0)1/3

p ~ nm~3: atom density
k a; ~ nm: atom-atom scattering length
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Neutron matter side

E
—=f() «x

Erg ~ krag

3
Erg = gng ke = (3n2p)1/3

p ~ fm™3: neutron density
a; ~ fm: NN scattering length /

Precise measurement of cold atom EOS

1 : :
Theory
%
S
@
£
SLi(exp.)
0.2r
O 28 06 04 02 0
BCS (keay)! Unitarity
T e——

oLi
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Unitary Fermi gas and universality

Scale invariance because of no length scales associated with interaction (a—oo)

Universal thermodynamics Ideal Fermi gas: Eigeal = fo(n, T)

Interacting Fermi gas: E=gnaT)
Unitary Fermi gas: Eypg = f(n,T)

Je19]

At T =0, only one parameter is relevant

1
Compressibility K = EKO BertSCh parameter

Bl — Sound ¢ & =037
" 6 ' velocity Vs = |3 VF
G. F. Bertsch,
M. Horikoshi, et al., Science 327,442 (2010). = Internal . _ 3 Eneg Challenge problem
ey > in many-body

physics (1999)

3
Pressure p = §72P,



Unitary Fermi gas and universality

SOVIET PHYSICS JETP VOLUME 11, NUMBER 4 OCTOBER, 1960

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF
STATE OF NEUTRONS

Ya. B. ZEL’DOVICH

Submitted to JETP editor October 22, 1959
Just few years after BCS

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1123-1131 (April, 1960) -
and Bohr-Mottelson-Pines!

For w >w,, Ef > Ey, the scattering does not de-
pend on the length a, and we can set a =, a~!
= 0, i.e., consider resonance scattering. Then the
problem contains no dimensionless parameters.

From dimensional considerations it follows that in
this region

E,~U;~E ~Ej~ . (13) D. T. Son

w: density

This is the first paper

for a unitary Fermi gas
(on FB)




prn [I\I(‘V]

Unitary gas bound conjecture

|. Tews, et al., ApJ 848:105, (2017).

Conjecture: Pure neutron matter EOS would be larger than that of a unitary Fermi gas

I 4 ! ! | ¥ : ! ! |
| —— SCGF (2016)

25 [ s Lynn et al. (2016)
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Outline

* Nuclear matter and neutron star
* Ultracold atom as a “Toy model” for nuclear system
 Ultracold Fermi gas and pure neutron matter

 Short summary
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Short summary of Part 1

« Quantum many-body problems of nucleons, relevant to neutron
star physics and nuclel, can be studied (at least partially) In
ultracold atoms.

« In particular, pairing phenomena in an ultracold Fermi gas could
be useful reference for understanding nucleon superfluids.

0.5 | | 25k PRC, 58, 1804 (1998). B E
04 i Molecular | -« APR (2-body +UIX) | pt
C Bose gas s0l ® APR (2-body) | E
liquid 7 > 5Li (exp.) t
&“‘0‘3 q T § 5 |
< ® |
™o o '
: = ol o | N
R = |
0.1 5P o i B
------- > 1 Superfluid y i .
0 il ] . s [ — L L] L Lo
2 -1 0 1 2 0 0.05 0.1 0.15 0.2

BCS< (keay)! »BEC  Low dens. n [fm”] High dens.
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P-wave Feshbach resonance

Spin-triplet P-wave pairing Observation of p-wave Feshbach molecule

OD

b) ->0.4

‘ ‘ ® |B
0

————— 310 um —————
Strong three-body loss
J. P. Gaebler, ef al., PRL 98, 200403 (2007)

— I oY P-wave Fermi superfluidity has not been
°e 107 . N realized yet due to atomic losses
K AR +++:* o
TN T
1078 . .i.+~..ﬂ+m "d‘*ﬁ J. Yoshida, et al.,
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Can FFLO phase exist?

Fulde-Ferrell-Larkin-Ovchinnikov state: Pair condensation at nonzero COM momentum
BCS state FFLO state
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@ Reported that it is unstable against pairing fluctuations in the homogeneous system
(Y. Ohashi, JPSJ 71, 2625 (2002). )

Eg,  Low Temp. Phys. 39, 225 (2013).

FFLO pairing fluctuations Molecule with COM momenta 1D phase diagram (trapped)
M. Pini, et al., PRR 3, 043068 (2021).  C. Peng, et al., PRA 103, 063312 (2021). Y. Liao, et al., Nature 467, 567 (2010).
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Spin susceptibility and spin dynamics

Spin dipole oscillation

o B

G. Valtolina, et al., Nat. Phys. 13, 704 (2017).

/ Giant dipole resonance (GDR) \
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Spin dipole oscillation

In repulsive Fermi gases, the spin susceptibility diverges (spin dipole frequency becomes zero)
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Stoner ferromagnetism In neutron matter?

Skyrme energy density functional
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Stoner ferromagnetism In neutron matter?

Skyrme energy density functional Brueckner Hartree-Fock calculation
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YES! FM occurs at p/py = 3.7
but the framework is reliable
only near p/py = 1
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Spin dipole frequency

In repulsive Fermi gases, the spin susceptibility diverges (spin dipole frequency becomes zero)
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Spin dipole frequency

Suppressed spin susceptibility (spin gap) leads to enhanced spin dipole frequency

Attractive case
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Spin dipole frequency

Suppressed spin susceptibility (spin gap) leads to enhanced spin dipole frequency

Attractive case Diagrammatic approach +LDA
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Spin dipole frequency

Suppressed spin susceptibility (spin gap) leads to enhanced spin dipole frequency

Attractive case Diagrammatic approach +LDA
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Pairing in “imbalanced” nuclear matter

Mean-field study in spln polarlzed neutron matter
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Pairing in “imbalanced” nuclear matter

Mean-field study in spln polarlzed neutron matter
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Population-imbalanced Fermi gases

“Mimicking” magnetized neutron matter

Atomic numbers N, | can also be tunable Mean-field phase diagramat T =0
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Beyond mean field theory

Mean-field theory overestimates the critical temperature and spin polarization
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g/atom (a.u.)

Repulsive Fermi gases:
Metastable Stoner ferromagnetism

G. Valtolina, et al., Nat. Phys. 13, 704 (2017).
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g/atom (a.u.)

Repulsive Fermi gases:
Metastable Stoner ferromagnetism

G. Valtolina, et al., Nat. Phys. 13, 704 (2017).
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Stoner ferromagnetism In neutron matter?

Brueckner Hartree-Fock calculation

Skyrme energy density functional
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Stoner ferromagnetism In neutron matter?
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Brueckner Hartree-Fock calculation

Skyrme energy density functional
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