

hadron-quark crossover: Insights from ultracold atomic physics

Hiroyuki Tajima

The University of Tokyo, Japan

References: [HT](#), K. Iida, T. Kojo, and H. Liang, PRL **135**, 042701 (2025).

Collaborators

Kei Iida
The Open University of Japan

Toru Kojo
KEK

Haozhao Liang
The University of Tokyo

Outline

- **Introduction**

Can we study a microscopic mechanism of hadron-quark crossover in cold atom physics?

- **Formulation**

Tripling fluctuation theory

- **Results**

Equation of state and momentum distributions

- **Summary**

Outline

- **Introduction**

Can we study a microscopic mechanism of hadron-quark crossover in cold atom physics?

- **Formulation**

Tripling fluctuation theory

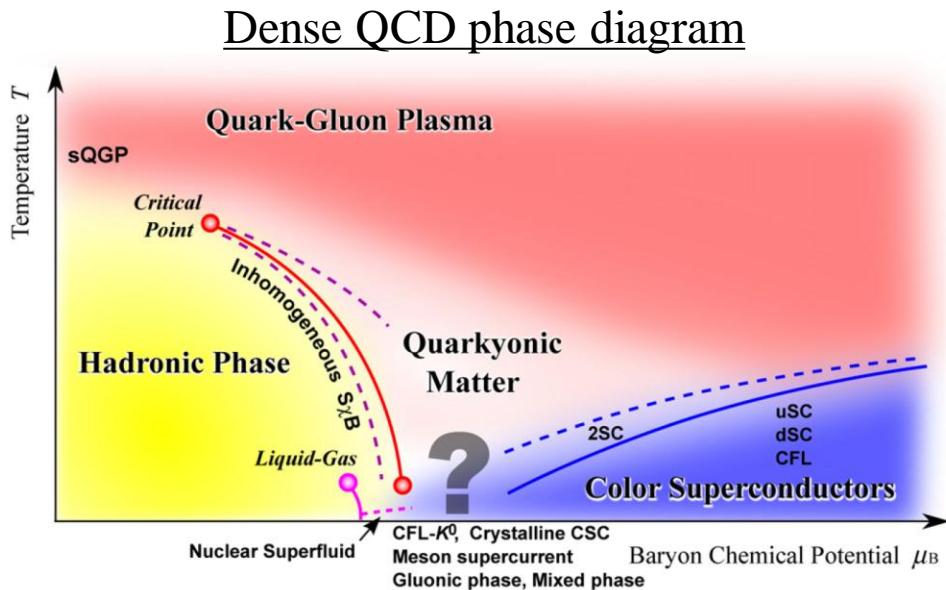
- **Results**

Equation of state and momentum distributions

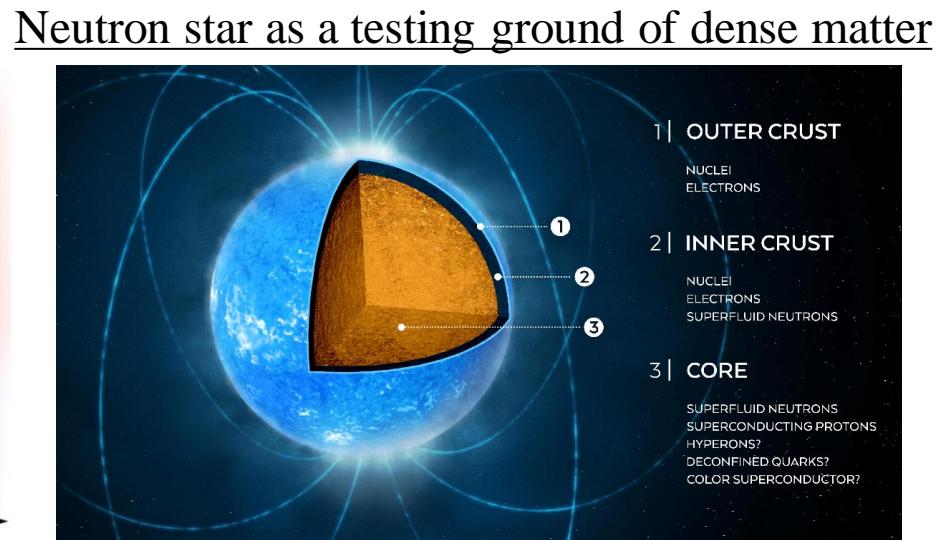
- **Summary**

Extremely dense matter

How does the hadronic phase change into quark matter at finite densities?



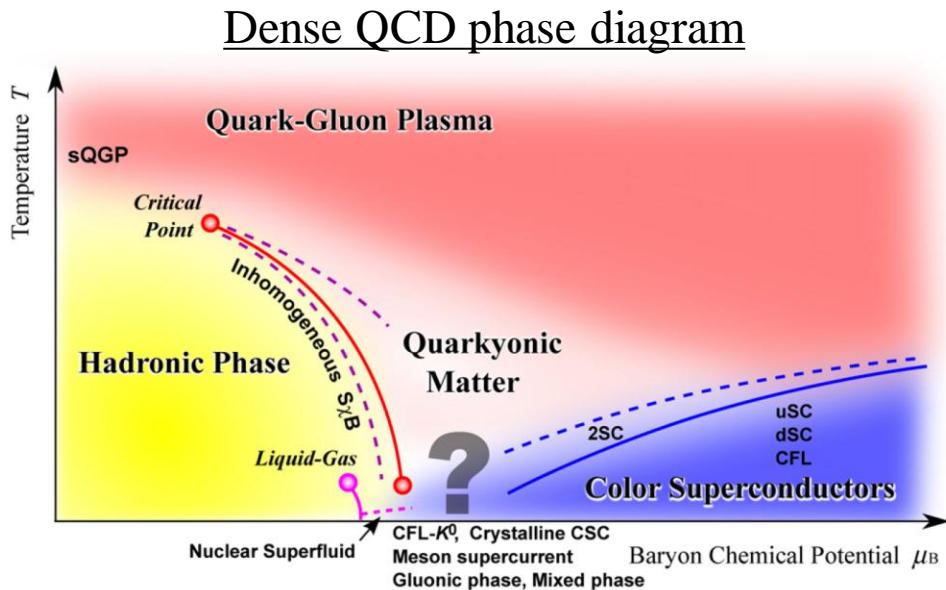
K. Fukushima, *et al.*, Rep. Prog. Phys. **74**, 014001 (2011).



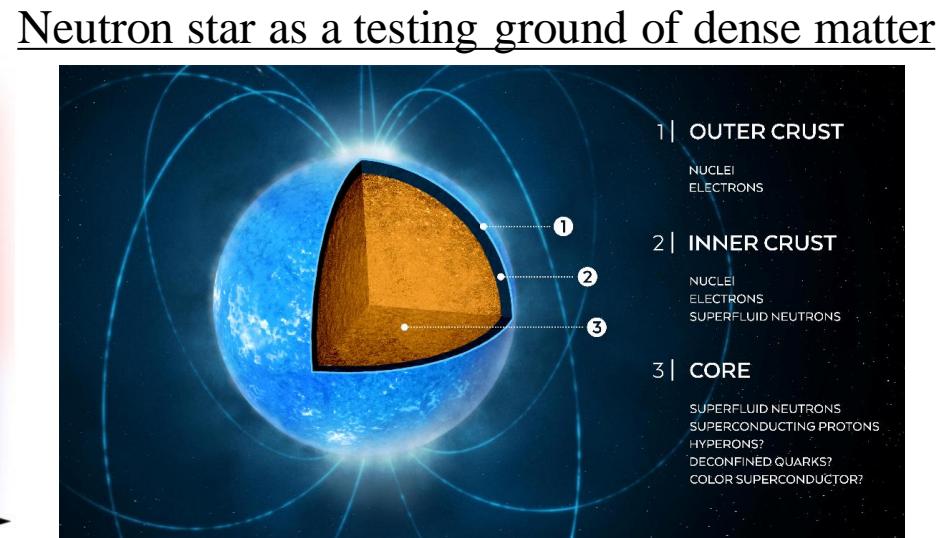
A. L. Watts, *et al.*, RMP **88**, 021001 (2016).

Extremely dense matter

How does the hadronic phase change into quark matter at finite densities?



K. Fukushima, *et al.*, Rep. Prog. Phys. **74**, 014001 (2011).



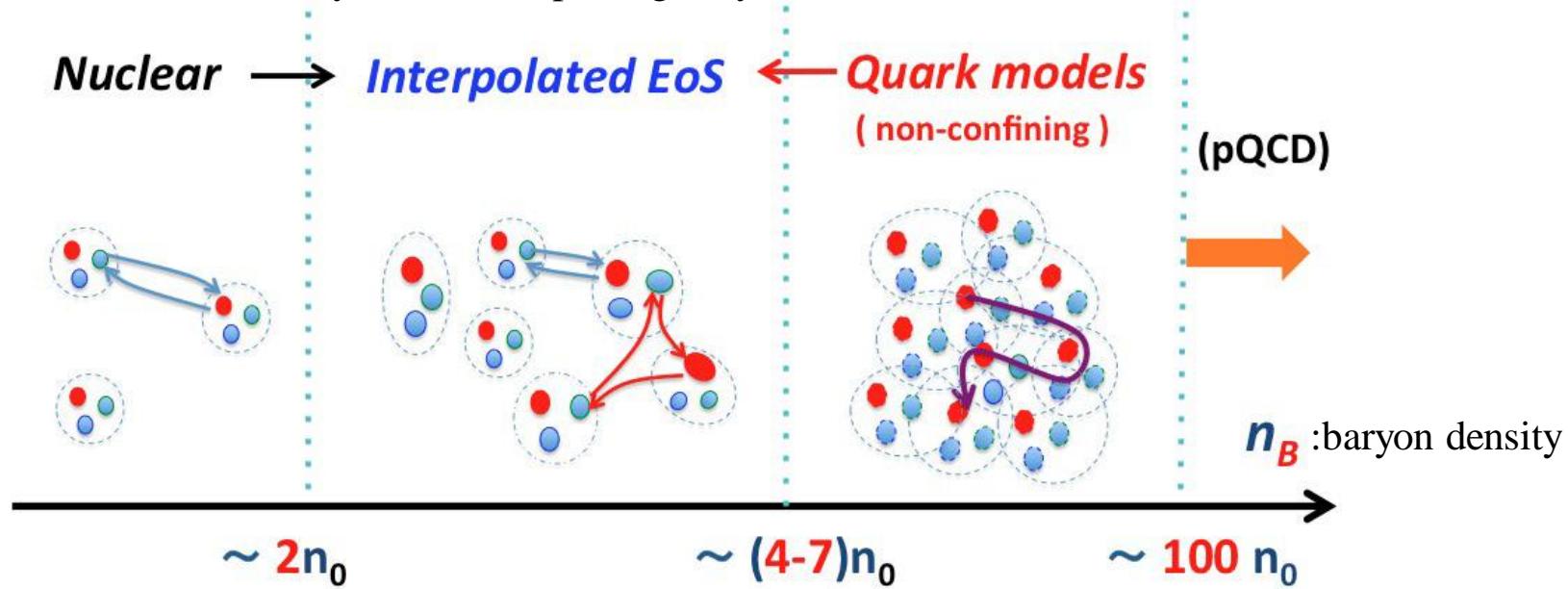
A. L. Watts, *et al.*, RMP **88**, 021001 (2016).

✗ Sign problem in lattice QCD

✗ Limited information in the observation

Hadron-quark (HQ) crossover

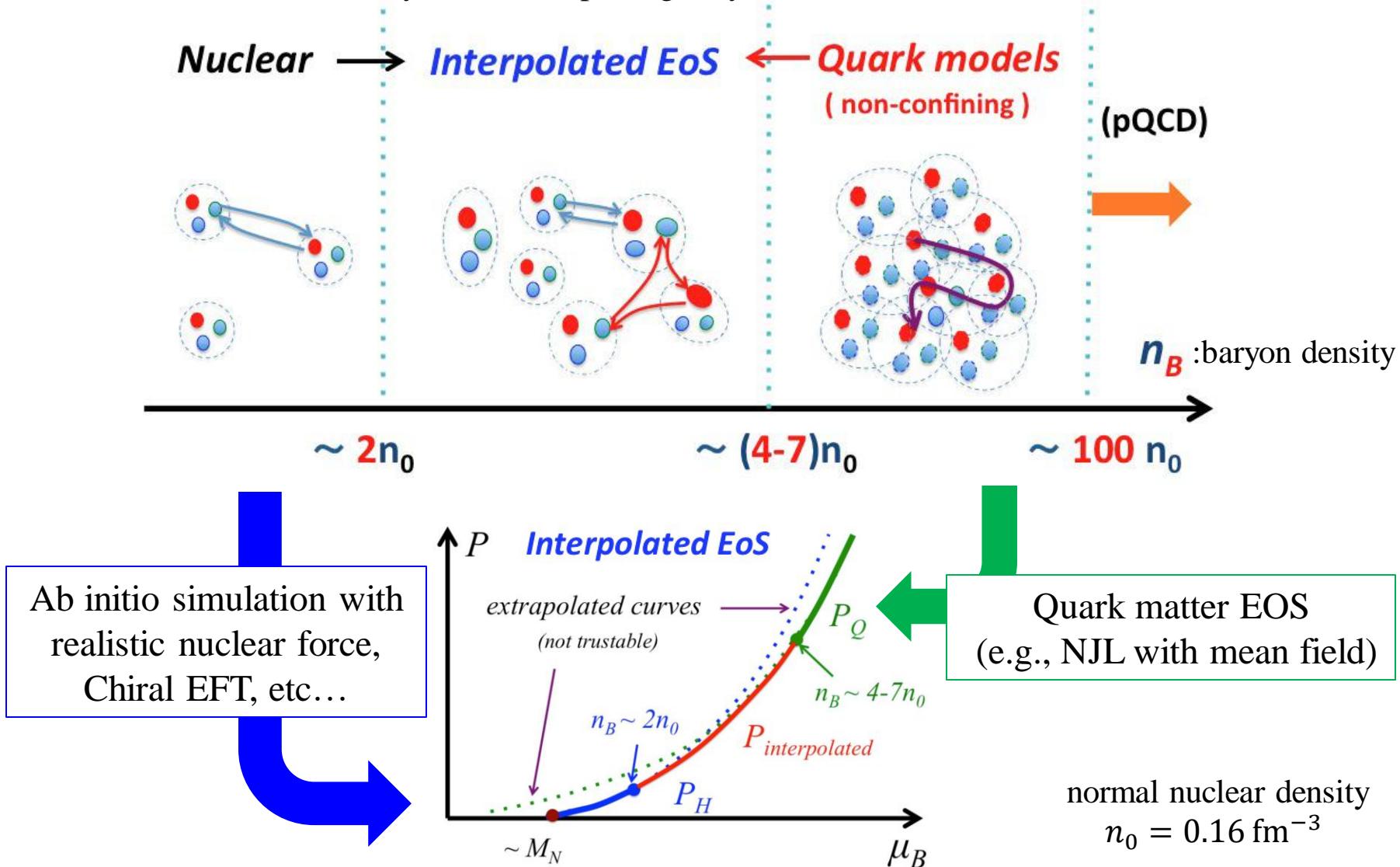
G. Baym, *et al.*, Rep. Prog. Phys. **81**, 056902 (2018).



normal nuclear density
 $n_0 = 0.16 \text{ fm}^{-3}$

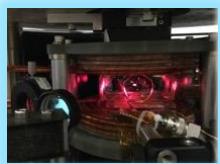
Hadron-quark (HQ) crossover

G. Baym, *et al.*, Rep. Prog. Phys. **81**, 056902 (2018).



Analogy with BEC-BCS crossover?

Review: Y. Ohashi, [HT](#), and P. van Wyk, Prog. Part. Nucl. Phys. **111**, 103739 (2020).



BEC-BCS crossover realized in ultracold Fermi gases

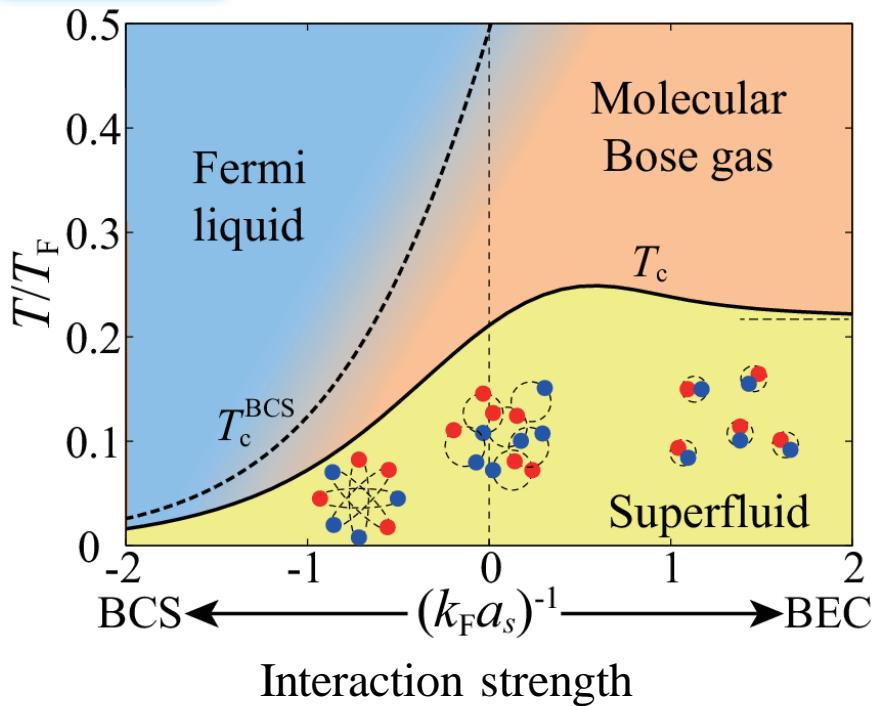
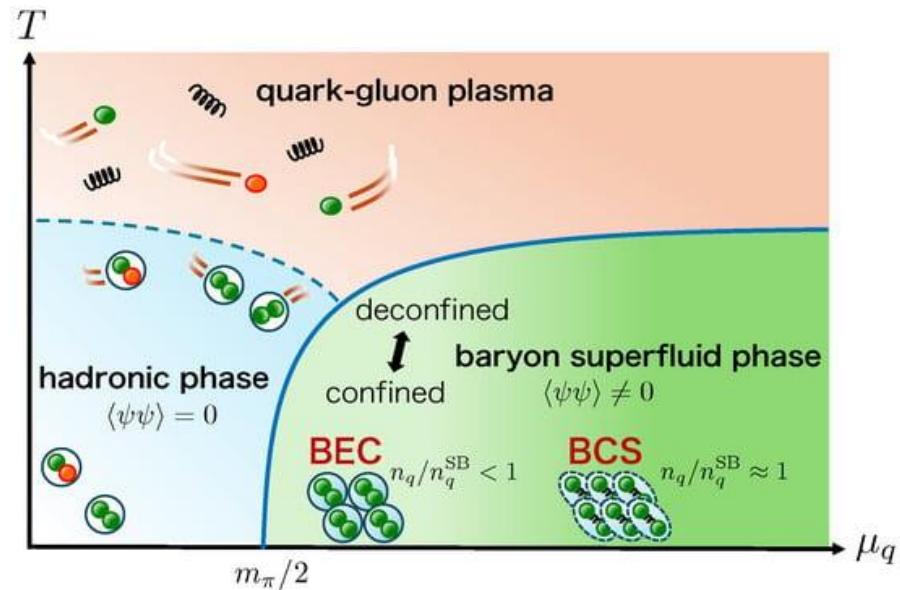


Photo: http://www.sci.osaka-cu.ac.jp/phys/laser/research_Li.html

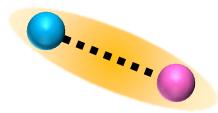
\simeq HQ crossover in “2-color” QCD



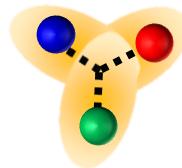
D. Suenaga, Symmetry **17**, 124 (2025).

BEC-BCS crossover \simeq HQ crossover in “3-color” QCD?

Dimer
“boson”



Baryon
“fermion”

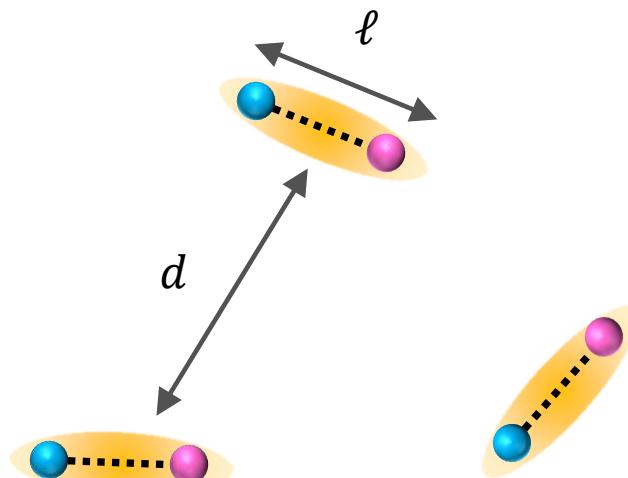


BEC-BCS crossover \simeq HQ crossover in “3-color” QCD?

Let us consider density evolution

Dimer BEC

$$(\ell \ll d)$$

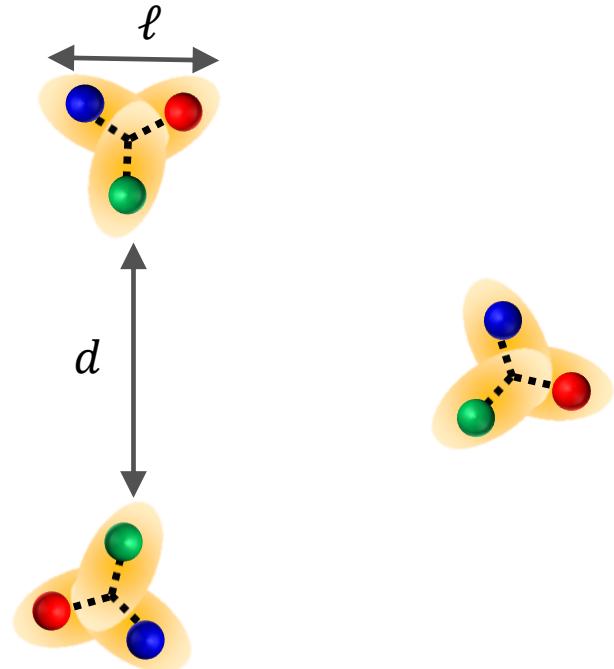


d : interparticle distance

ℓ : molecular size

Dilute nuclear matter

$$(\ell \ll d) \Leftrightarrow n_B \ll n_0$$



* $d \sim 0.75$ fm at $n = n_0 = 0.16$ fm $^{-3}$

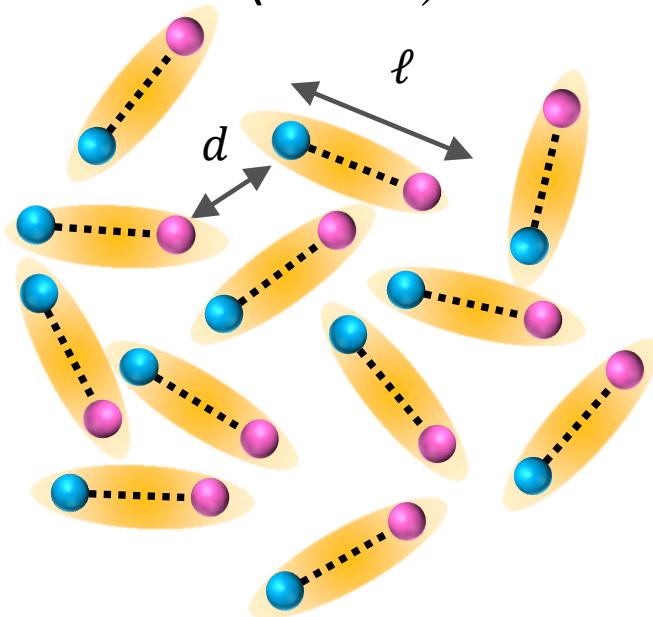
*Proton size ~ 0.9 fm

BEC-BCS crossover \simeq HQ crossover in “3-color” QCD?

Let us consider density evolution

Dense dimer gas

$$(\ell \simeq d)$$

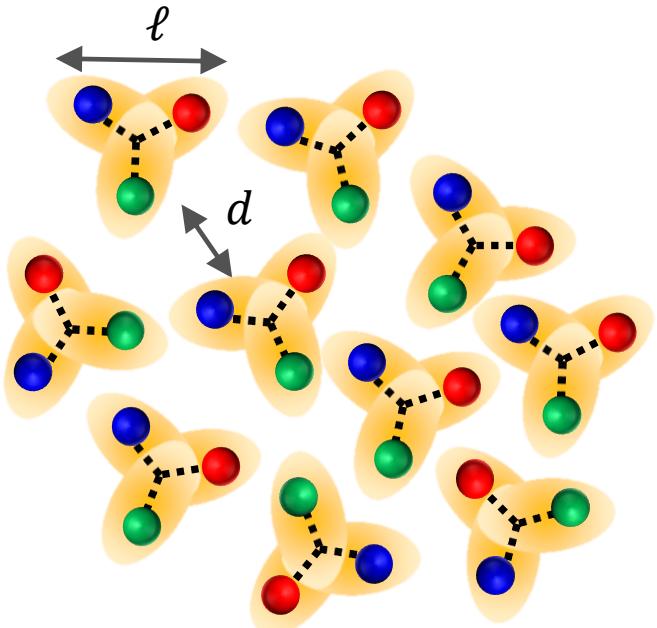


d : interparticle distance

ℓ : molecular size

Dense nuclear matter

$$(\ell \simeq d) \Leftrightarrow n_B \simeq n_0$$



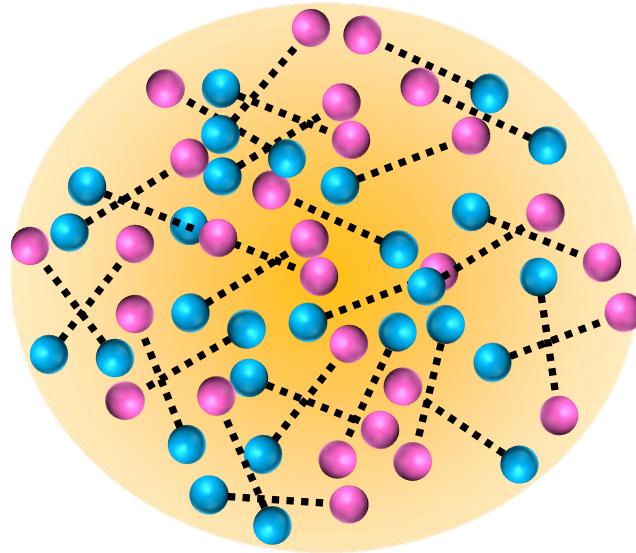
* $d \sim 0.75 \text{ fm}$ at $n = n_0 = 0.16 \text{ fm}^{-3}$

*Proton size $\sim 0.9 \text{ fm}$

BEC-BCS crossover \simeq HQ crossover in “3-color” QCD?

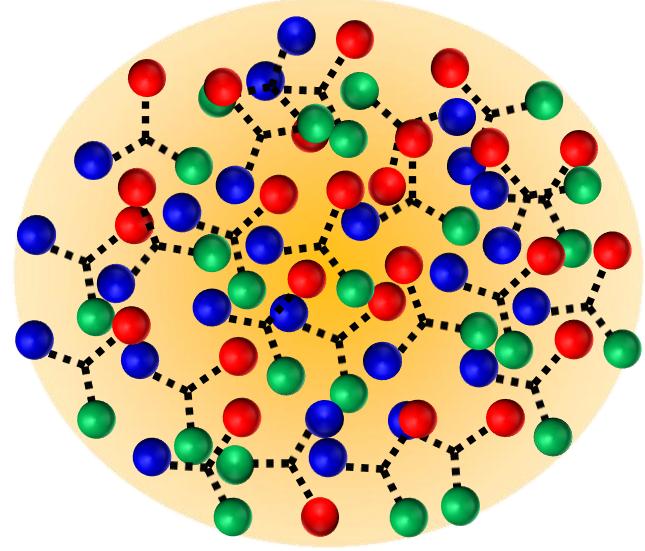
Let us consider density evolution

Crossover to the BCS phase
($d < \ell$)

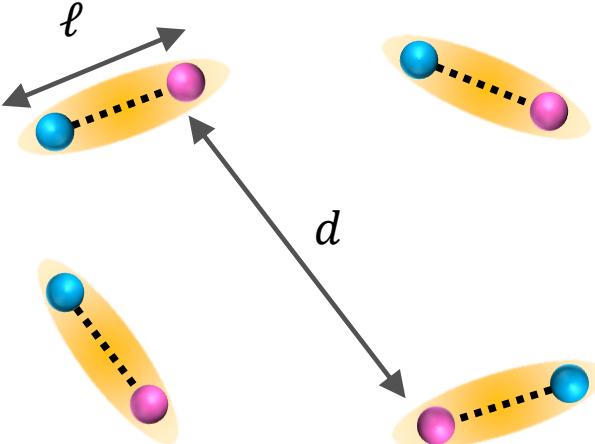


d : interparticle distance
 ℓ : molecular size

Crossover to quark matter
($d < \ell \Leftrightarrow n_B > n_0$)



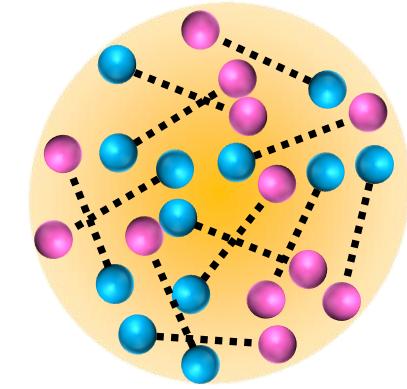
* $d \sim 0.75$ fm at $n = n_0 = 0.16$ fm $^{-3}$
*Proton size ~ 0.9 fm



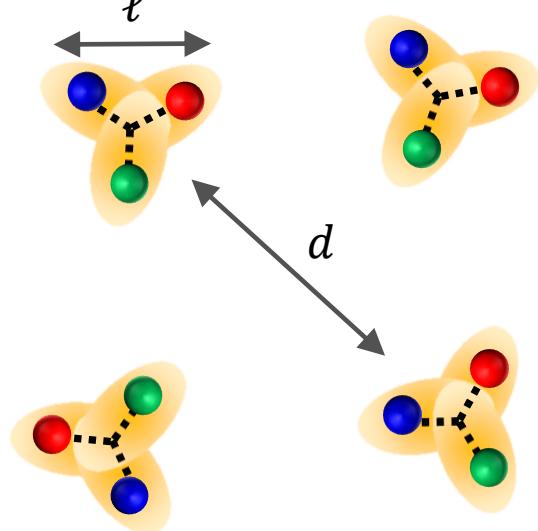
Dimer ($d \gg \ell$)

Two-body crossover

Increasing density
($d \searrow$)



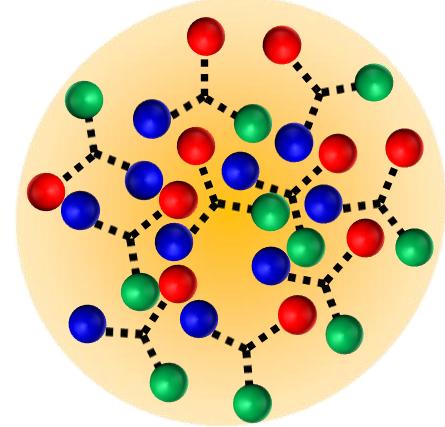
Cooper pairs ($d \lesssim \ell$)



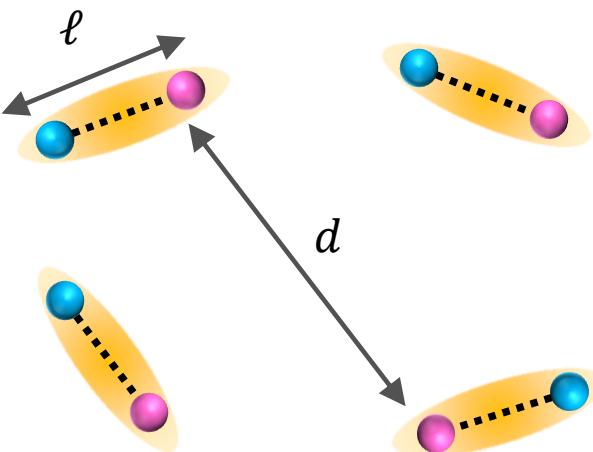
Trimer ($d \gg \ell$)

Three-body crossover

Increasing density
($d \searrow$)

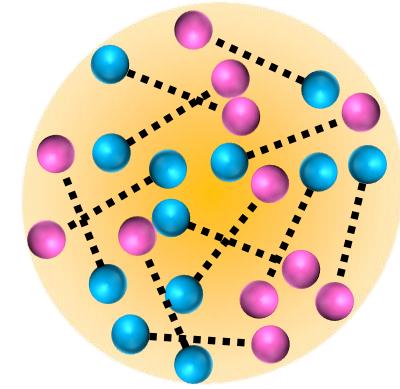


Cooper triples ($d \lesssim \ell$)



Two-body crossover

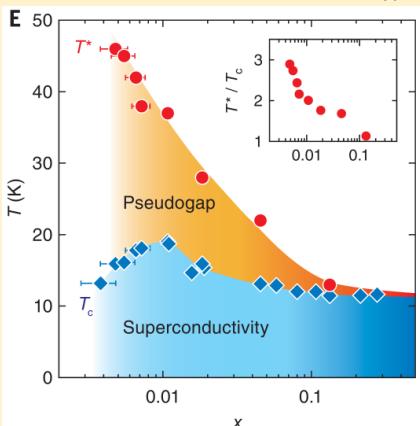
Increasing density
($d \searrow$)



Dimer ($d \gg \ell$)

Cooper pairs ($d \lesssim \ell$)

Density-induced BEC-BCS crossover in Li_xZrNCl

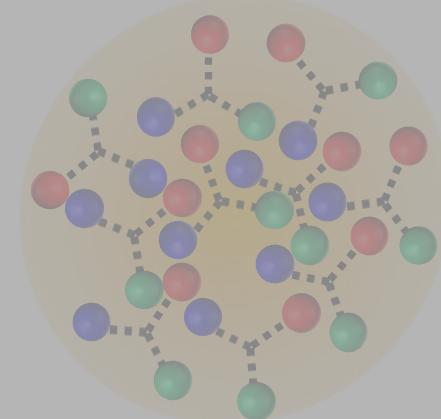


Y. Nakagawa,
et al., *Science*
372, 6538
(2021).

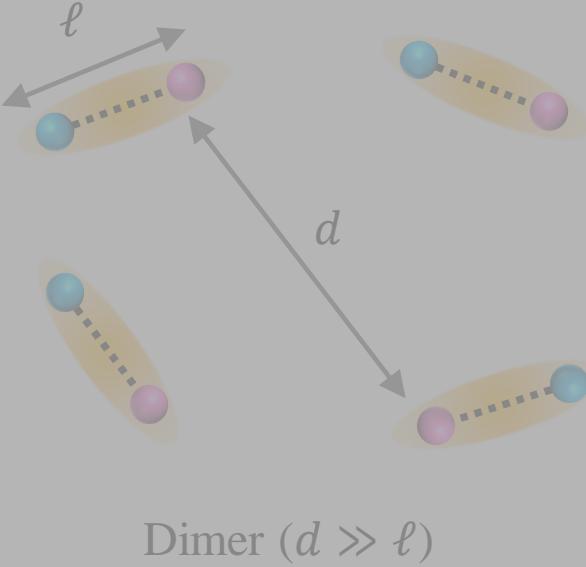
Carrier dope (density)

Increasing density
($d \searrow$)

Two-body crossover



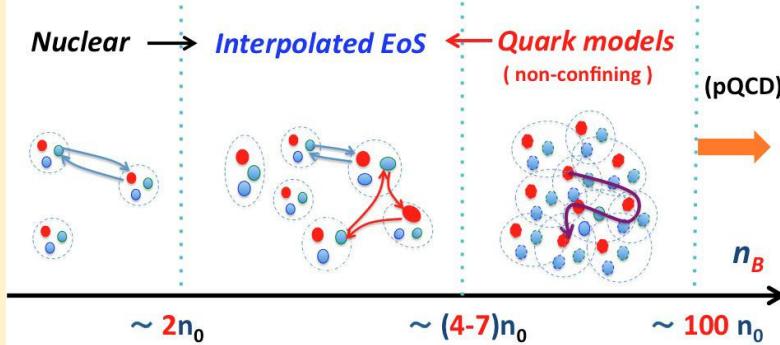
Cooper triples ($d \lesssim \ell$)



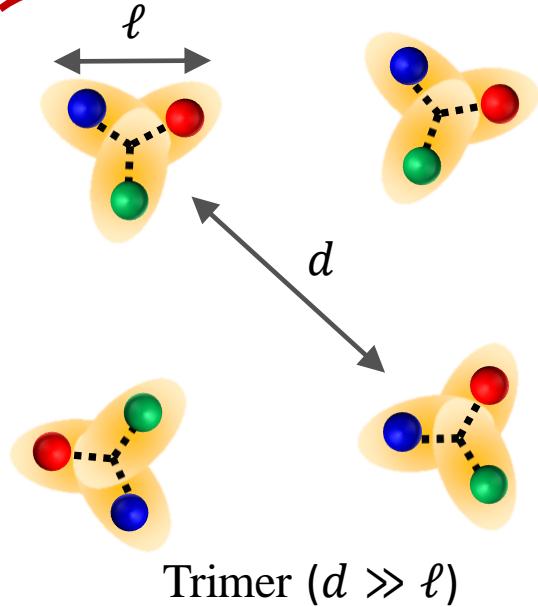
Two-body

Density-induced HQ crossover?

Increasing
($d \downarrow$)

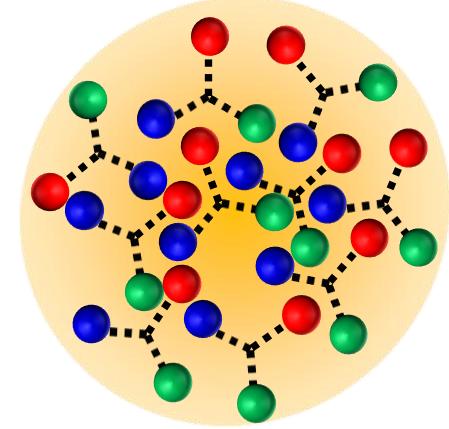


G. Baym, *et al.*, Rep. Prog. Phys. **81**, 056902 (2018).



Three-body crossover

Increasing density
($d \downarrow$)



Cooper triples ($d \lesssim \ell$)

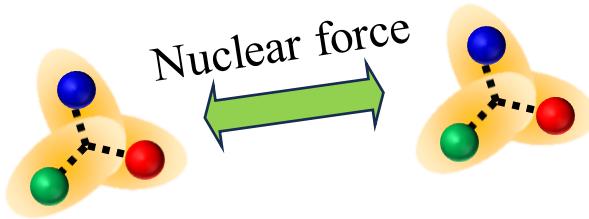
Theoretical approaches to nuclear equation of state (EOS)

Conventional nuclear EOS

= Effective theory of nucleons

(Nucleons + nuclear force)

$$H = H_0 + V_{NN} + V_{NNN} + \dots$$



In the sense of BEC-BCS crossover...

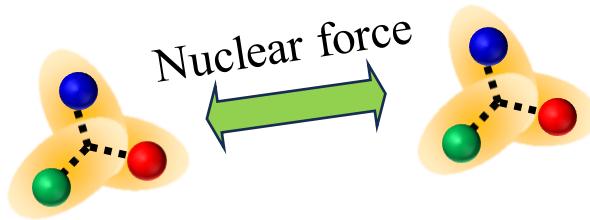
Theoretical approaches to nuclear equation of state (EOS)

Conventional nuclear EOS

= Effective theory of nucleons

(Nucleons + nuclear force)

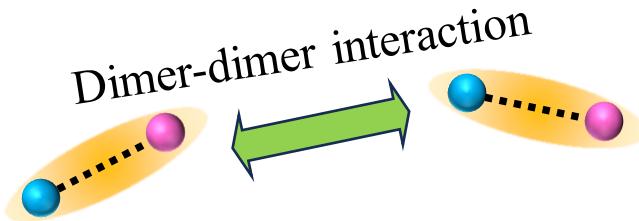
$$H = H_0 + V_{NN} + V_{NNN} + \dots$$



In the sense of BEC-BCS crossover...

Effective theory of dimers

→ never describe the crossover regime



Molecular BEC EOS

$$E = \frac{N}{2} E_b + N \frac{\pi \hbar^2 a_{dd}}{2m} \times n \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{n a_{dd}^3} + \dots \right)$$

N. Navon et al.,
Science **328**, 729 (2010).

a_{dd} : dimer-dimer scattering length

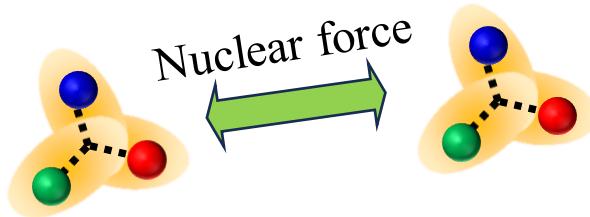
Theoretical approaches to nuclear equation of state (EOS)

Conventional nuclear EOS

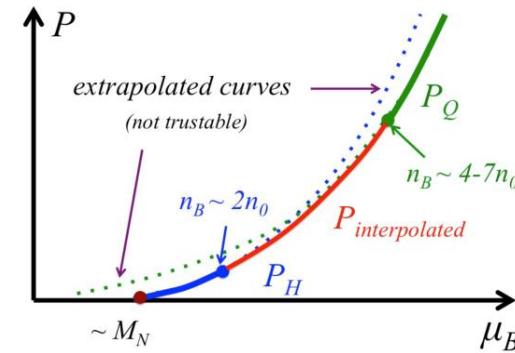
= Effective theory of nucleons

(Nucleons + nuclear force)

$$H = H_0 + V_{NN} + V_{NNN} + \dots$$



Interpolated EOS based on the hadron-quark crossover

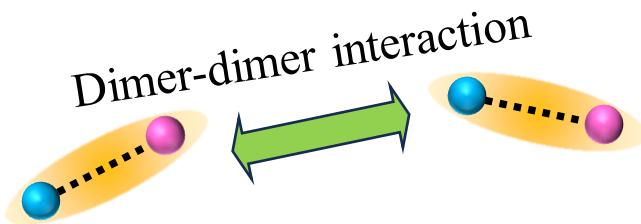


G. Baym, *et al.*, Rep. Prog. Phys. **81**, 056902 (2018).

In the sense of BEC-BCS crossover...

Effective theory of dimers

→ never describe the crossover regime



Molecular BEC EOS

$$E = \frac{N}{2} E_b + N \frac{\pi \hbar^2 a_{dd}}{2m} \times n \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{n a_{dd}^3} + \dots \right)$$

N. Navon et al.,
Science **328**, 729 (2010).

a_{dd} : dimer-dimer scattering length

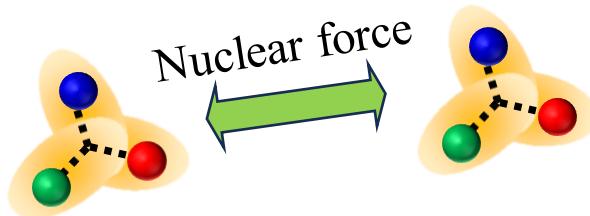
Theoretical approaches to nuclear equation of state (EOS)

Conventional nuclear EOS

= Effective theory of nucleons

(Nucleons + nuclear force)

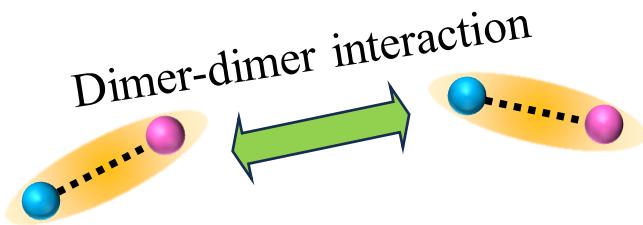
$$H = H_0 + V_{NN} + V_{NNN} + \dots$$



In the sense of BEC-BCS crossover...

Effective theory of dimers

→ never describe the crossover regime



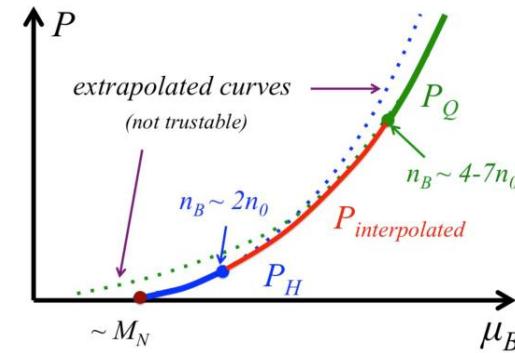
Molecular BEC EOS

$$E = \frac{N}{2} E_b + N \frac{\pi \hbar^2 a_{dd}}{2m} \times n \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{n a_{dd}^3} + \dots \right)$$

a_{dd} : dimer-dimer scattering length

N. Navon et al.,
Science 328, 729 (2010).

Interpolated EOS based on the hadron-quark crossover



G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

Phenomenologically interpolating BCS and BEC EOS

→ no microscopic foundation

Molecular BEC EOS

$$E = \frac{N}{2} E_b + N \frac{\pi \hbar^2 a_{dd}}{2m} \times n \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{n a_{dd}^3} + \dots \right)$$

Interpolate!

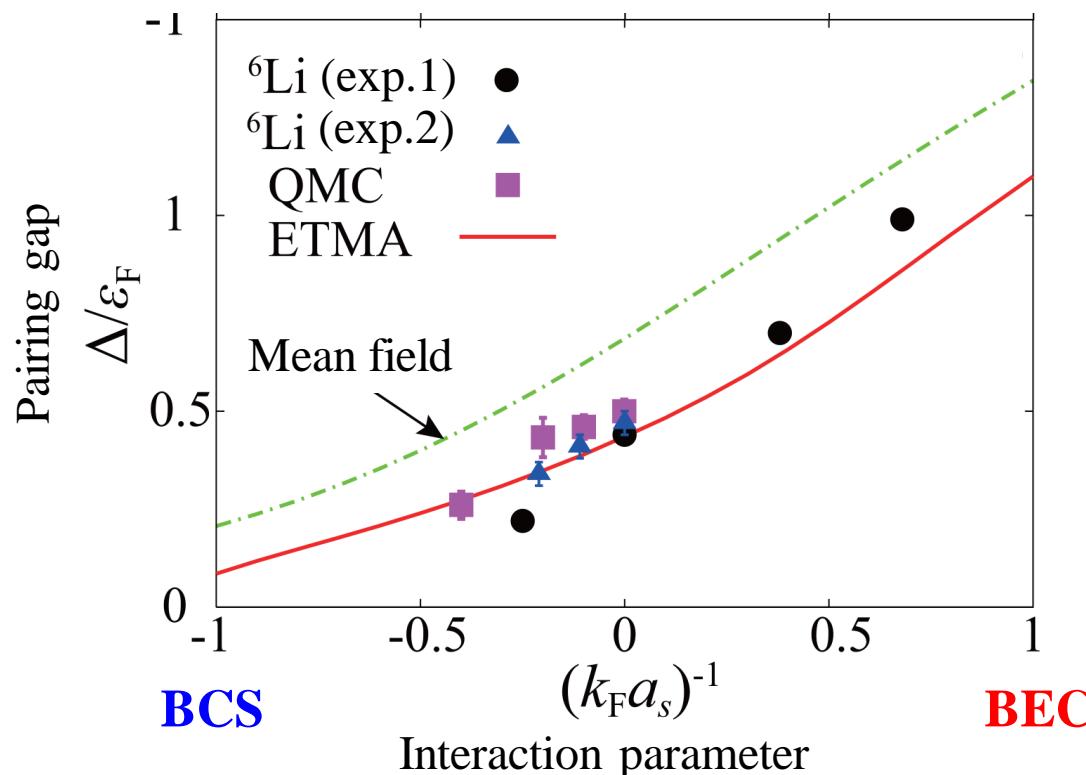
Fermi gas EOS at weak coupling

$$E = \frac{3}{5} N E_F \left(1 + \frac{10}{9\pi} k_F a + 0.18(2)(k_F a)^2 + 0.03(2)(k_F a)^3 + \dots \right)$$

Many-body theory for the crossover

In the case of the BEC-BCS crossover, the mean-field (BCS-Eagles-Leggett) theory is “qualitatively” valid at zero temperatures.

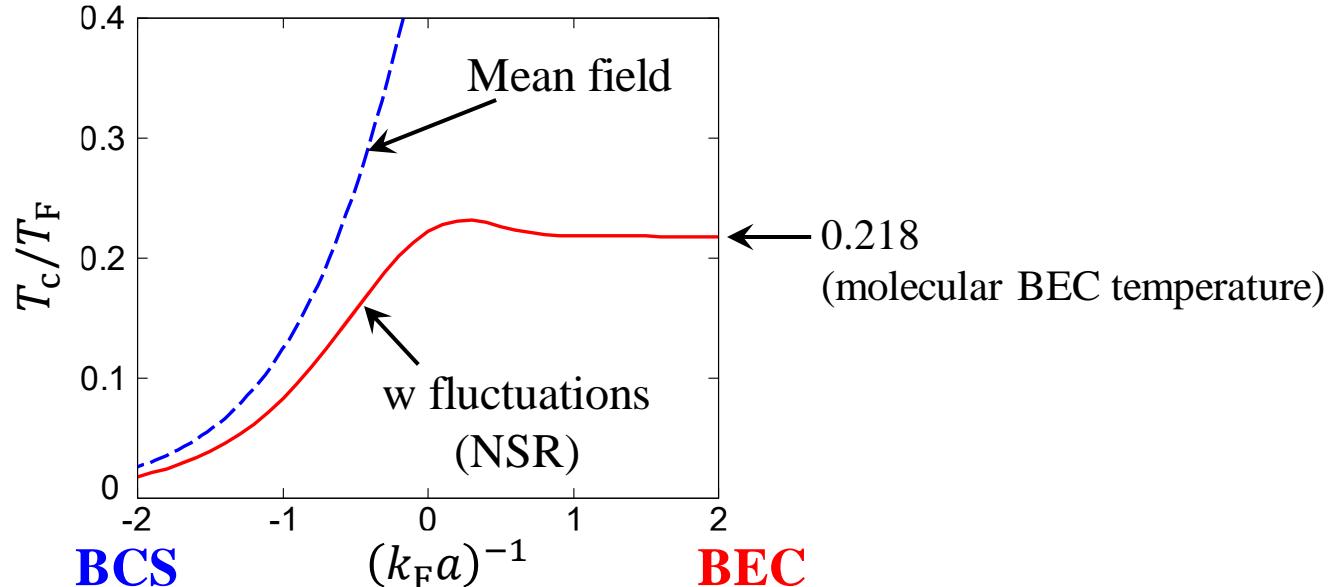
Mean field = Superfluid/superconducting order parameter Δ



Many-body theory for the crossover

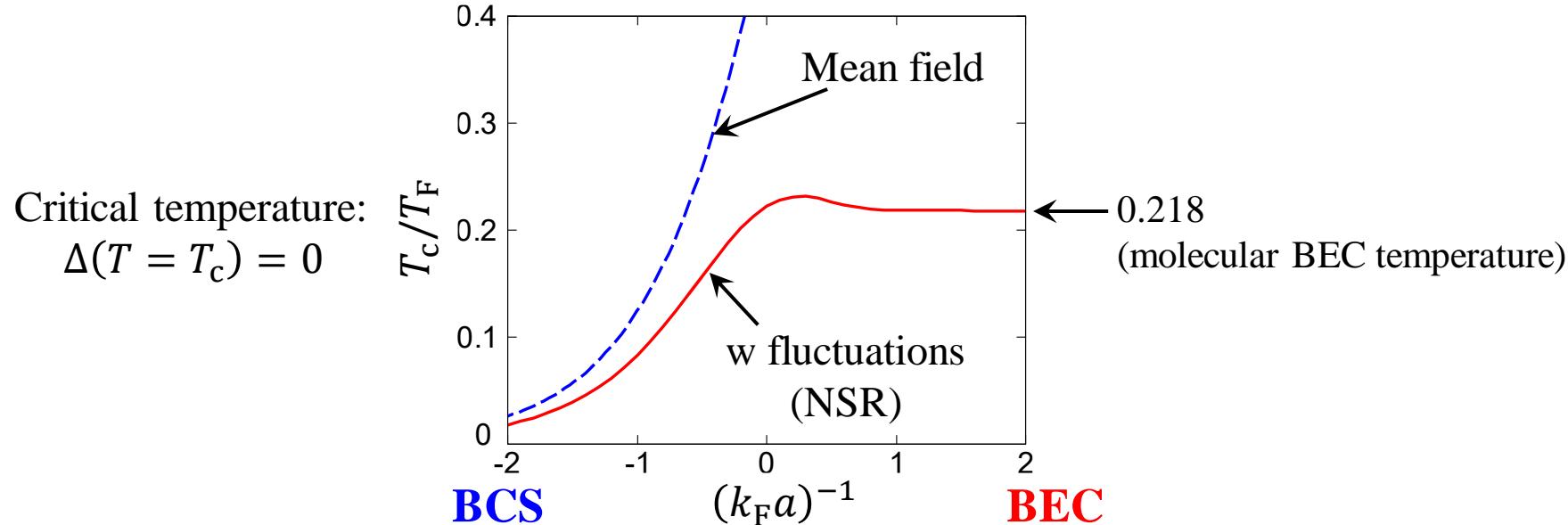
In the absence of order parameters for crossover (e.g., hadron-quark crossover),
the mean-field theory is **INVALID** even qualitatively

Critical temperature:
 $\Delta(T = T_c) = 0$



Many-body theory for the crossover

In the absence of order parameters for crossover (e.g., hadron-quark crossover), the mean-field theory is **INVALID** even qualitatively



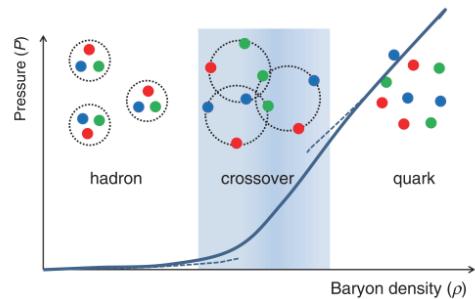
Nozieres-Schmitt-Rink (NSR) approach to pairing fluctuations

P. Nozières, and S. Schmitt-Rink, J. Low Temp. Phys. **59**, 195 (1985).

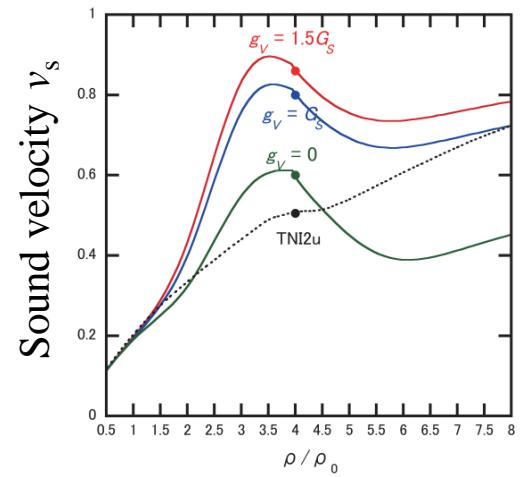
→ Theory for “tripling” fluctuations is needed

Two key points to understand the hadron-quark crossover

1. Peaked speed of sound



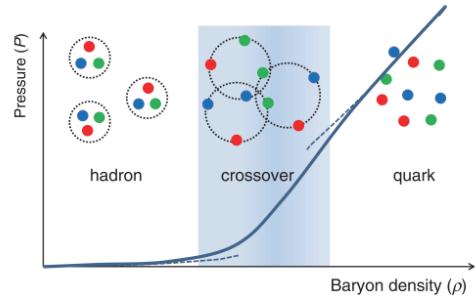
Rapid increase of $P(\rho)$
 $\rightarrow v_s^2 = \frac{dP}{dE}$ exhibits a peak



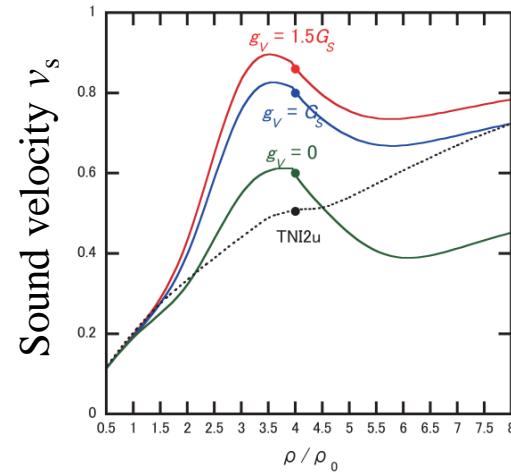
K. Masuda, T. Hatsuda, and T. Takatsuka, PTEP **2013**, 073D01 (2013).

Two key points to understand the hadron-quark crossover

1. Peaked speed of sound



Rapid increase of $P(\rho)$
 $\rightarrow v_s^2 = \frac{dP}{dE}$ exhibits a peak

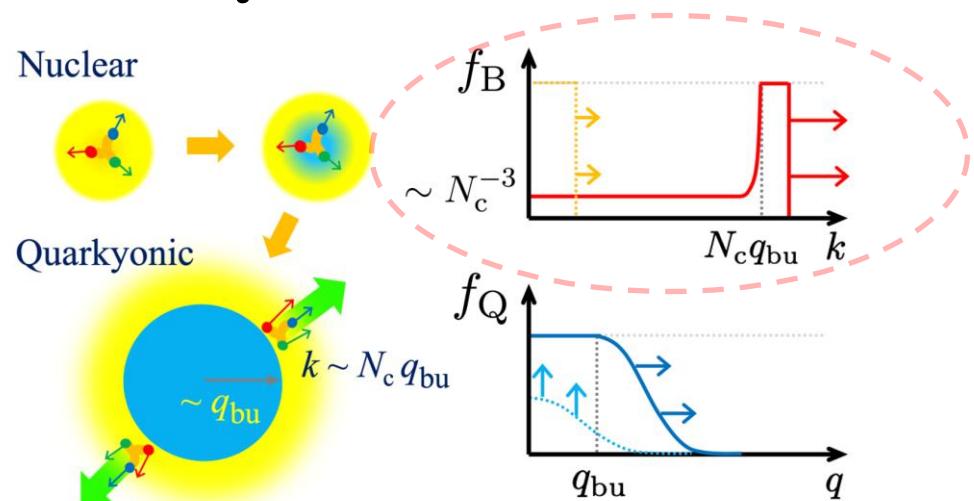


K. Masuda, T. Hatsuda, and T. Takatsuka, PTEP **2013**, 073D01 (2013).

2. Non-monotonic behavior of baryon-momentum distribution

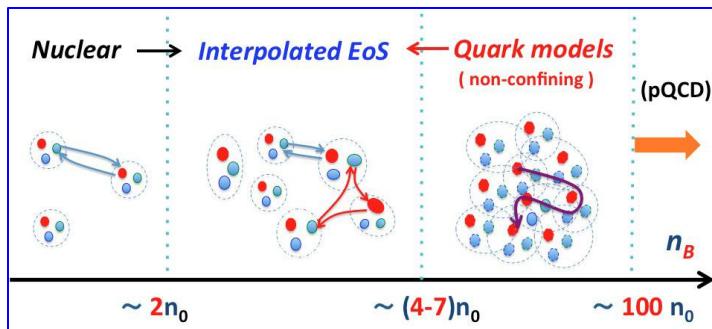
Explicit duality model:

Y. Fujimoto, T. Kojo, and L. D. McLerran, Phys. Rev. Lett. **132**, 112701 (2024).



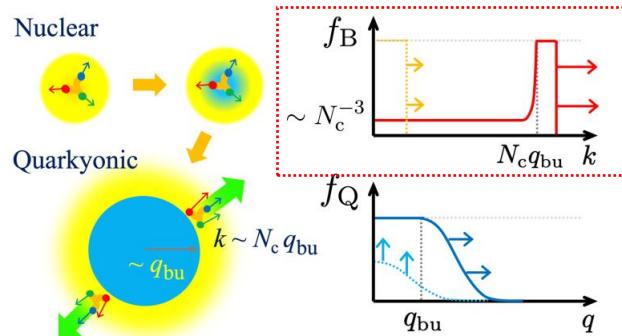
In this talk...

- In analogy with the BEC-BCS crossover, we discuss the role of tripling fluctuations in the hadron-quark crossover.
- Considering tripling fluctuations within the phase-shift representation of three-body propagators, we investigate equation of state as well as momentum distributions of fermions and three-body bound states.

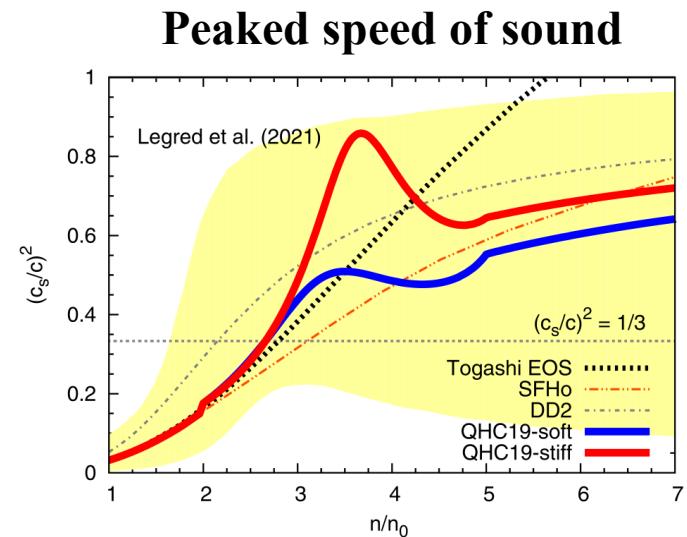


G. Baym, *et al.*, Rep. Prog. Phys. **81**, 056902 (2018).

Momentum shell structure of baryons



Y. Fujimoto, *et al.*,
Phys. Rev. Lett. **132**,
112701 (2024).



Y.-J. Huang, *et al.*, Phys. Rev. Lett. **129**, 181101 (2022)

Outline

- **Introduction**

Can we study a microscopic mechanism of hadron-quark crossover in cold atom physics?

- **Formulation**

Tripling fluctuation theory

- **Results**

Equation of state and momentum distributions

- **Summary**

N -body clustering fluctuations

R. Dashen, S.-K. Ma, and H. J. Bernstein, Phys. Rev. **187**, 345 (1969).

Clustering fluctuations on thermodynamic potential:

$$\delta\Omega_N = T \sum_K \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \ln \left(1 + e^{-\omega/T} \right) \partial_{\omega} \varphi$$

N -body propagator and phase shift: $\mathcal{G}/\mathcal{G}_0 = |\mathcal{G}/\mathcal{G}_0| e^{i\varphi}$

Exact constraint: $\varphi(K, \omega \rightarrow -\infty) = \varphi(K, \omega \rightarrow \infty) = 0$

N -body clustering fluctuations

R. Dashen, S.-K. Ma, and H. J. Bernstein, Phys. Rev. **187**, 345 (1969).

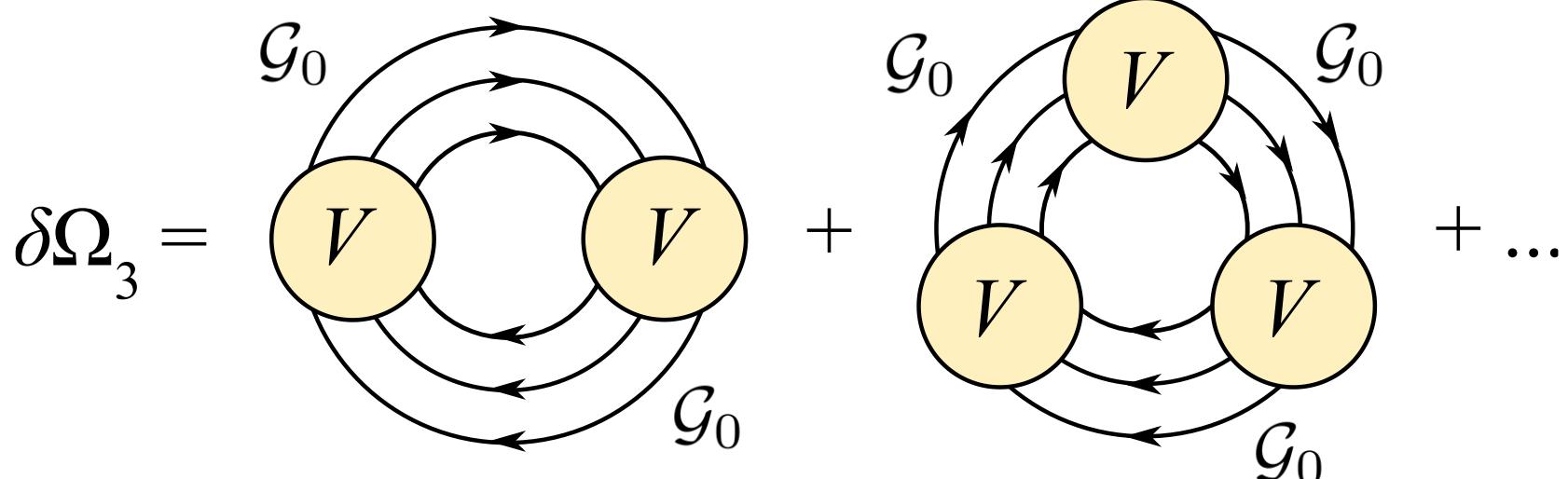
Clustering fluctuations on thermodynamic potential:

$$\delta\Omega_N = T \sum_K \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \ln (1 + e^{-\omega/T}) \partial_{\omega} \varphi$$

N -body propagator and phase shift: $\mathcal{G}/\mathcal{G}_0 = |\mathcal{G}/\mathcal{G}_0| e^{i\varphi}$

Exact constraint: $\varphi(\mathbf{K}, \omega \rightarrow -\infty) = \varphi(\mathbf{K}, \omega \rightarrow \infty) = 0$

Tripling fluctuations: $N = 3$ ($N = 2$ reproduces NSR theory)



V : short-range interaction responsible for N -body cluster formation

Role of the phase shift

$$\begin{aligned}\delta\Omega_{N=3} &= T \sum_K \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \ln(1 + e^{-\omega/T}) \partial_{\omega} \varphi(\mathbf{K}, \omega) \\ &= \sum_K \int_{-\infty}^{\infty} \frac{d\tilde{\omega}}{\pi} \frac{1}{e^{(\omega + E_B^{\text{kin}}(K) - \tilde{\mu}_B)/T} + 1} \varphi(\tilde{\omega})\end{aligned}$$

Integration
by part
&
Changing
variable

subtracted three-body energy: $\omega \rightarrow \tilde{\omega} = \omega - E_B^{\text{kin}}(K) + \tilde{\mu}_B$

Baryon kinetic energy:

$$E_B^{\text{kin}}(K) = K^2/2M_B$$

Baryon chemical potential:

$$\tilde{\mu}_B = 3\tilde{\mu} \equiv \underline{3(\mu - \Sigma_{\text{HF}})}$$

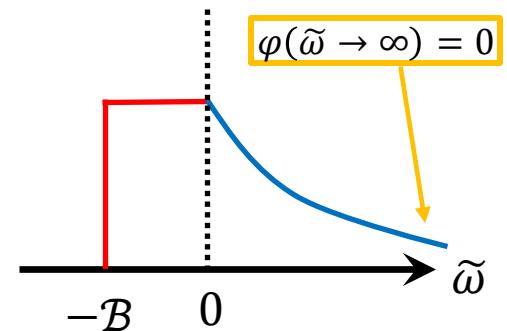
Structure of the phase shift

Bound state

Scattering state

$$\varphi(\tilde{\omega}) = \pi\Theta(\tilde{\omega} + \mathcal{B})\Theta(-\tilde{\omega}) + \Theta(\tilde{\omega})\varphi_{\text{scatt.}}(\tilde{\omega})$$

\mathcal{B} : Cluster binding energy



Bound state v.s. Scattering state

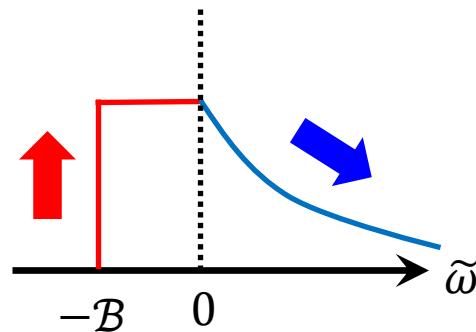
Tripling fluctuation contribution to the particle number density

$$\delta n = -\frac{\partial \delta \Omega_3}{\partial \mu} = 3 \sum_K \int_{-\infty}^{\infty} d\tilde{\omega} \frac{1}{e^{(\omega + E_B^{\text{kin}}(K) - \tilde{\mu}_B)/T} + 1} \frac{\partial_{\tilde{\omega}} \varphi(\tilde{\omega})}{\pi}$$

Bound state v.s. Scattering state

$$\frac{\partial_{\tilde{\omega}} \varphi(\tilde{\omega})}{\pi} = \delta(\tilde{\omega} + \mathcal{B}) + \Theta(\tilde{\omega}) \frac{\partial_{\tilde{\omega}} \varphi_{\text{scatt.}}(\tilde{\omega})}{\pi}$$

$> 0 \qquad \qquad \qquad < 0$



Bound state v.s. Scattering state

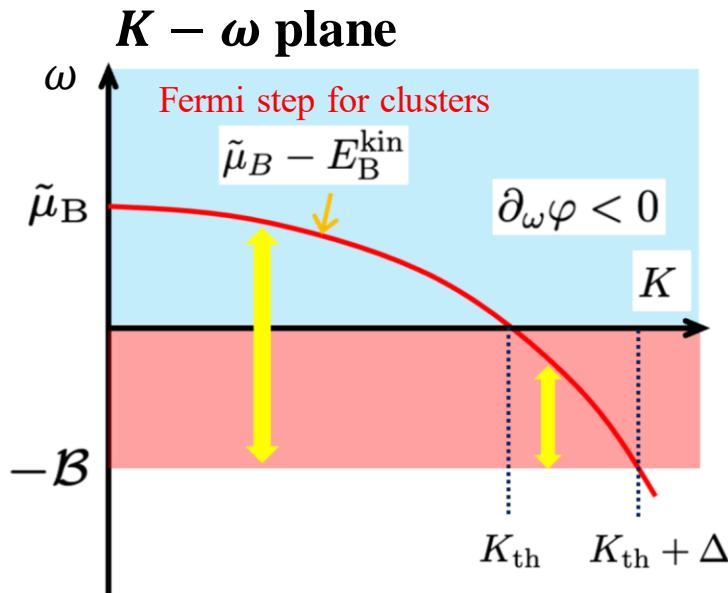
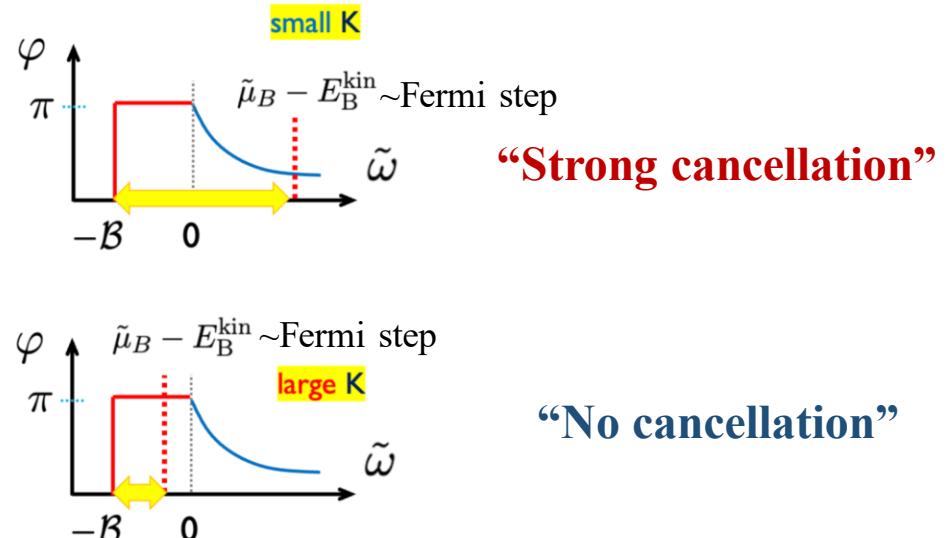
Tripling fluctuation contribution to the particle number density

$$\delta n = -\frac{\partial \delta \Omega_3}{\partial \mu} = 3 \sum_K \int_{-\infty}^{\infty} d\tilde{\omega} \frac{1}{e^{(\omega + E_B^{\text{kin}}(K) - \tilde{\mu}_B)/T} + 1} \frac{\partial_{\tilde{\omega}} \varphi(\tilde{\omega})}{\pi}$$

(Fermi step for clusters)

Bound state v.s. Scattering state

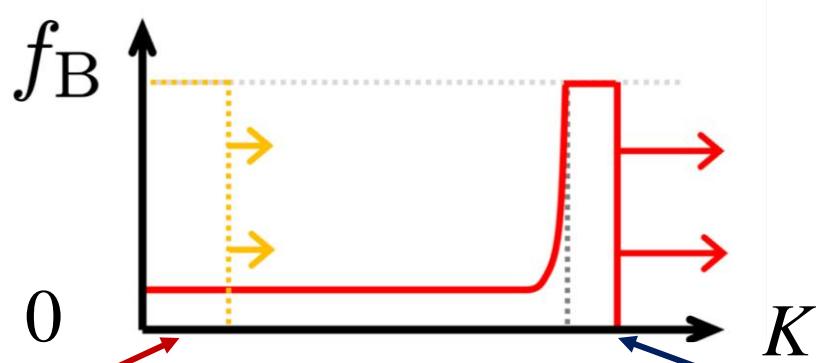
$$\frac{\partial_{\tilde{\omega}} \varphi(\tilde{\omega})}{\pi} = \delta(\tilde{\omega} + \mathcal{B}) + \Theta(\tilde{\omega}) \frac{\partial_{\tilde{\omega}} \varphi_{\text{scatt.}}(\tilde{\omega})}{\pi}$$



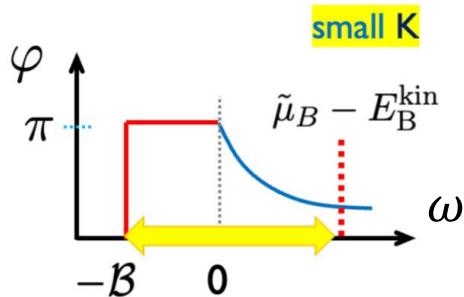
Baryon momentum distribution

Number density: $n = -\frac{\partial \Omega_{\text{HF}}}{\partial \mu} - \frac{\partial \delta \Omega_3}{\partial \mu} \equiv 3 \sum_{\mathbf{k}} f_Q(\mathbf{k}) + 3 \sum_{\mathbf{K}} f_B(\mathbf{K})$

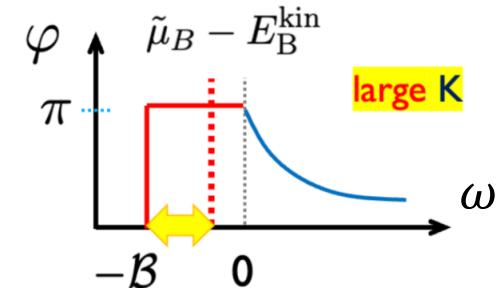
→ $f_B(\mathbf{K}) = \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \partial_{\omega} \varphi(\omega) f(\omega - \tilde{\mu}_B + E_B^{\text{kin}}(\mathbf{K}))$



Strong cancellation



Non-trivial CoM momentum (\mathbf{K}) dependence arises via interplay of **bound** and **scattering** states



Difference btw pairing and tripling fluctuations

P. Nozieres and S. Schmitt-Rink, JLTP **59**, 195 (1985).

$$\Omega - \Omega_f = -\frac{1}{\pi} \sum_{\mathbf{q}} \int_{-\infty}^{+\infty} d\omega g(\omega) \delta(q, \omega)$$

$$\frac{1}{2} (N - N_f) = -\frac{\partial}{\partial \mu} (\Omega - \Omega_f) = \sum_{\mathbf{q}} \int_{-\infty}^{+\infty} \frac{d\omega}{\pi} g(\omega) \frac{\partial}{\partial \mu} \delta(q, \omega)$$

Pairing fluctuation case

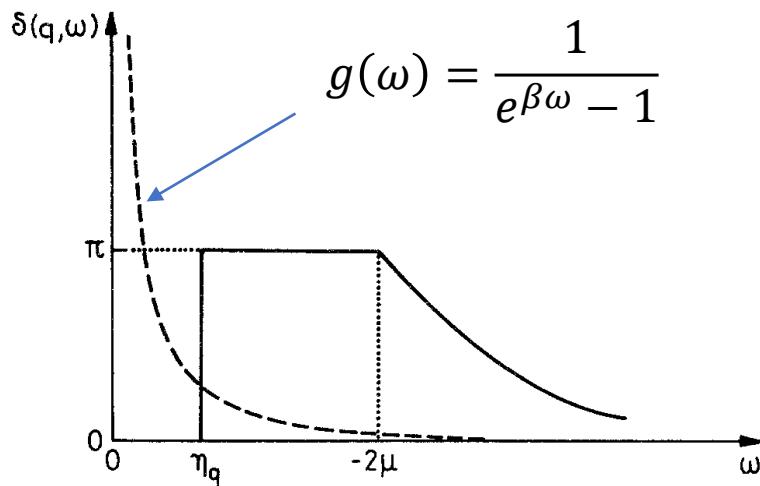
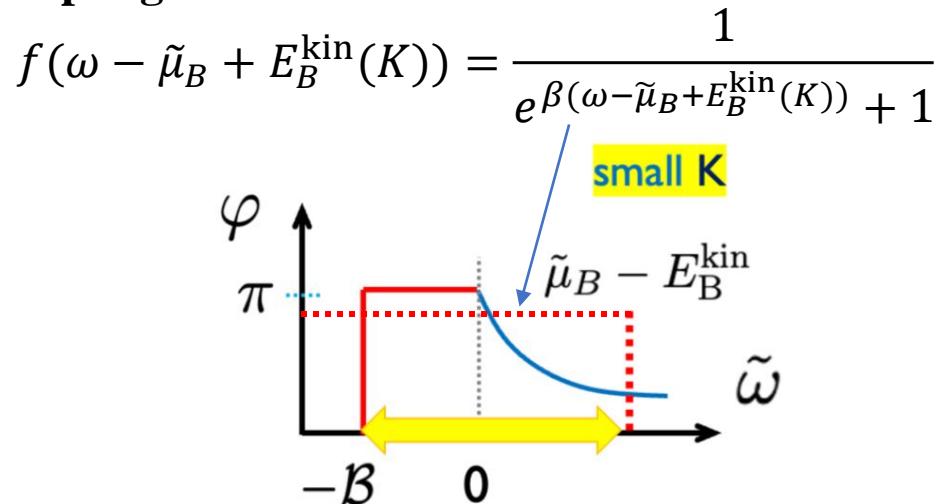


Fig. 7. The phase shift $\delta(q, \omega)$ in the dilute strong coupling limit. η_q corresponds to the bound state, -2μ to the continuum threshold. The dashed curve is the Bose factor $g(\omega)$.

$$\eta_q = \frac{q^2}{4m} - \mathfrak{B} \quad \delta_b(q, \omega) = \pi \theta(\omega - \eta_q)$$

Tripling fluctuation case



Even for pairing fluctuations, the cancellation can occur but masked by enhanced Bose distribution.

Outline

- **Introduction**

Can we study a microscopic mechanism of hadron-quark crossover in cold atom physics?

- **Formulation**

Tripling fluctuation theory

- **Results**

Equation of state and momentum distributions

- **Summary**

How to demonstrate the crossover physics? -1D nonrelativistic three-color fermions-

Latter section: 1D nonrelativistic (1DNR) three-color Fermi gases with three-body attraction

Why?

- Sign problem free Quantum Monte Carlo
- Similarity with HQ crossover
- Possible realization in future atomic experiments

How to demonstrate the crossover physics? -1D nonrelativistic three-color fermions-

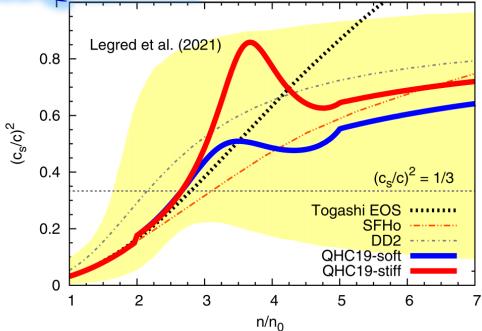
Latter section: 1D nonrelativistic (1DNR) three-color Fermi gases with three-body attraction

Why?

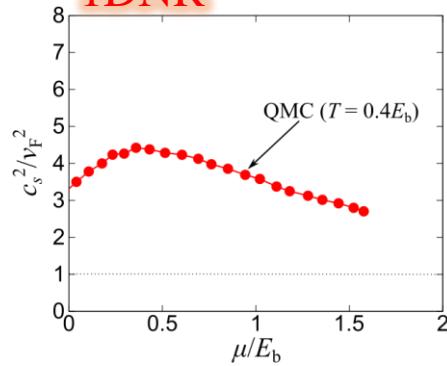
- Sign problem free Quantum Monte Carlo
- Similarity with HQ crossover
- Possible realization in future atomic experiments

Peaked speed of sound

HQ matter



1DNR



Y.-J. Huang, *et al.*, Phys. Rev. Lett. **129**, 181101 (2022)

J. McKenny, *et al.*, Phys. Rev. A **102**, 023313 (2020).

Both systems exhibit a characteristic
peaked behavior in the crossover regime

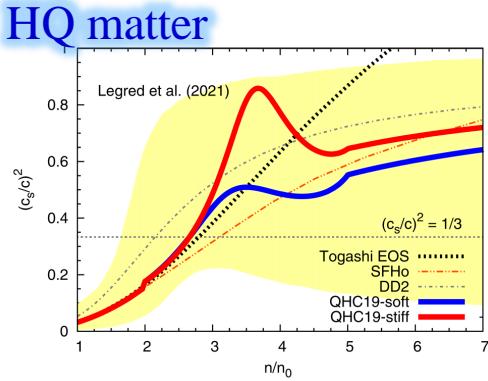
How to demonstrate the crossover physics? -1D nonrelativistic three-color fermions-

Latter section: 1D nonrelativistic (1DNR) three-color Fermi gases with three-body attraction

Why?

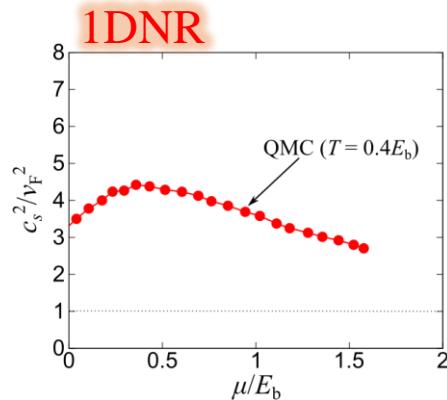
- Sign problem free Quantum Monte Carlo
- Similarity with HQ crossover
- Possible realization in future atomic experiments

Peaked speed of sound



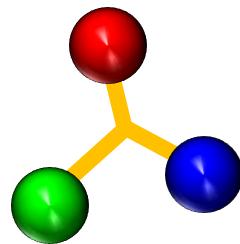
Y.-J. Huang, *et al.*, Phys. Rev. Lett. **129**, 181101 (2022)

Both systems exhibit a characteristic peaked behavior in the crossover regime



J. McKenny, *et al.*, Phys. Rev. A **102**, 023313 (2020).

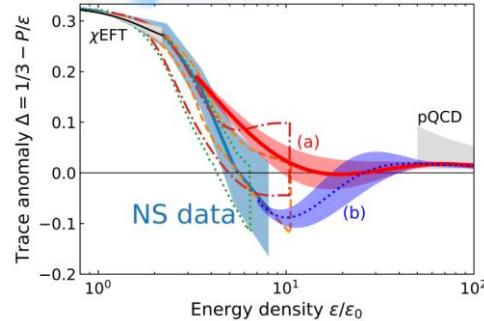
Asymptotic freedom and trace anomaly



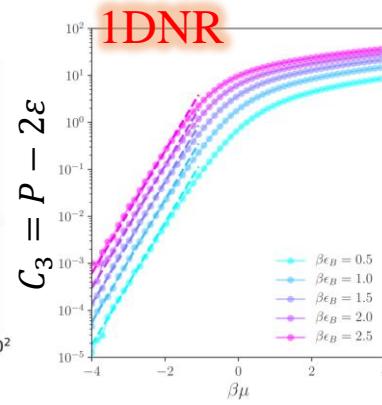
$$\frac{\partial g_3}{\partial \ln \Lambda} = \frac{m}{\sqrt{3\pi}} g_3^2$$

J. Drut, *et al.*, Phys. Rev. Lett. **120**, 243002 (2018).

HQ matter



Y. Fujimoto, *et al.*, Phys. Rev. Lett. **129**, 252702 (2022).



J. McKenny, *et al.*, Phys. Rev. A **102**, 023313 (2020).

Trace anomaly would influence EOS

How to demonstrate the crossover physics? -1D nonrelativistic three-color fermions-

- Hamiltonian density: $\hat{H} = \hat{H}_0 + \hat{V}_3$

One-body kinetic term

$$\hat{H}_0 = \sum_{a=r,g,b} \psi_a^\dagger \left(-\frac{\partial_x^2}{2m} - \mu \right) \psi_a$$

m : mass

μ : chemical potential

$a = r, g, b$: pseudo-color (hyperfine states)

ψ_a^\dagger, ψ_a : fermionic field operator

Three-body interaction (involving quantum anomaly with asymptotic freedom)

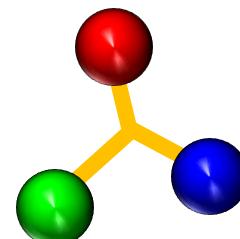
J. Drut, et al., PRL **120**, 243002 (2018).

$$\hat{V}_3 = V(\psi_r^\dagger \psi_r)(\psi_g^\dagger \psi_g)(\psi_b^\dagger \psi_b) \quad V < 0 : \text{three-body attraction}$$

Three-body binding energy

$$\mathcal{B} = \frac{\Lambda^2}{m} \exp \left(\frac{2\sqrt{3}\pi}{mV} \right)$$

Λ : UV cutoff scale



Phase shift of three-body propagator

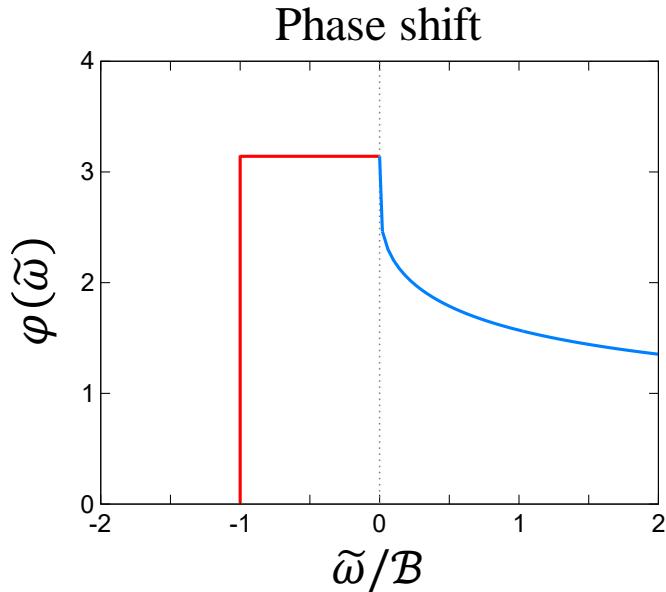
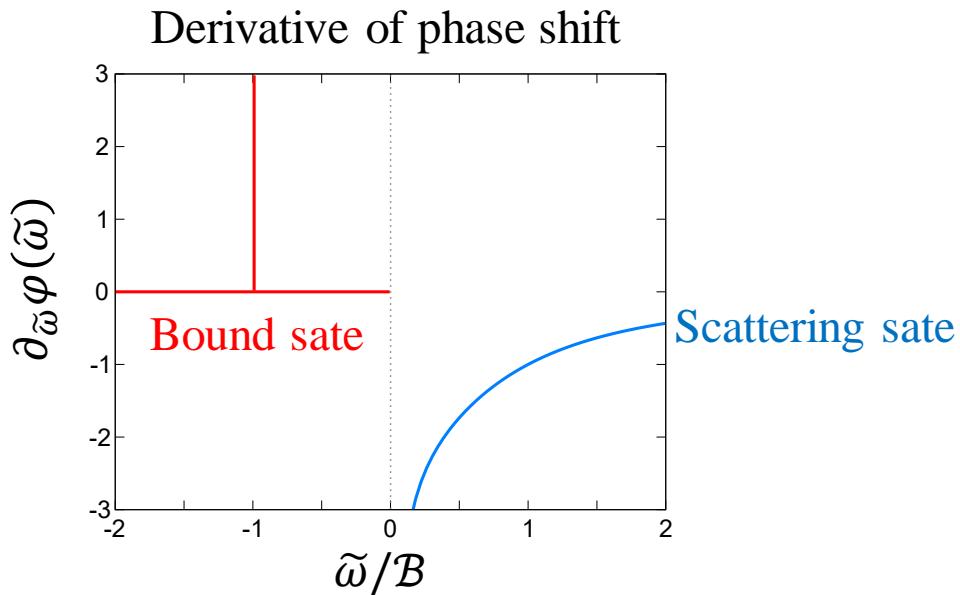
Three-body propagator

$$\mathcal{G}(K, \omega) = \frac{\mathcal{G}_0(K, \omega)}{1 - V\mathcal{G}_0(K, \omega)} \quad \mathcal{G}_0(K, \omega) \simeq -\frac{m}{2\sqrt{3}\pi} \ln \left(\frac{-\tilde{\omega} - i\delta + \Lambda^2/m}{-\tilde{\omega} - i\delta} \right)$$

*Mott effect (medium suppression of bound state at small K) is neglected

Derivative of the phase shift

$$\partial_{\tilde{\omega}} \varphi(\tilde{\omega}) = \pi \delta(\tilde{\omega} + \mathcal{B}) - \Theta(\tilde{\omega}) \frac{\pi}{\tilde{\omega} [\ln^2(\tilde{\omega}/\mathcal{B}) + \pi^2]}$$



Crossover equation of state and baryonic distribution functions

$$\Omega = \Omega_{\text{HF}} + \delta\Omega_3$$

Ω_{HF} : Hartree-Fock contribution

Tripling fluctuations: $\delta\Omega_3 = -T \sum_K \ln \left[1 + e^{-(\mathcal{B} + E_B^{\text{kin}} - \tilde{\mu}_B)/T} \right]$

$$+ T \sum_K \int_0^\infty \frac{d\omega}{\omega} \frac{\ln \left[1 + e^{-(\omega + E_B^{\text{kin}} - \tilde{\mu}_B)/T} \right]}{\ln^2(\omega/\mathcal{B}) + \pi^2}$$

Baryonic distribution: $f_B(K) = f(-\mathcal{B} + E_B^{\text{kin}} - \tilde{\mu}_B)$ **Bound state**

$$-\frac{\partial \delta\Omega_3}{\partial \mu} = 3 \sum_K f_B(K) - \int_0^\infty \frac{d\omega}{\omega} \frac{f(\omega + E_B^{\text{kin}} - \tilde{\mu}_B)}{\ln^2(\omega/\mathcal{B}) + \pi^2}$$

Scattering state

Baryon kinetic energy:

$$E_B^{\text{kin}}(K) = K^2/2M_B \equiv K^2/(6m)$$

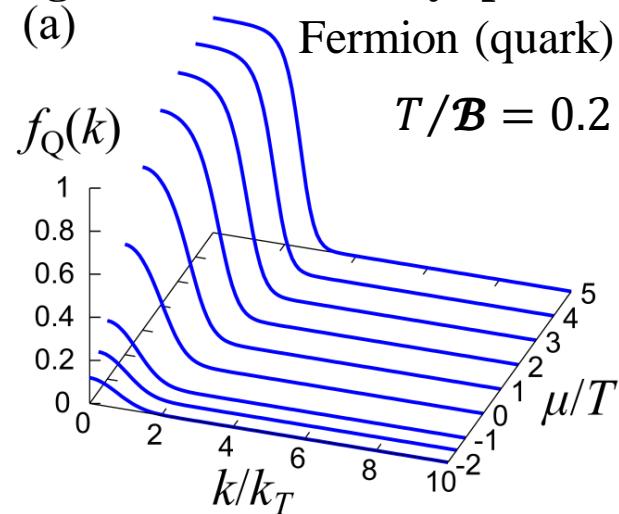
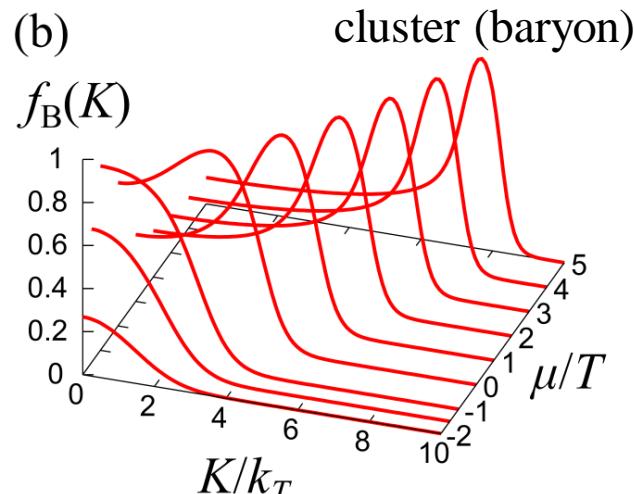
Baryon chemical potential:

$$\tilde{\mu}_B = 3\tilde{\mu} \equiv 3(\mu - \Sigma_{\text{HF}})$$

Momentum distributions

Model: 1D non-relativistic three-color fermions with color-singlet three-body interaction

Tripling fluctuation theory (present work)

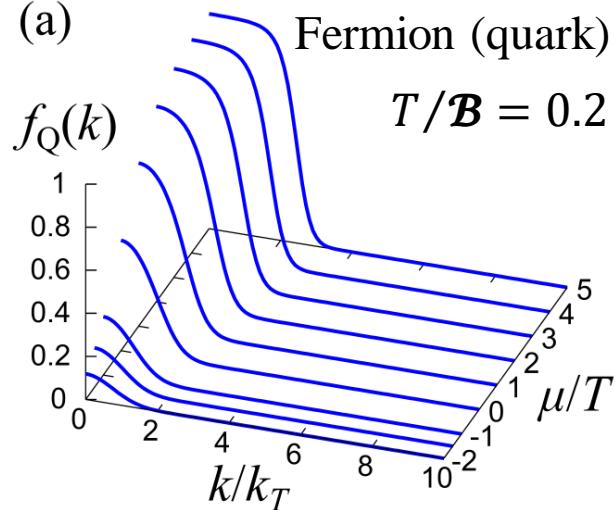
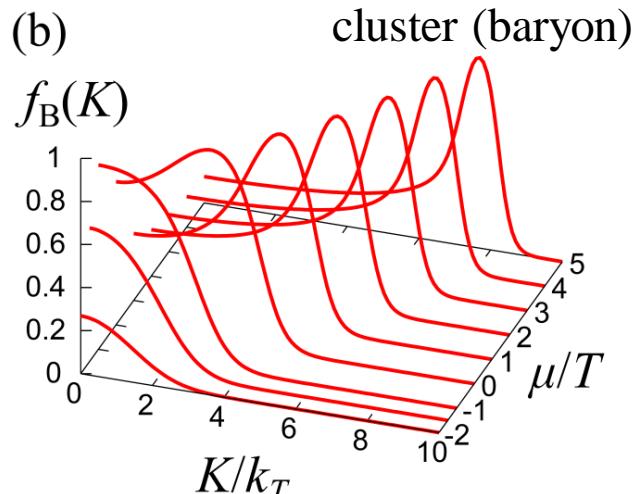


$k_T = \sqrt{2mT}$: Thermal momentum scale

Momentum distributions

Model: 1D non-relativistic three-color fermions with color-singlet three-body interaction

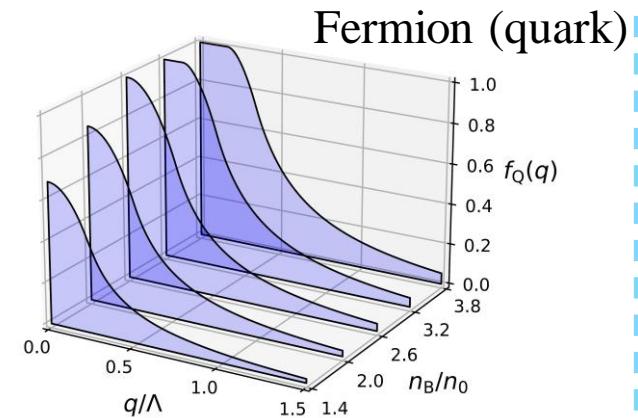
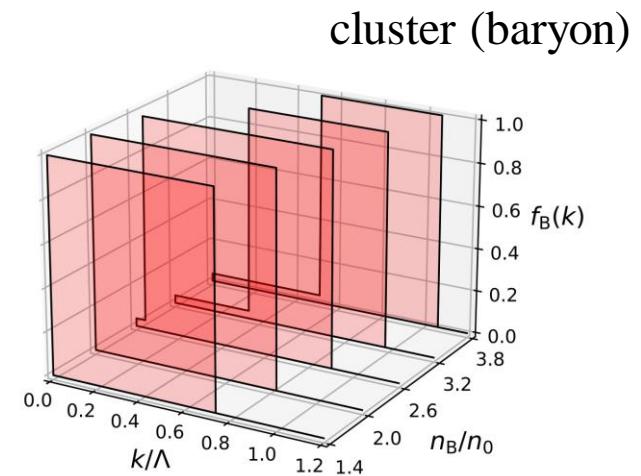
Tripling fluctuation theory (present work)



$k_T = \sqrt{2mT}$: Thermal momentum scale

Explicit Duality model

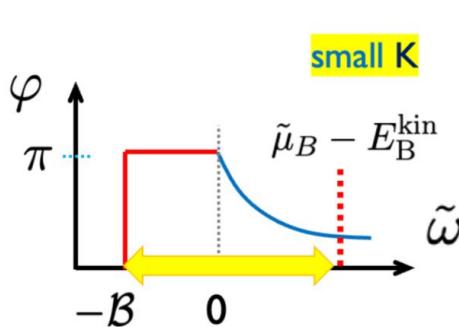
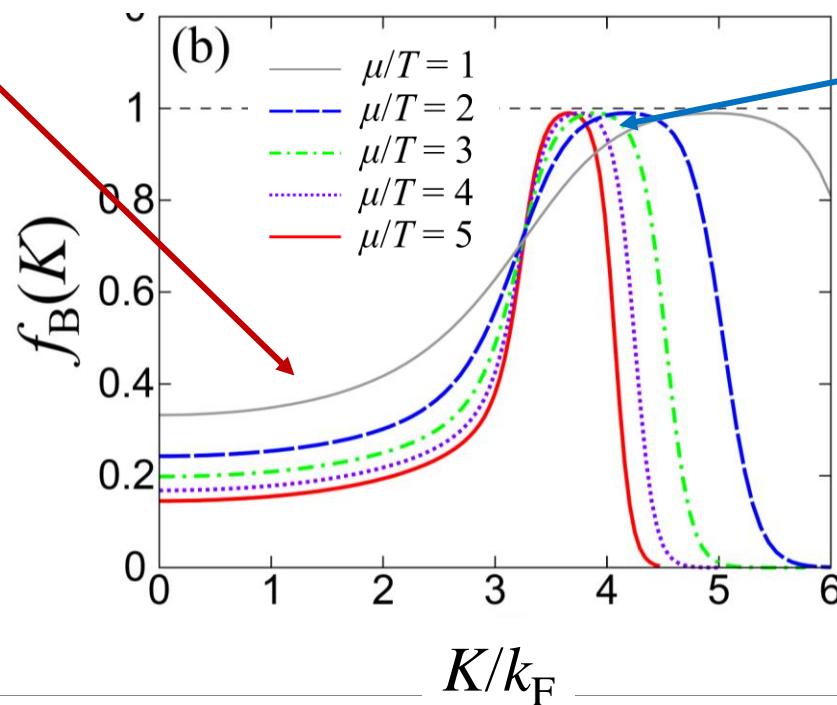
PRL 132, 112701 (2024).



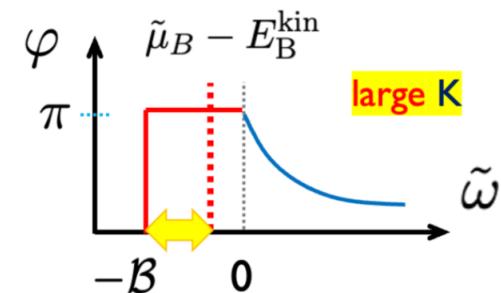
Baryonic momentum shell

Baryon-like trimer momentum distribution

Strong cancellation



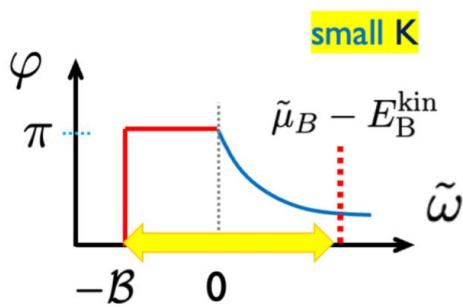
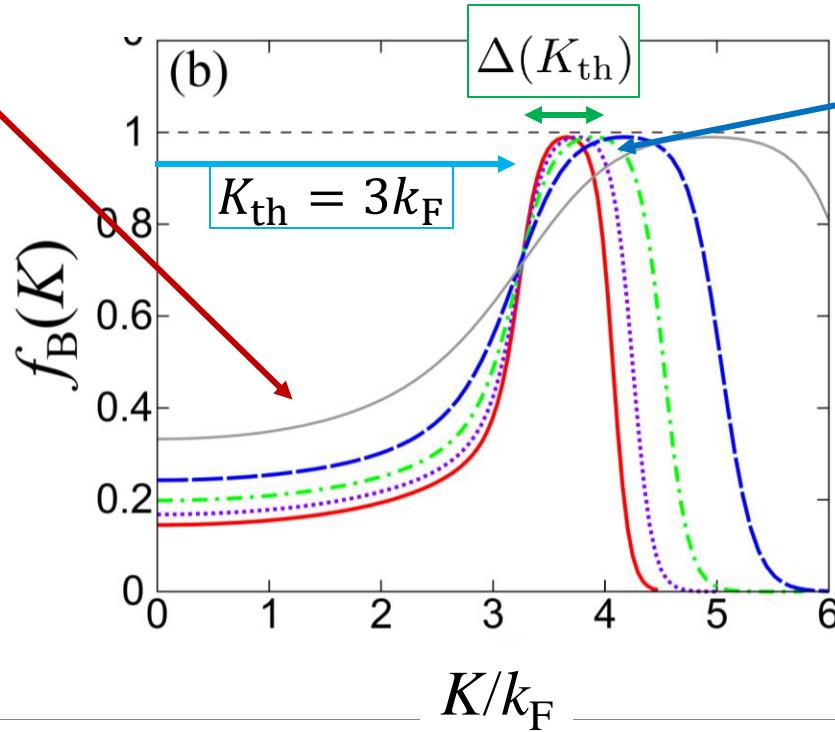
No cancellation



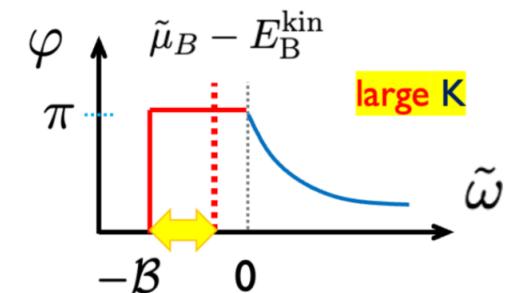
Baryonic momentum shell

Baryon-like trimer momentum distribution

Strong cancellation



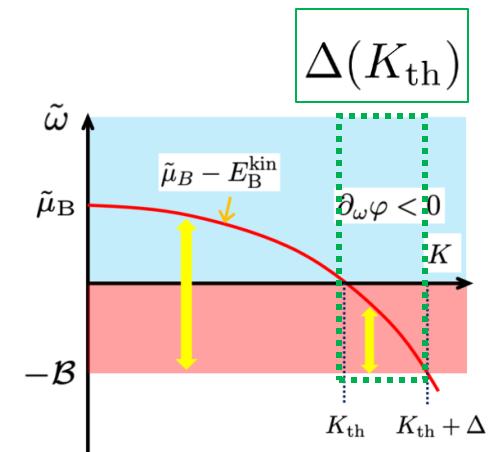
No cancellation



Momentum-shell width: $\Delta(K_{\text{th}}) \equiv \sqrt{K_{\text{th}}^2 + 2M_B\mathcal{B}} - K_{\text{th}}$

Analytical expression: $f_B^{T=0}(K) = \Theta(K_{\text{th}} + \Delta - K)\Theta(K - K_{\text{th}})$
 $(T \rightarrow 0)$

$$+ \Theta(K_{\text{th}} - K) \left(\frac{1}{2} - \frac{1}{\pi} \tan^{-1} \left[\frac{\ln \frac{K_{\text{th}}^2 - K^2}{2M_B\mathcal{B}}}{\pi} \right] \right)$$



Peaked speed of sound

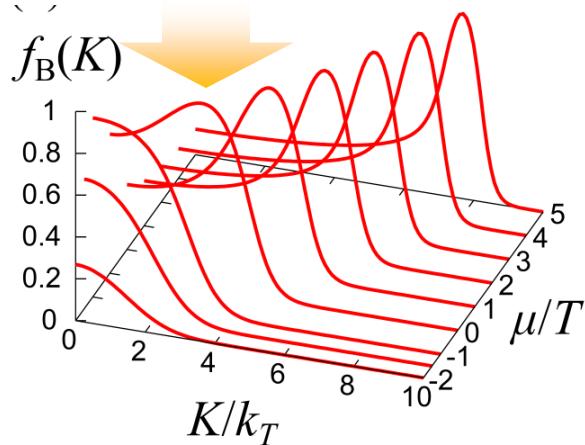
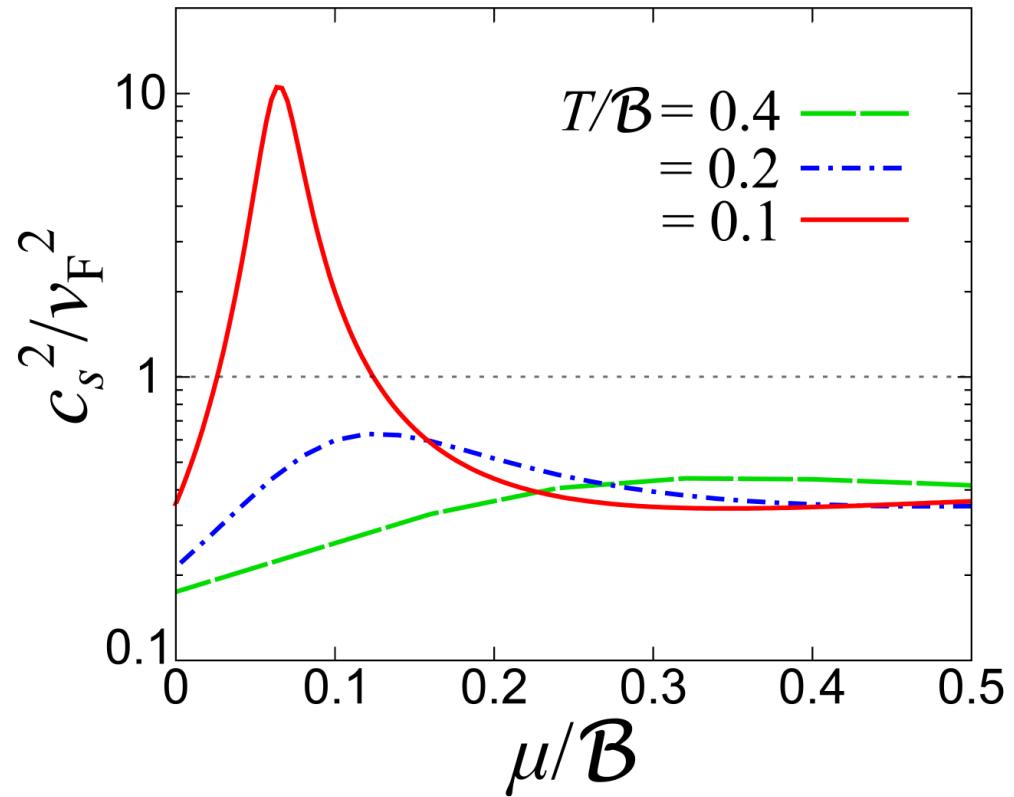
Squared speed of sound:

$$c_s^2 = \frac{n}{m} \left(\frac{\partial n}{\partial \mu} \right)^{-1}$$

Density susceptibility:

$$\frac{\partial n}{\partial \mu} = \frac{\partial n_Q}{\partial \mu} + \frac{\partial n_B}{\partial \mu}$$

$$\frac{\partial n_B}{\partial \mu} = 3 \sum_K \frac{\partial f_B(K)}{\partial \mu} < 0$$

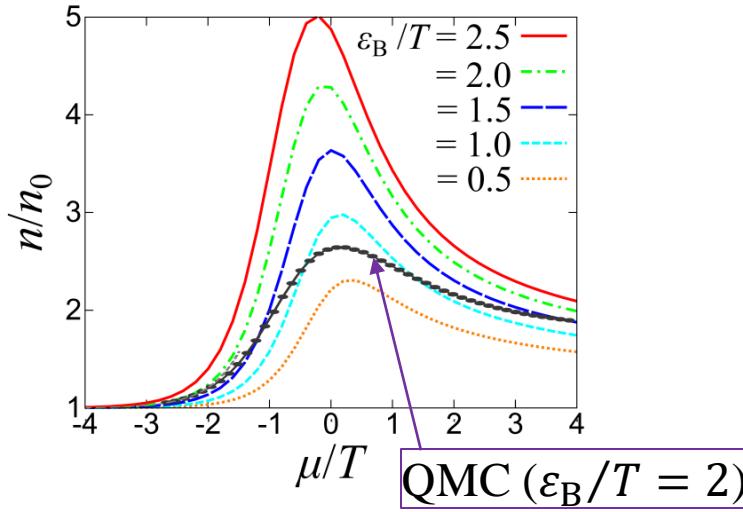


Peaked speed of sound is induced by suppressed baryon distributions at low momenta

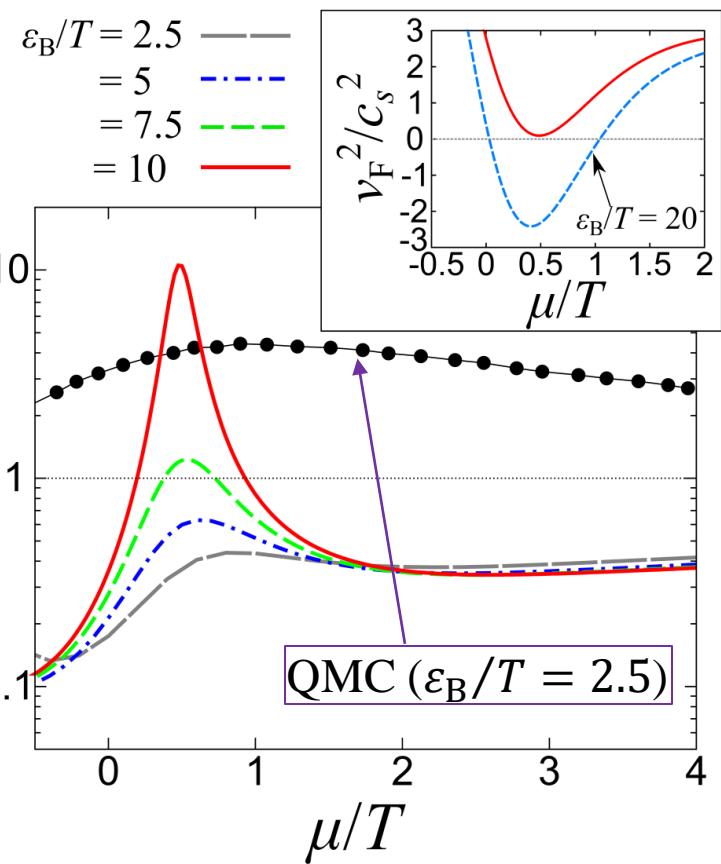
Comparison with QMC

Qualitatively OK, but better approximation is needed for quantitative calculation

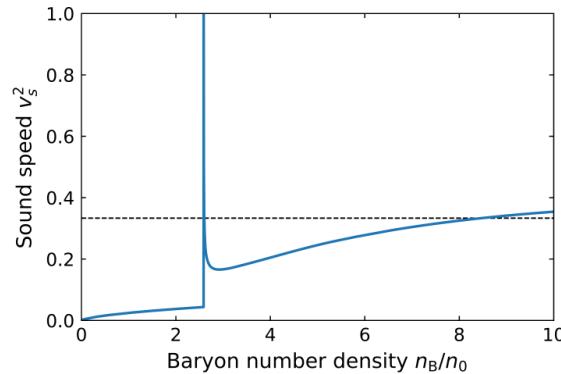
Density equation of state



Speed of sound



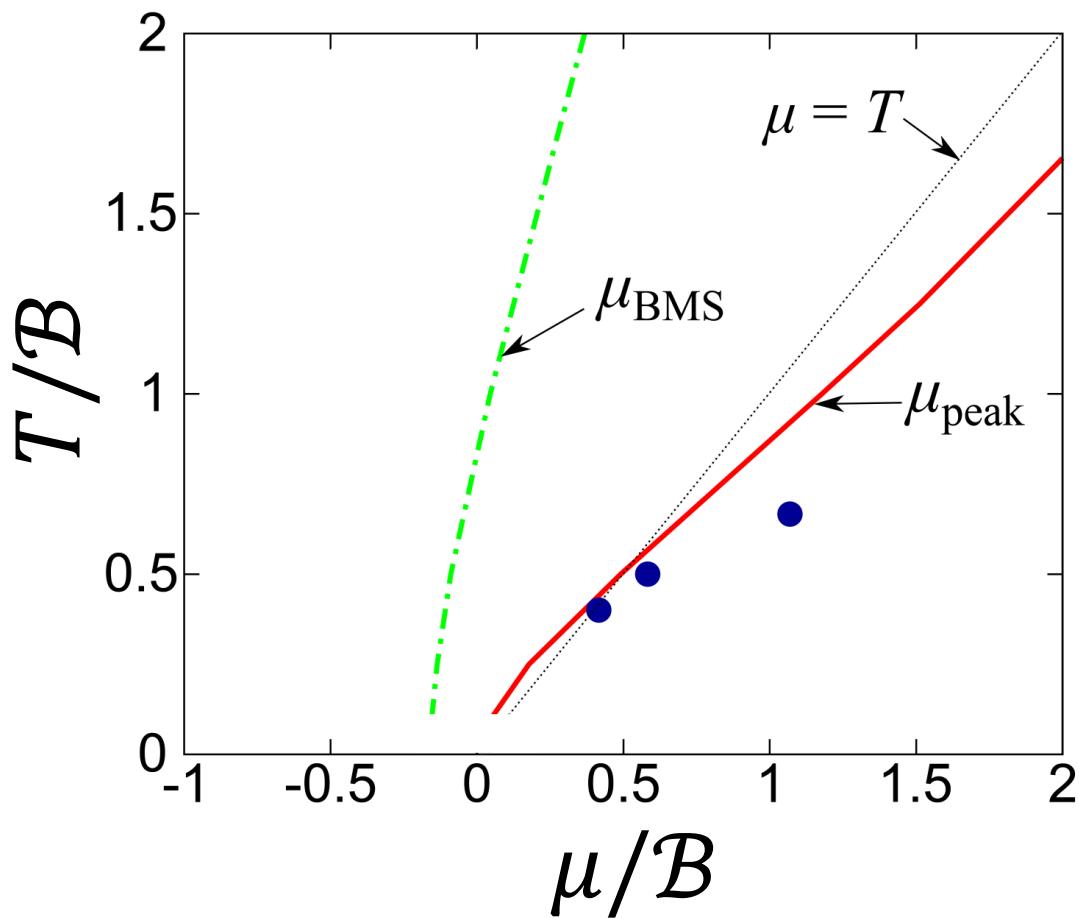
Speed of sound in the duality model



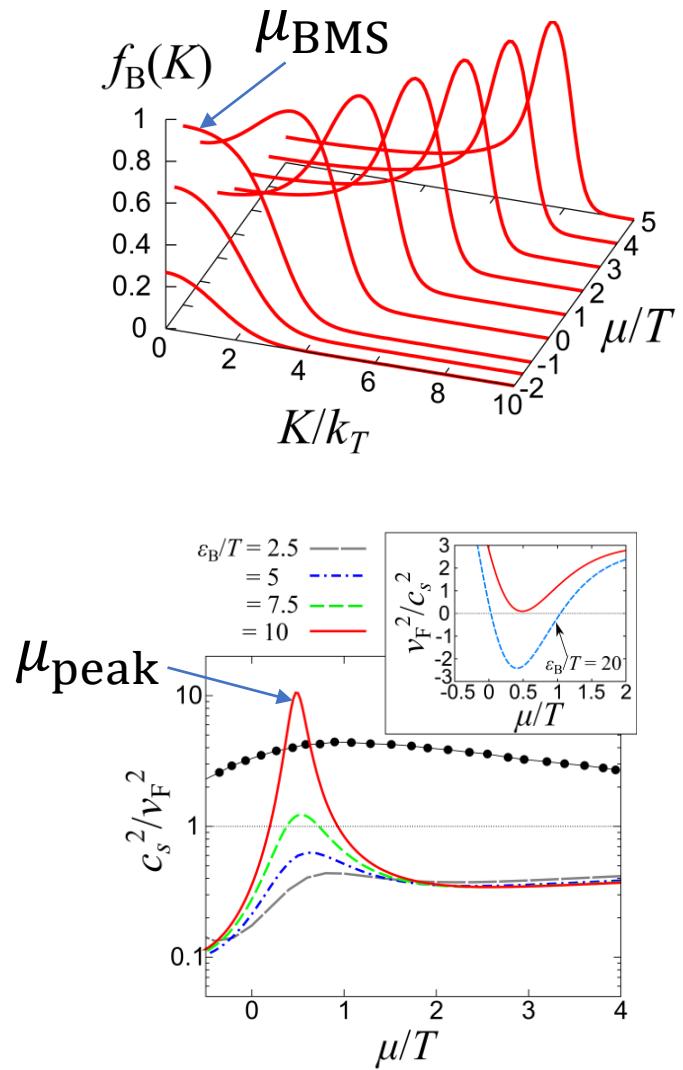
Finite-temperature phase diagram

μ_{BMS} : baryonic momentum shell starts to appear

μ_{peak} : sound velocity is peaked



● QMC: J. McKenny, *et al.*, Phys. Rev. A **102**, 023313 (2020).

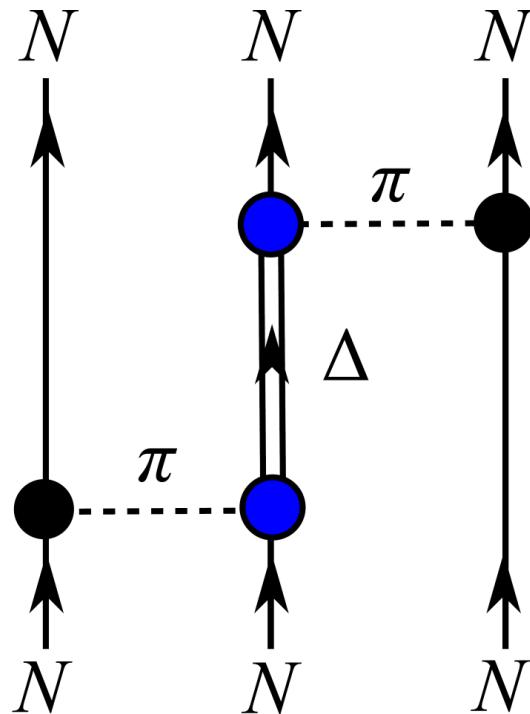


Three-body force in ultracold atoms?

HT, E. Nakano, and K. Iida, arXiv:2505.19117

Nucleon \leftrightarrow
Pion \leftrightarrow
 Δ resonance \leftrightarrow

Fujita-Miyazawa three-body force



Three-body force in ultracold atoms?

HT, E. Nakano, and K. Iida, arXiv:2505.19117

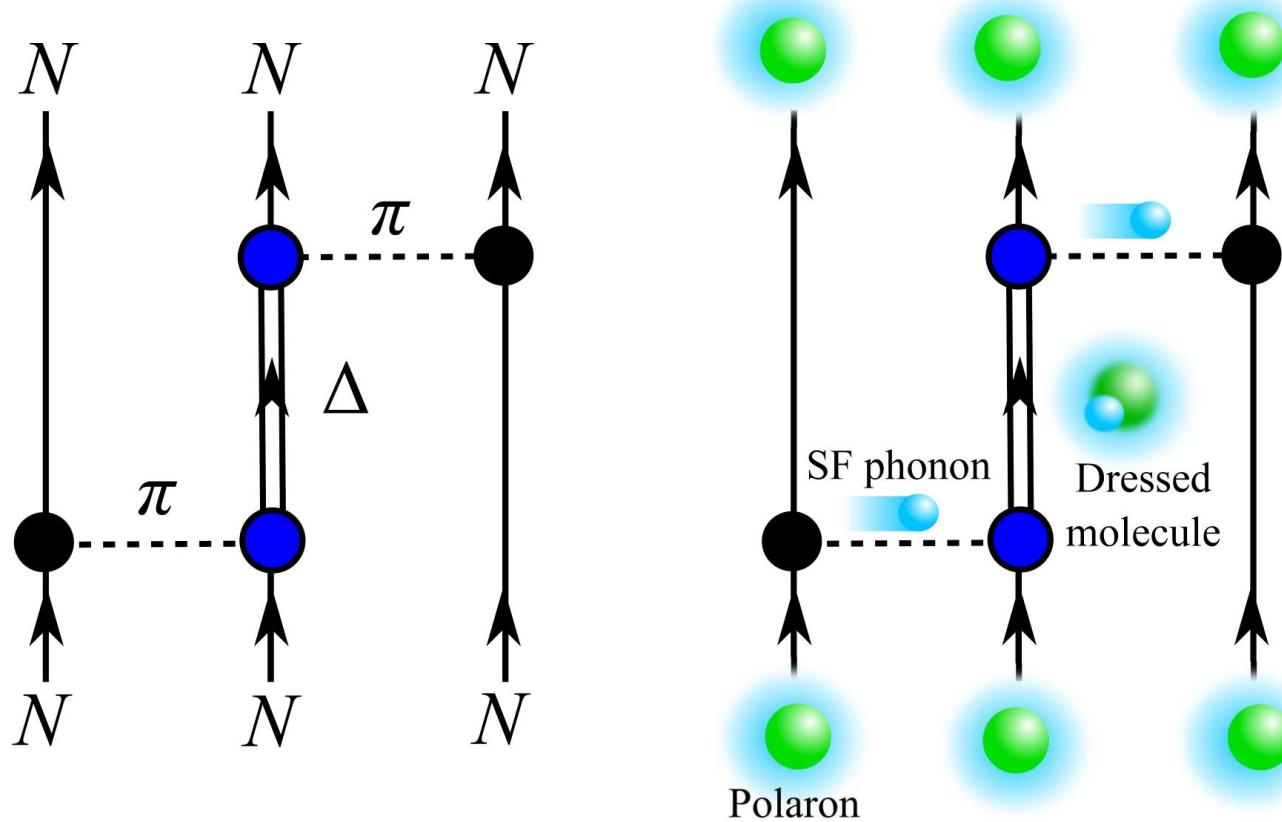
Nucleon \leftrightarrow polaron (particle immersed in BEC)

Pion \leftrightarrow superfluid phonon

Δ resonance \leftrightarrow Feshbach molecule (closed-channel)

Fujita-Miyazawa three-body force

Tunable counterpart in ultracold atoms



Three-body force in ultracold atoms?

HT, E. Nakano, and K. Iida, arXiv:2505.19117

Nucleon \leftrightarrow polaron (particle immersed in BEC)

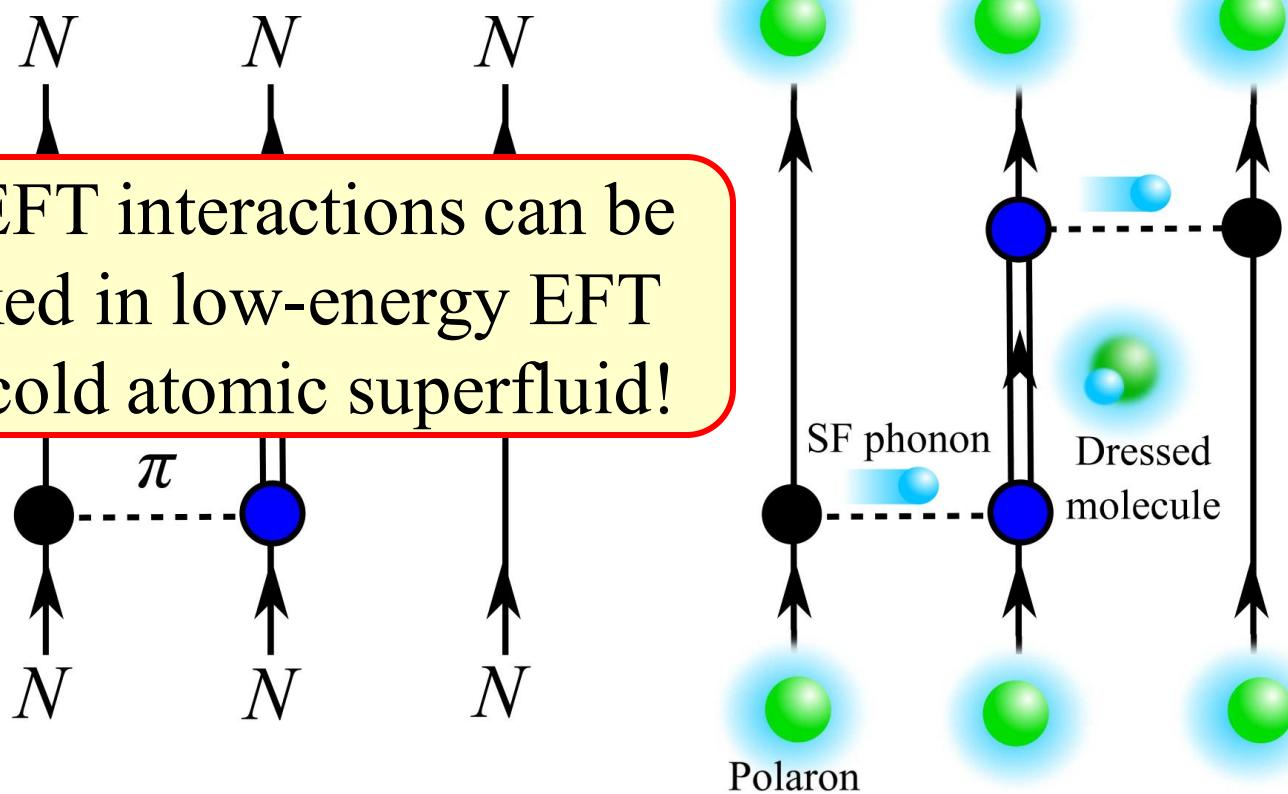
Pion \leftrightarrow superfluid phonon

Δ resonance \leftrightarrow Feshbach molecule (closed-channel)

Fujita-Miyazawa three-body force

Tunable counterpart in ultracold atoms

Chiral EFT interactions can be mimicked in low-energy EFT of ultracold atomic superfluid!



Outline

- **Introduction**

Can we study a microscopic mechanism of hadron-quark crossover in cold atom physics?

- **Formulation**

Tripling fluctuation theory

- **Results**

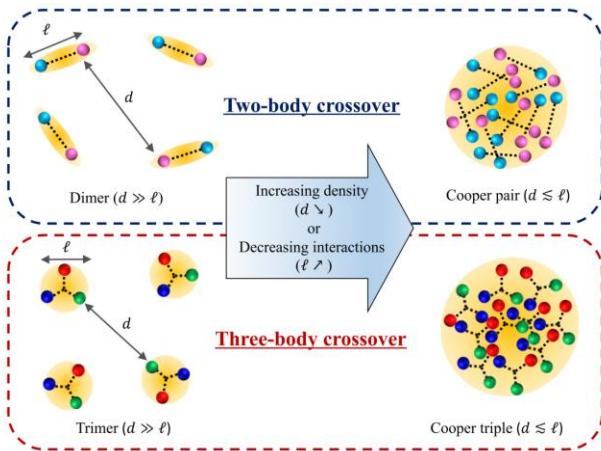
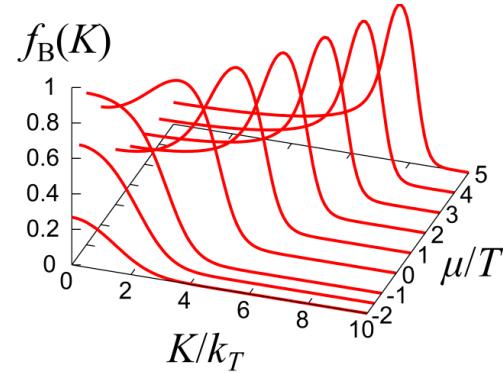
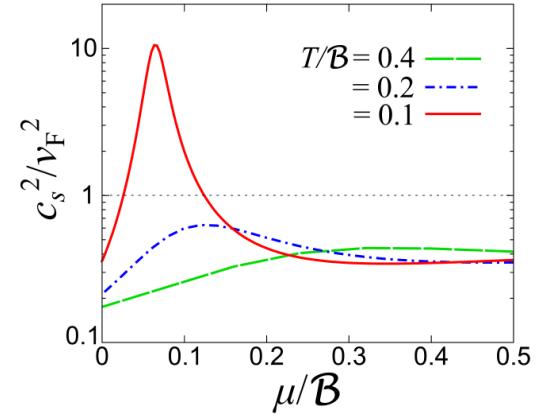
Equation of state and momentum distributions

- **Summary**

Summary of part 8

HT, K. Iida, T. Kojo, and H. Liang, PRL 135, 042701 (2025).

- In analogy with the BEC-BCS crossover in two-component Fermi gases, we have discussed the three-body counterpart in three-color fermions, where bound trimer gases change into degenerate Fermi state with tripling fluctuations.
- It is found that tripling fluctuations can induce a peaked speed of sound as well as quarkyonic-like momentum distributions.

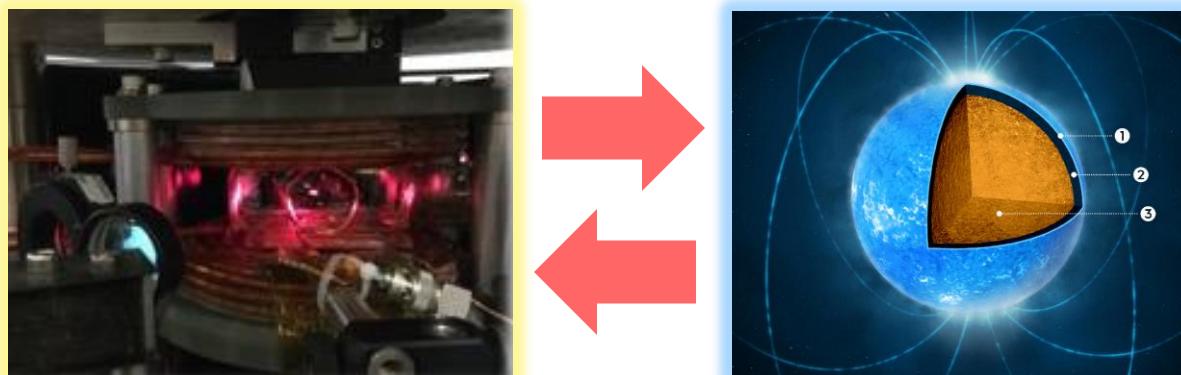


Future perspectives: Application to more realistic systems relevant to neutron-star matter, Bose-Fermi mixture, quantitative comparison with Monte Carlo simulation

Summary of the lecture

- We have discussed the interdisciplinary perspective on ultracold atoms and nuclear matter.
- Focus on pairing phenomena, BCS-BEC crossover, unitary Fermi gas, nucleon superfluid
- Success and failure of mean field theory, and how to go beyond within the diagrammatic approach
- Finally, we go beyond pairing and discussed tripling fluctuations in the hadron-quark crossover

Interdisciplinary scientific communications might lead to new discovery!



Thank you very much for your attention!

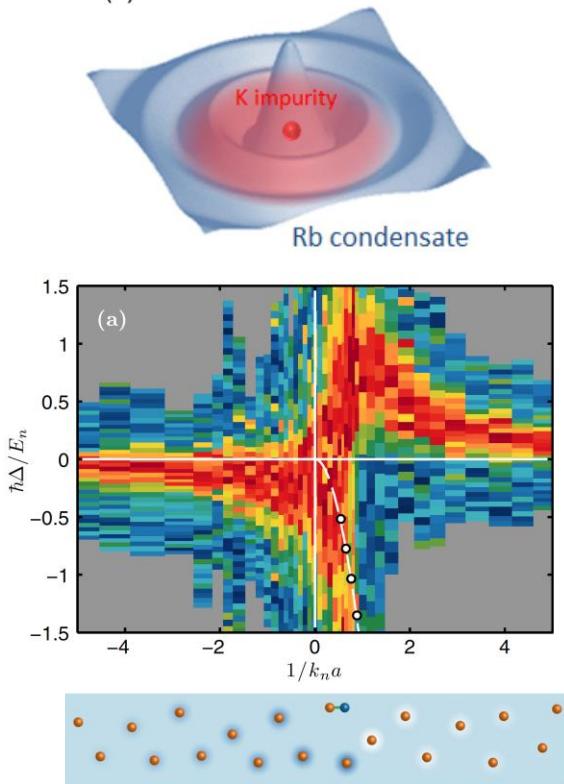
Appendix

Yukawa interaction in cold atoms

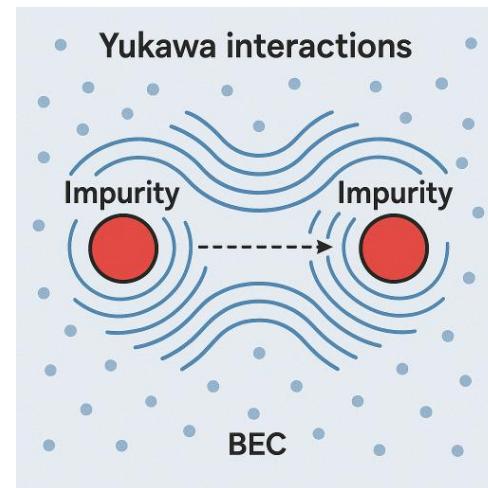
Two-polaron interaction in BEC is induced by exchange of superfluid phonons (analogous to pion exchange)

“Bose” polaron

Impurity immersed in BEC



Nils B. Jørgensen, et al., PRL 117, 055302 (2016).



by Chat GPT画伯

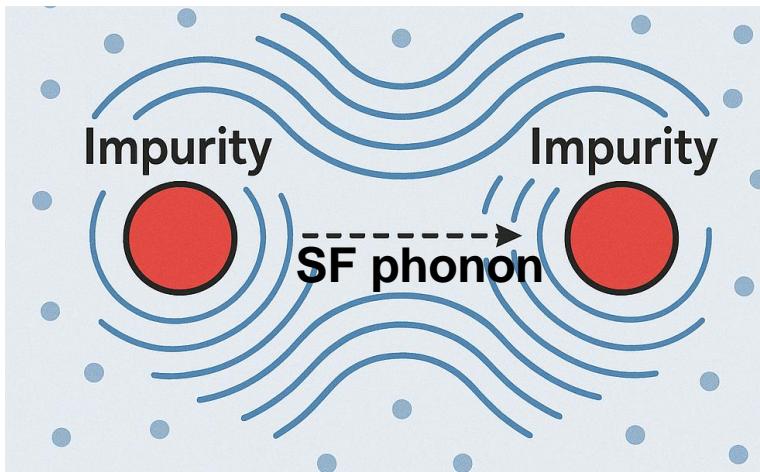
$$V_{2b}(r) = -\frac{\alpha}{r} e^{-r/\xi}$$

ξ : BEC healing length

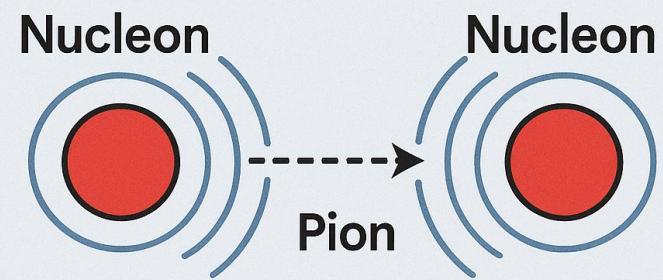
M. J. Mijslma, et al., PRA 61, 053601 (2000).

Analogy between polaron and nucleon

Inter-polaron force



Nuclear force



by Chat GPT画伯

$$V_{2b}(r) = -\frac{\alpha}{r} e^{-r/\xi}$$

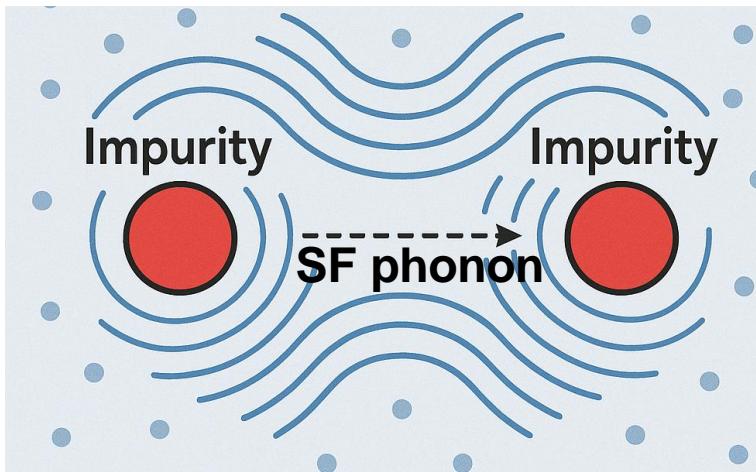
ξ : BEC healing length

$$V_{2b}(r) = -\frac{\alpha'}{r} e^{-m_\pi r}$$

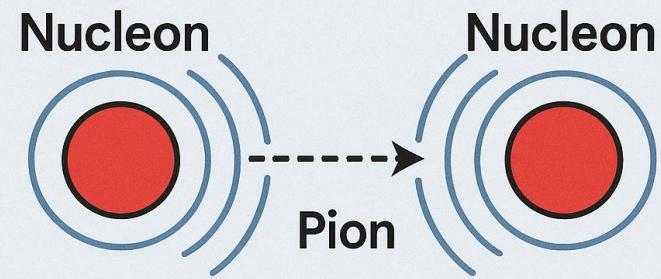
m_π^{-1} : inverse pion mass

Analogy between polaron and nucleon

Inter-polaron force



Nuclear force



by Chat GPT画伯

$$V_{2b}(r) = -\frac{\alpha}{r} e^{-r/\xi}$$

ξ : BEC healing length

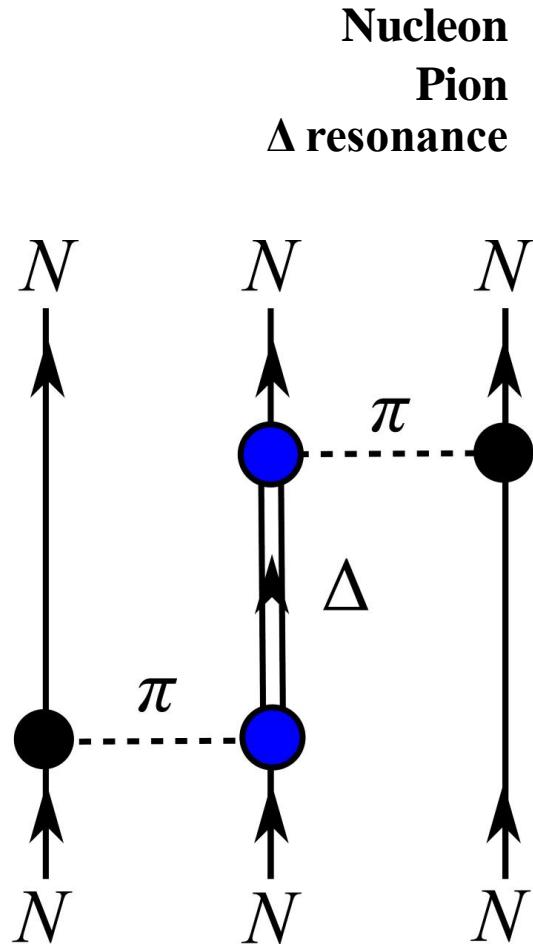
$$V_{2b}(r) = -\frac{\alpha'}{r} e^{-m_\pi r}$$

m_π^{-1} : inverse pion mass

Fujita-Miyazawa counterpart in three-polaron force?

Fujita-Miyazawa-type three-body force among polarons

HT, E. Nakano, and K. Iida, arXiv:2505.19117



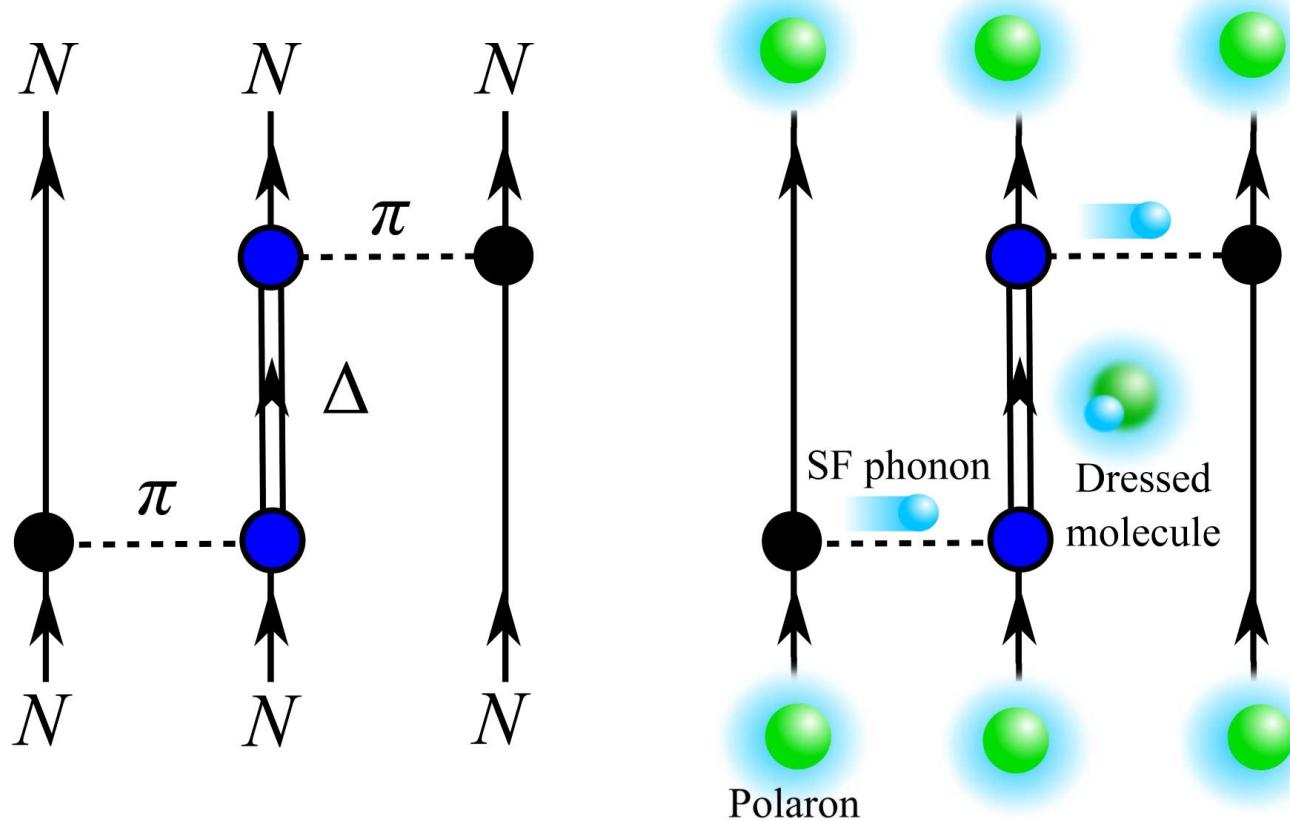
Fujita-Miyazawa-type three-body force among polarons

HT, E. Nakano, and K. Iida, arXiv:2505.19117

Nucleon \leftrightarrow polaron

Pion \leftrightarrow superfluid phonon

Δ resonance \leftrightarrow Feshbach molecule (closed-channel)



Two-channel model of cold atoms near the Feshbach resonance

$$\begin{aligned}
\hat{H} = & \sum_{\mathbf{k}} \left[\xi_{\mathbf{k},b} \hat{b}_{\mathbf{k}}^\dagger \hat{b}_{\mathbf{k}} + \xi_{\mathbf{k},c} \hat{c}_{\mathbf{k}}^\dagger \hat{c}_{\mathbf{k}} \right] + \sum_{\mathbf{P}} \xi_{\mathbf{P},A} \hat{A}_{\mathbf{P}}^\dagger \hat{A}_{\mathbf{P}} \\
& + \frac{U_{bb}}{2} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k}' + \frac{\mathbf{P}}{2}} \hat{b}_{\mathbf{k}' + \frac{\mathbf{P}}{2}} \\
& + U_{bc} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k}' + \frac{M_c}{M_A} \mathbf{P}} \hat{b}_{\mathbf{k}' + \frac{M_b}{M_A} \mathbf{P}} \\
& + g \sum_{\mathbf{P}, \mathbf{k}} \left[\hat{A}_{\mathbf{P}}^\dagger \hat{b}_{-\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}} \hat{c}_{\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}} + \text{h.c.} \right]
\end{aligned}$$

$$\xi_{\mathbf{k},b} = k^2/(2M_b) - \mu_b$$

Kinetic energies: $\xi_{\mathbf{k},c} = k^2/(2M_c) - \mu_c$

$$\xi_{\mathbf{P},A} = P^2/(2M_A) - \mu_b - \mu_c + \nu$$

$\mu_{b,c}$: chemical potential

$M_{b,c,A}$: mass

$\nu(B)$: closed-channel energy

Two-channel model of cold atoms near the Feshbach resonance

Medium boson

Impurity

Closed-channel molecule

$$\begin{aligned}
 \hat{H} = & \sum_{\mathbf{k}} \left[\xi_{\mathbf{k},b} \hat{b}_{\mathbf{k}}^\dagger \hat{b}_{\mathbf{k}} + \xi_{\mathbf{k},c} \hat{c}_{\mathbf{k}}^\dagger \hat{c}_{\mathbf{k}} \right] + \sum_{\mathbf{P}} \xi_{\mathbf{P},A} \hat{A}_{\mathbf{P}}^\dagger \hat{A}_{\mathbf{P}} \\
 & + \frac{U_{bb}}{2} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k}' + \frac{\mathbf{P}}{2}} \hat{b}_{\mathbf{k}' + \frac{\mathbf{P}}{2}} \\
 & + U_{bc} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k}' + \frac{M_c}{M_A} \mathbf{P}} \hat{b}_{\mathbf{k}' + \frac{M_b}{M_A} \mathbf{P}} \\
 & + g \sum_{\mathbf{P}, \mathbf{k}} \left[\hat{A}_{\mathbf{P}}^\dagger \hat{b}_{-\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}} \hat{c}_{\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}} + \text{h.c.} \right]
 \end{aligned}$$

$$\xi_{\mathbf{k},b} = k^2/(2M_b) - \mu_b$$

Kinetic energies: $\xi_{\mathbf{k},c} = k^2/(2M_c) - \mu_c$

$$\xi_{\mathbf{P},A} = P^2/(2M_A) - \mu_b - \mu_c + \nu$$

$\mu_{b,c}$: chemical potential

$M_{b,c,A}$: mass

$\nu(B)$: closed-channel energy

Two-channel model of cold atoms near the Feshbach resonance

Medium boson	Impurity	Closed-channel molecule

$$\hat{H} = \sum_{\mathbf{k}} \left[\xi_{\mathbf{k},b} \hat{b}_{\mathbf{k}}^\dagger \hat{b}_{\mathbf{k}} + \xi_{\mathbf{k},c} \hat{c}_{\mathbf{k}}^\dagger \hat{c}_{\mathbf{k}} \right] + \sum_{\mathbf{P}} \xi_{\mathbf{P},A} \hat{A}_{\mathbf{P}}^\dagger \hat{A}_{\mathbf{P}}$$

Boson-boson interaction

$$+ \frac{U_{bb}}{2} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k}' + \frac{\mathbf{P}}{2}} \hat{b}_{\mathbf{k}' + \frac{\mathbf{P}}{2}}$$

$$+ U_{bc} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k}' + \frac{M_c}{M_A} \mathbf{P}} \hat{b}_{\mathbf{k}' + \frac{M_b}{M_A} \mathbf{P}}$$

$$+ g \sum_{\mathbf{P}, \mathbf{k}} \left[\hat{A}_{\mathbf{P}}^\dagger \hat{b}_{-\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}} \hat{c}_{\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}} + \text{h.c.} \right]$$

$$\xi_{\mathbf{k},b} = k^2/(2M_b) - \mu_b$$

Kinetic energies: $\xi_{\mathbf{k},c} = k^2/(2M_c) - \mu_c$

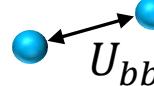
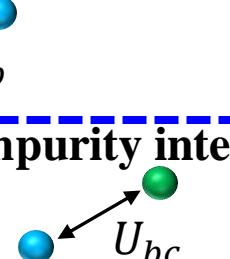
$$\xi_{\mathbf{P},A} = P^2/(2M_A) - \mu_b - \mu_c + \nu$$

$\mu_{b,c}$: chemical potential

$M_{b,c,A}$: mass

$\nu(B)$: closed-channel energy

Two-channel model of cold atoms near the Feshbach resonance

Medium boson	Impurity	Closed-channel molecule
$\hat{H} = \sum_{\mathbf{k}} \left[\xi_{\mathbf{k},b} \hat{b}_{\mathbf{k}}^\dagger \hat{b}_{\mathbf{k}} + \xi_{\mathbf{k},c} \hat{c}_{\mathbf{k}}^\dagger \hat{c}_{\mathbf{k}} \right] + \sum_{\mathbf{P}} \xi_{\mathbf{P},A} \hat{A}_{\mathbf{P}}^\dagger \hat{A}_{\mathbf{P}}$		
$+ \frac{U_{bb}}{2} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k}' + \frac{\mathbf{P}}{2}} \hat{b}_{\mathbf{k}' + \frac{\mathbf{P}}{2}}$		
Boson-boson interaction 		
$+ U_{bc} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k}' + \frac{M_c}{M_A} \mathbf{P}} \hat{b}_{\mathbf{k}' + \frac{M_b}{M_A} \mathbf{P}}$		
Boson-impurity interaction 		
$+ g \sum_{\mathbf{P}, \mathbf{k}} \left[\hat{A}_{\mathbf{P}}^\dagger \hat{b}_{-\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}} \hat{c}_{\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}} + \text{h.c.} \right]$		

$$\xi_{\mathbf{k},b} = k^2/(2M_b) - \mu_b$$

Kinetic energies: $\xi_{\mathbf{k},c} = k^2/(2M_c) - \mu_c$

$$\xi_{\mathbf{P},A} = P^2/(2M_A) - \mu_b - \mu_c + \nu$$

$\mu_{b,c}$: chemical potential

$M_{b,c,A}$: mass

$\nu(B)$: closed-channel energy

Two-channel model of cold atoms near the Feshbach resonance

Medium boson	Impurity	Closed-channel molecule
$\hat{H} = \sum_{\mathbf{k}} \left[\xi_{\mathbf{k},b} \hat{b}_{\mathbf{k}}^\dagger \hat{b}_{\mathbf{k}} + \xi_{\mathbf{k},c} \hat{c}_{\mathbf{k}}^\dagger \hat{c}_{\mathbf{k}} \right] + \sum_{\mathbf{P}} \xi_{\mathbf{P},A} \hat{A}_{\mathbf{P}}^\dagger \hat{A}_{\mathbf{P}}$		
$+ \frac{U_{bb}}{2} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k} + \frac{\mathbf{P}}{2}}^\dagger \hat{b}_{-\mathbf{k}' + \frac{\mathbf{P}}{2}} \hat{b}_{\mathbf{k}' + \frac{\mathbf{P}}{2}}$		
$+ U_{bc} \sum_{\mathbf{k}, \mathbf{k}', \mathbf{P}} \hat{b}_{\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}}^\dagger \hat{c}_{-\mathbf{k}' + \frac{M_c}{M_A} \mathbf{P}} \hat{b}_{\mathbf{k}' + \frac{M_b}{M_A} \mathbf{P}}$		
$+ g \sum_{\mathbf{P}, \mathbf{k}} \left[\hat{A}_{\mathbf{P}}^\dagger \hat{b}_{-\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}} \hat{c}_{\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}} + \text{h.c.} \right]$		

$$\xi_{\mathbf{k},b} = k^2/(2M_b) - \mu_b$$

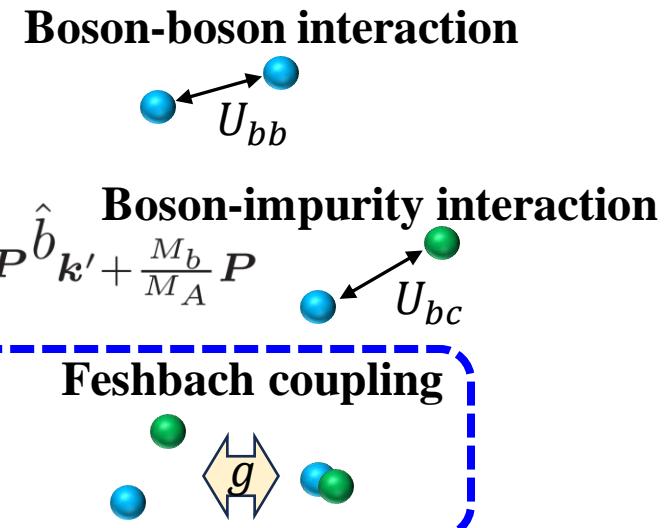
Kinetic energies: $\xi_{\mathbf{k},c} = k^2/(2M_c) - \mu_c$

$$\xi_{\mathbf{P},A} = P^2/(2M_A) - \mu_b - \mu_c + \nu$$

$\mu_{b,c}$: chemical potential

$M_{b,c,A}$: mass

$\nu(B)$: closed-channel energy



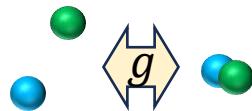
Polaron in Bose-Einstein condensate

$$b_{\mathbf{k}} = \sqrt{n_0} \delta_{\mathbf{k},0} + \hat{\pi}_{\mathbf{k}} (1 - \delta_{\mathbf{k},0})$$

n_0 : BEC condensate density

Feshbach coupling

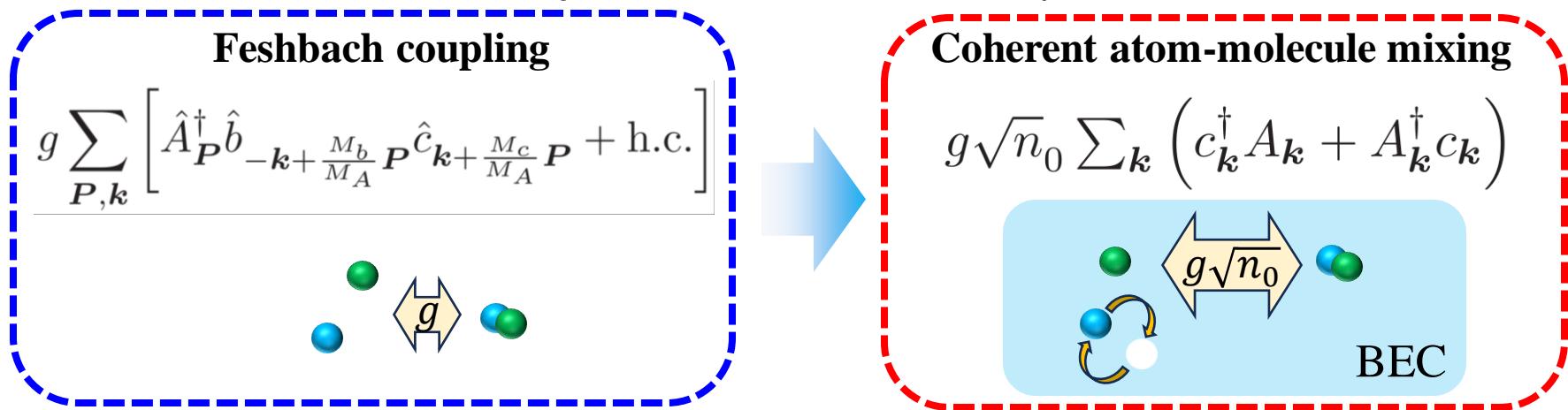
$$g \sum_{\mathbf{P}, \mathbf{k}} \left[\hat{A}_{\mathbf{P}}^\dagger \hat{b}_{-\mathbf{k} + \frac{M_b}{M_A} \mathbf{P}} \hat{c}_{\mathbf{k} + \frac{M_c}{M_A} \mathbf{P}} + \text{h.c.} \right]$$



Polaron in Bose-Einstein condensate

$$b_{\mathbf{k}} = \sqrt{n_0} \delta_{\mathbf{k},0} + \hat{\pi}_{\mathbf{k}} (1 - \delta_{\mathbf{k},0})$$

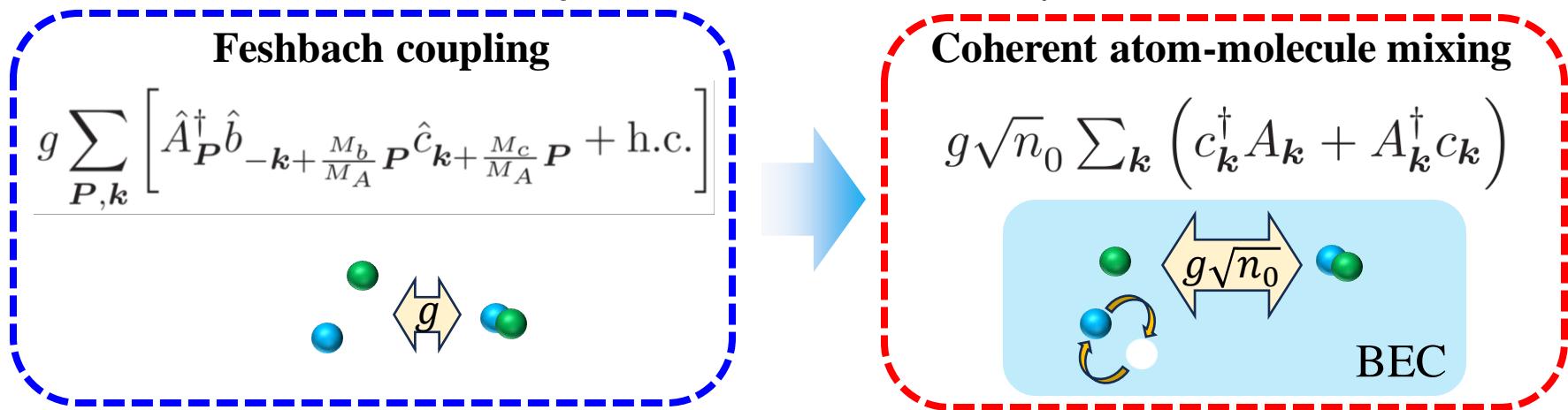
n_0 : BEC condensate density



Polaron in Bose-Einstein condensate

$$b_{\mathbf{k}} = \sqrt{n_0} \delta_{\mathbf{k},0} + \hat{\pi}_{\mathbf{k}} (1 - \delta_{\mathbf{k},0})$$

n_0 : BEC condensate density



Nucleon-like and Δ -like polarons as diagonalized eigenstates

$$\hat{H} = \hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi + \hat{V}$$

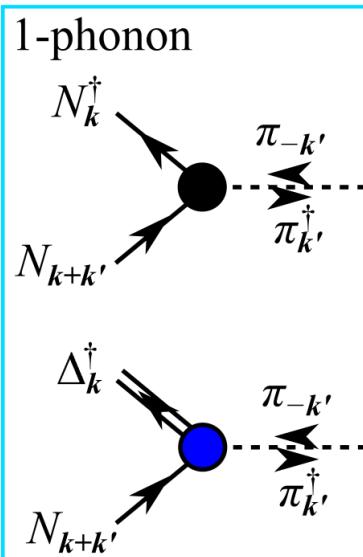
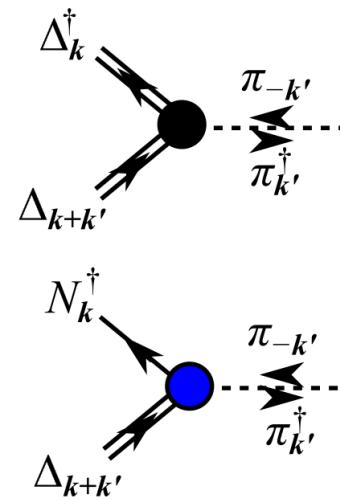
Ground state: $\hat{H}_N = \sum_{\mathbf{k}} \xi_{\mathbf{k},N} \hat{N}_{\mathbf{k}}^\dagger \hat{N}_{\mathbf{k}}$

Excited state: $\hat{H}_\Delta = \sum_{\mathbf{k}} \xi_{\mathbf{k},\Delta} \hat{\Delta}_{\mathbf{k}}^\dagger \hat{\Delta}_{\mathbf{k}}$

Bogoliubov Hamiltonian for pion-like boson excitation

$$\begin{aligned} \hat{H}_\pi = & \sum_{\mathbf{k}} (\xi_{\mathbf{k},b} + 2U_{bb}n_0) \hat{\pi}_{\mathbf{k}}^\dagger \hat{\pi}_{\mathbf{k}} \\ & + \frac{U_{bb}n_0}{2} \sum_{\mathbf{k}} \left[\hat{\pi}_{\mathbf{k}}^\dagger \hat{\pi}_{-\mathbf{k}}^\dagger + \hat{\pi}_{-\mathbf{k}} \hat{\pi}_{\mathbf{k}} \right] \end{aligned}$$

Absorption and emission of pion-like boson excitations



2-phonon

$N_{q-k'}^dagger$ N_{q-k} $\pi_{k'}^dagger$ π_k

*Higher order at $n_0 \gg 1$

$$\hat{V} = \sum_{\mathbf{k}, \mathbf{k}'} \left[f_{\mathbf{k}, \mathbf{k}'}^{NN\pi} \hat{N}_{\mathbf{k}}^\dagger \hat{N}_{\mathbf{k}+\mathbf{k}'} \hat{\pi}_{\mathbf{k}'}^\dagger + f_{\mathbf{k}, \mathbf{k}'}^{\Delta\Delta\pi} \hat{\Delta}_{\mathbf{k}}^\dagger \hat{\Delta}_{\mathbf{k}+\mathbf{k}'} \hat{\pi}_{\mathbf{k}'}^\dagger \right. \\ \left. + f_{\mathbf{k}, \mathbf{k}'}^{\Delta N\pi} \hat{\Delta}_{\mathbf{k}}^\dagger \hat{N}_{\mathbf{k}+\mathbf{k}'} \hat{\pi}_{\mathbf{k}'}^\dagger + f_{\mathbf{k}, \mathbf{k}'}^{N\Delta\pi} \hat{N}_{\mathbf{k}}^\dagger \hat{\Delta}_{\mathbf{k}+\mathbf{k}'} \hat{\pi}_{\mathbf{k}'}^\dagger \right] + \text{h.c.}$$

Hamiltonian effective field theory based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function

$$Z = \text{Tr} \left[e^{-\beta(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi + \hat{V})} \right]$$

Hamiltonian effective field theory based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function

$$Z = \text{Tr} \left[e^{-\beta(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi + \hat{V})} \right]$$

“Trace out”

“Effective nucleon system”

$$Z = \text{Tr}_N \left[e^{-\beta(\hat{H}_N + \hat{V}_{\text{eff}})} \right]$$

\hat{V}_{eff} : **effective interaction**

$\text{Tr}_N[\dots]$: partial trace of N state

Hamiltonian effective field theory based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function

$$Z = \text{Tr} \left[e^{-\beta(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi + \hat{V})} \right]$$

“Trace out”

“Effective nucleon system”

$$Z = \text{Tr}_N \left[e^{-\beta(\hat{H}_N + \hat{V}_{\text{eff}})} \right]$$

\hat{V}_{eff} : effective interaction

$\text{Tr}_N[\dots]$: partial trace of N state

Equation for effective interaction

$$e^{-\beta \hat{V}_{\text{eff}}} = \text{Tr}_{\Delta\pi} \left[e^{-\beta(\hat{H}_\Delta + \hat{H}_\pi)} \hat{S}(\beta) \right]$$

S-matrix operator

$$\hat{S}(\beta) = T_\tau \exp \left[- \int_0^\beta d\tau \hat{V}(\tau) \right]$$

Interaction representation in the imaginary time formalism

$$\hat{V}(\tau) = e^{\tau(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi)} \hat{V} e^{-\tau(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi)}$$

Hamiltonian effective field theory based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function

$$Z = \text{Tr} \left[e^{-\beta(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi + \hat{V})} \right]$$

“Trace out”

“Effective nucleon system”

$$Z = \text{Tr}_N \left[e^{-\beta(\hat{H}_N + \hat{V}_{\text{eff}})} \right]$$

\hat{V}_{eff} : effective interaction

$\text{Tr}_N[\dots]$: partial trace of N state

Equation for effective interaction

$$e^{-\beta \hat{V}_{\text{eff}}} = \text{Tr}_{\Delta\pi} \left[e^{-\beta(\hat{H}_\Delta + \hat{H}_\pi)} \hat{S}(\beta) \right]$$

S-matrix operator

$$\hat{S}(\beta) = T_\tau \exp \left[- \int_0^\beta d\tau \hat{V}(\tau) \right]$$

Interaction representation in the imaginary time formalism

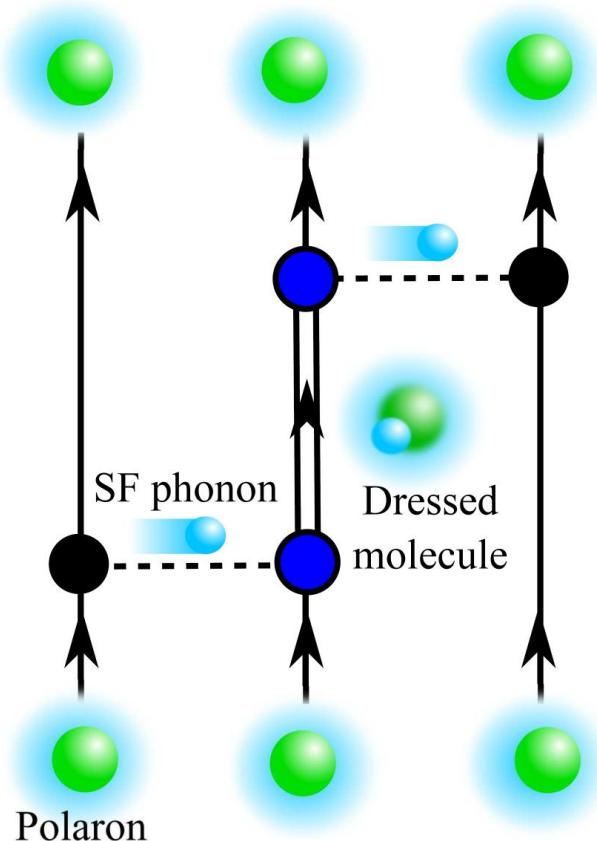
$$\hat{V}(\tau) = e^{\tau(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi)} \hat{V} e^{-\tau(\hat{H}_N + \hat{H}_\Delta + \hat{H}_\pi)}$$

Perturbative expression of the effective interaction

$$\hat{V}_{\text{eff}} = \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell-1}}{\ell! \beta} \int_0^\beta d\tau_1 \cdots \int_0^\beta d\tau_\ell \langle T_\tau [\hat{V}(\tau_1) \cdots \hat{V}(\tau_\ell)] \rangle$$

$$\langle \cdots \rangle = \text{Tr}_{\pi\Delta} [e^{-\beta(\hat{H}_\Delta + \hat{H}_\pi)} \cdots] / \text{Tr}_{\pi\Delta} [e^{-\beta(\hat{H}_\Delta + \hat{H}_\pi)}]$$

Fujita-Miyazawa three-body force



$$\hat{V}_{\text{FM}} = \frac{1}{6} \sum_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{q}_1, \mathbf{q}_2} U_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3}(\mathbf{q}_1, \mathbf{q}_2) \times \hat{N}_{\mathbf{k}_1}^\dagger \hat{N}_{\mathbf{k}_2}^\dagger \hat{N}_{\mathbf{k}_3}^\dagger \hat{N}_{\mathbf{k}_3 - \mathbf{q}_1} \hat{N}_{\mathbf{k}_2 + \mathbf{q}_1 - \mathbf{q}_2} \hat{N}_{\mathbf{k}_1 + \mathbf{q}_2}$$

2π -exchange-like form of coupling strength

$$U_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3}(\mathbf{q}_1, \mathbf{q}_2) = -6 \mathcal{G}_{\mathbf{k}_2 + \mathbf{q}_1}^\Delta \mathcal{G}_{\mathbf{k}_1, \mathbf{q}_2, \mathbf{k}_2 + \mathbf{q}_1}^{N\pi\Delta} \mathcal{G}_{\mathbf{k}_2, \mathbf{q}_1, \mathbf{k}_3}^{\Delta\pi N}$$

Δ prop. π -like SF phonon prop.
with form factors

At $g \ll U_{bc} \sqrt{n_0}$

$$U_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3}(\mathbf{q}_1, \mathbf{q}_2) \propto \frac{1}{(\mathbf{q}_1^2 + \xi^{-2})(\mathbf{q}_2^2 + \xi^{-2})}$$

ξ : BEC healing length

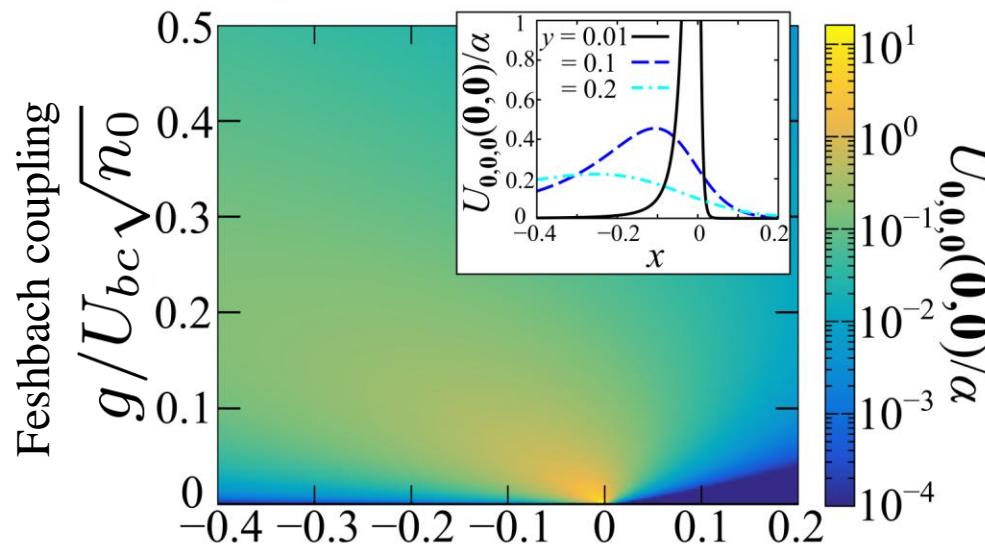
How to measure?

Interaction energy in the impurity equation of state

$$\delta E_3 \propto U_{0,0,0}(0,0)n_N^3$$

n_N : ground-state polaron density

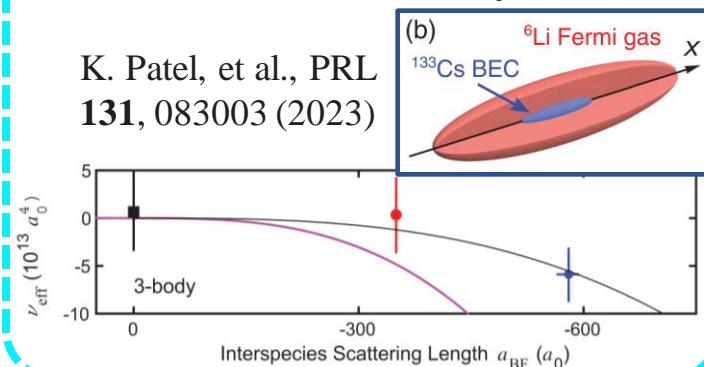
$$U_{0,0,0}(0,0) = \frac{\alpha y^2 (1 - x/2)^2}{(x^2 + 4y^2)^{3/2}} \left(\frac{1}{2} - \frac{y^2 + x/2}{2\sqrt{x^2 + 4y^2}} \right)^2$$



Closed-channel energy level: $\{\nu - (U_{bc} + U_{bb})n_0\}/U_{bc}n_0$

Observation of fermion-mediated three-body force

K. Patel, et al., PRL 131, 083003 (2023)



Tunable via $\nu(B)!$

Realization of tunable three-body interaction in cold atoms

A. Hammond, *et al.*, Phys. Rev. Lett. **128**, 083401 (2022)

EOS in Rabi-coupled 2-com. 1D BEC

$$\frac{E_{\text{MF}}}{V} = -\frac{\hbar\Omega}{2}(\phi_{\uparrow}^*\phi_{\downarrow} + \phi_{\downarrow}^*\phi_{\uparrow}) + \frac{\hbar\delta}{2}(|\phi_{\uparrow}|^2 - |\phi_{\downarrow}|^2) + \sum_{\sigma\sigma'} \frac{g_{\sigma\sigma'}}{2} |\phi_{\sigma}|^2 |\phi_{\sigma'}|^2.$$

Low-energy EFT

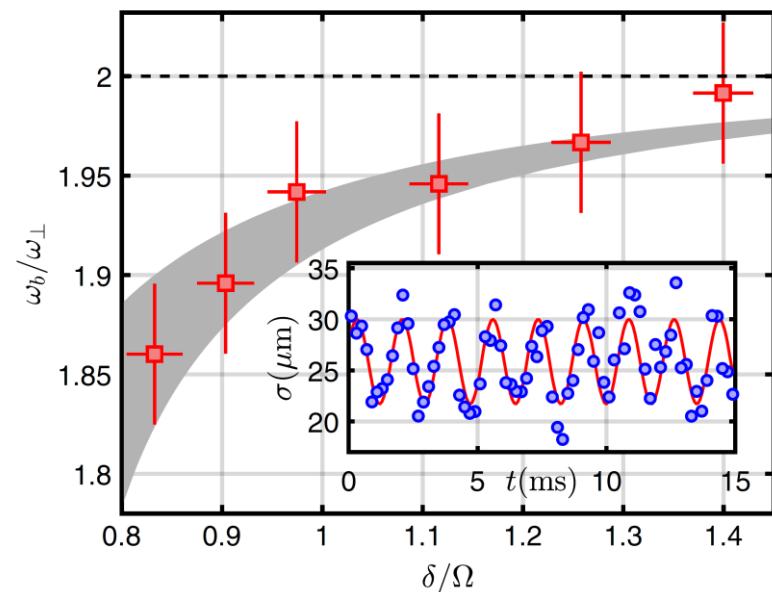
$$\frac{E_{\text{MF}}}{N} \approx \epsilon_- + g_2 \frac{n}{2} + g_3 \frac{n^2}{3}$$

with $g_2 = g - \frac{\bar{g}}{1 + \delta^2/\Omega^2}$

and $g_3 = -\frac{3\bar{g}^2}{\hbar\Omega} \frac{\delta^2/\Omega^2}{(1 + \delta^2/\Omega^2)^{5/2}}$

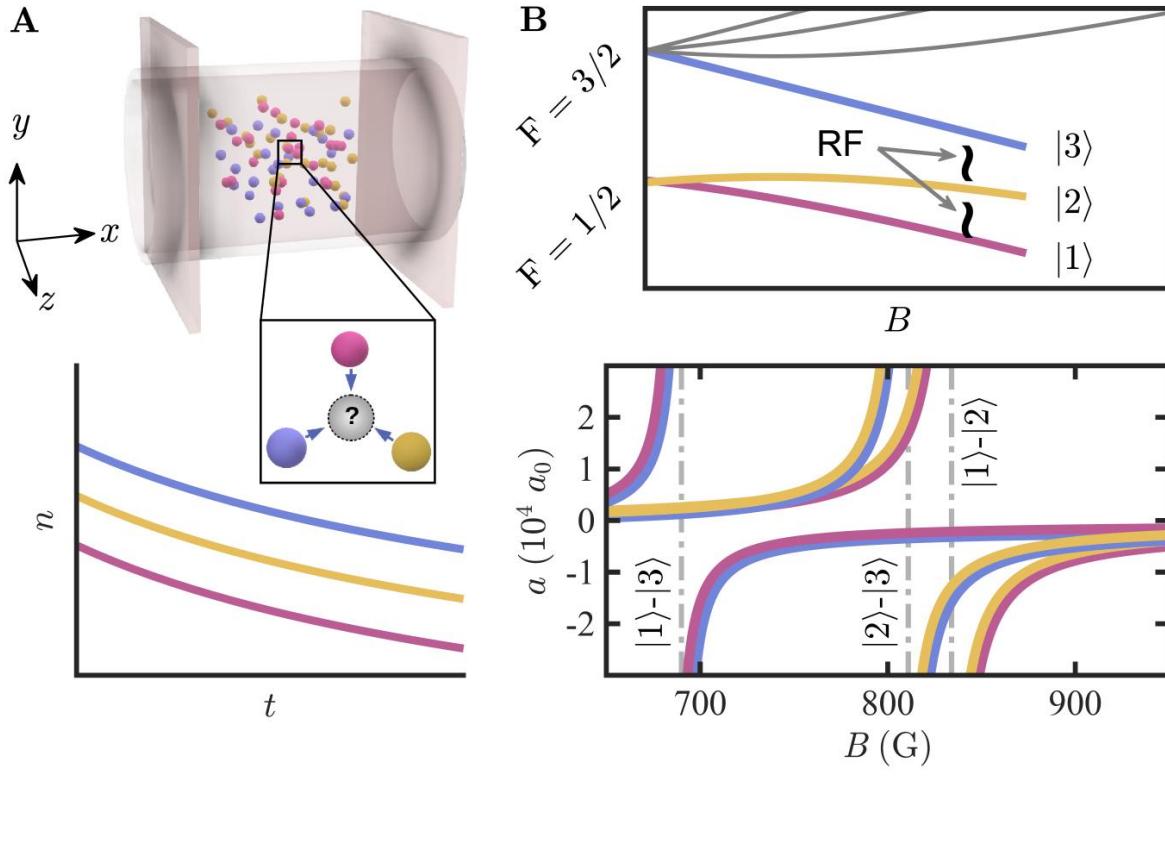
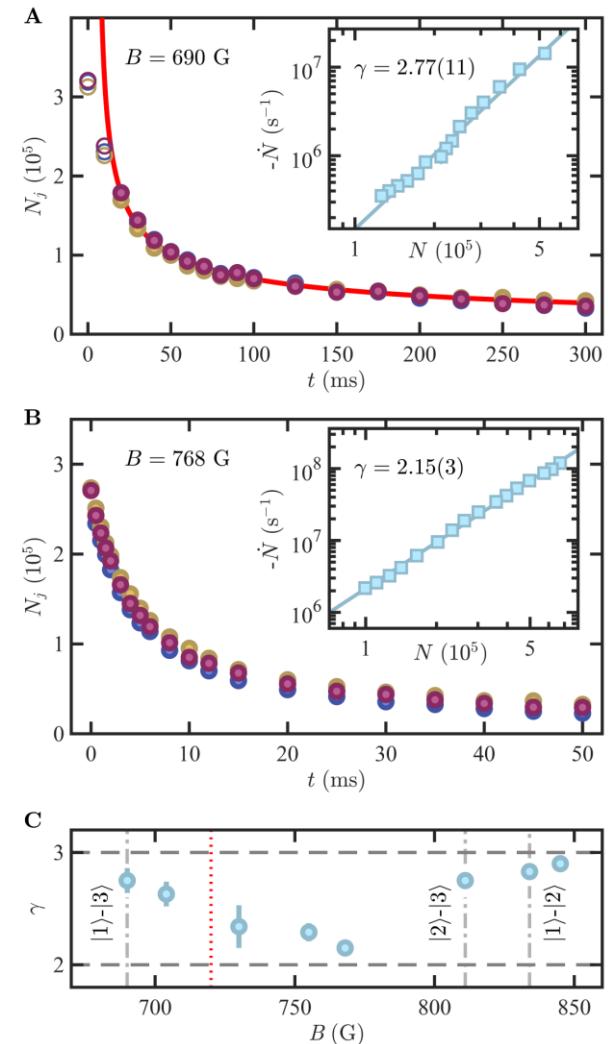
Breezing mode frequency

$$\omega_b = 2\omega_{\perp} \sqrt{1 + E_3/E_{\text{pot}}}$$



Recent experiments of three-component Fermi gases

G. L. Schumacher, et al., arXiv:2301.92237



1D nonrelativistic three-color fermions with three-body interaction

- Hamiltonian density: $\hat{H} = \hat{H}_0 + \hat{V}_3$

One-body kinetic term

$$\hat{H}_0 = \sum_{a=r,g,b} \psi_a^\dagger \left(-\frac{\partial_x^2}{2m} - \mu \right) \psi_a$$

μ : chemical potential

$a = r, g, b$: pseudo-color (hyperfine states)

ψ_a^\dagger, ψ_a : fermionic field operator

Three-body interaction (classically scale invariant: $x \rightarrow \lambda^{-1}x$)

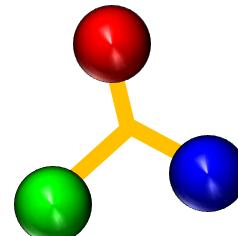
J. Drut, et al., PRL **120**, 243002 (2018).

$$\hat{V}_3 = V(\psi_r^\dagger \psi_r)(\psi_g^\dagger \psi_g)(\psi_b^\dagger \psi_b)$$

$V < 0$: three-body attraction

Three-body binding energy (broken scale invariance)

$$\mathcal{B} = \frac{\Lambda^2}{m} \exp \left(\frac{2\sqrt{3}\pi}{mV} \right)$$



Λ : UV cutoff scale

Three-body T -matrix for three-body interaction

Three-body coupling constant g_3 can be represented by the three-body binding energy ε_B

$$T_3 = \boxed{g_3} = \text{○} + \text{○} \text{---} \text{○} + \dots$$

Diagram: A green box contains the symbol T_3 . To its right is an equals sign. Following the equals sign is a diagram of a three-body system: three pink circles representing particles are arranged in a triangle, with a horizontal line connecting the top and bottom circles. A curved arrow starts at the top circle, goes around the bottom circle, and ends at the top circle, indicating a loop or interaction. To the right of this diagram is a plus sign, followed by three dots.

$$T_3(P, \Omega_+) = \left[\frac{1}{g_3} - \Xi_0(P, \Omega_+) \right]^{-1}$$

Ξ_0 : Three-body propagator in vacuum

$$\Xi_0(P, \Omega_+) = \sum_{k,q} \frac{1}{\Omega_+ - \varepsilon_{\frac{P}{3}+k-\frac{q}{2}} - \varepsilon_{\frac{P}{3}+q} - \varepsilon_{\frac{P}{3}-k-\frac{q}{2}}} = -\frac{m}{2\sqrt{3}\pi} \ln \left(\frac{\Lambda^2 + P^2/6 - m\Omega_+}{P^2/6 - m\Omega_+} \right)$$

Three-body binding energy

Λ : cutoff

$$\frac{1}{g_3} - \Xi_0(0, \Omega = -\varepsilon_B) = 0 \quad \rightarrow \quad \varepsilon_B = \frac{\Lambda^2}{m} \exp \left(\frac{2\sqrt{3}\pi}{mg_3} \right)$$

In-medium three-body T -matrix

[HT](#), S. Tsutsui, T. M. Doi, and K. Iida, Phys. Rev. Research **4**, L012021 (2022).

$$T_3^{\text{MB}} = g_3 \left(\text{---} + \text{---} + \dots \right)$$

Diagram: A red circle with a horizontal arrow pointing right, followed by a red circle with a horizontal arrow pointing right and a curved arrow pointing clockwise around it. The text "Tripling fluctuations" is written in red above the curved arrow.

$$T_3^{\text{MB}}(\mathbf{P}, i\Omega_n) = \left[\frac{1}{g_3} - \Xi(\mathbf{P}, i\Omega_n) \right]^{-1}$$

Ξ : In-medium three-particle (three-hole) propagator

$\Omega_n = (2n + 1)\pi T$: Fermion Matsubara frequency

In-medium three-body equation

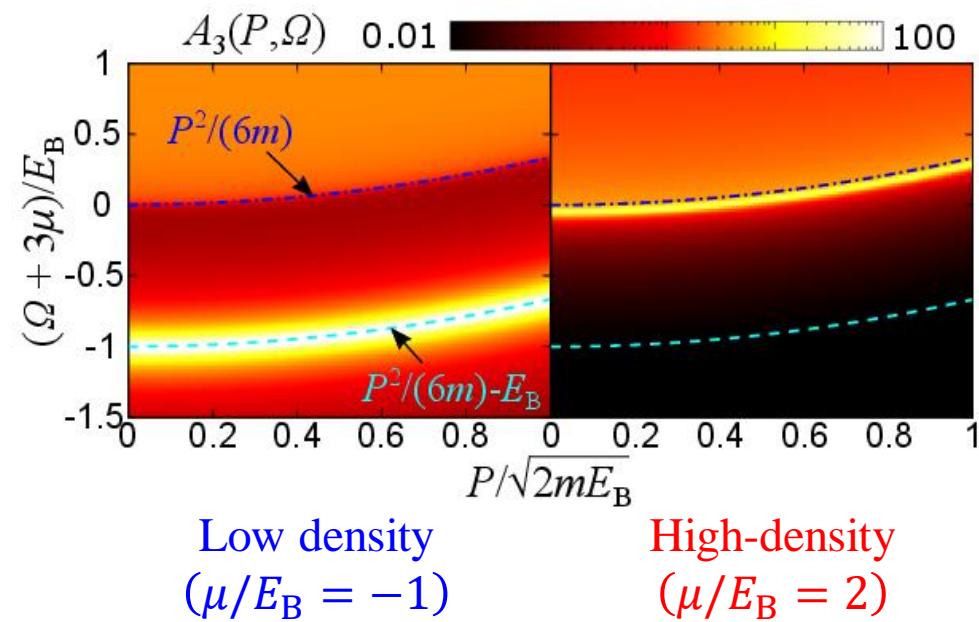
$$\frac{1}{g_3} - \Xi(\mathbf{P} = 0, \Omega = -E_B^{\text{M}}) = 0$$

Three-body spectral function

[HT](#), S. Tsutsui, T. M. Doi, and K. Iida, Phys. Rev. Research **4**, L012021 (2022).

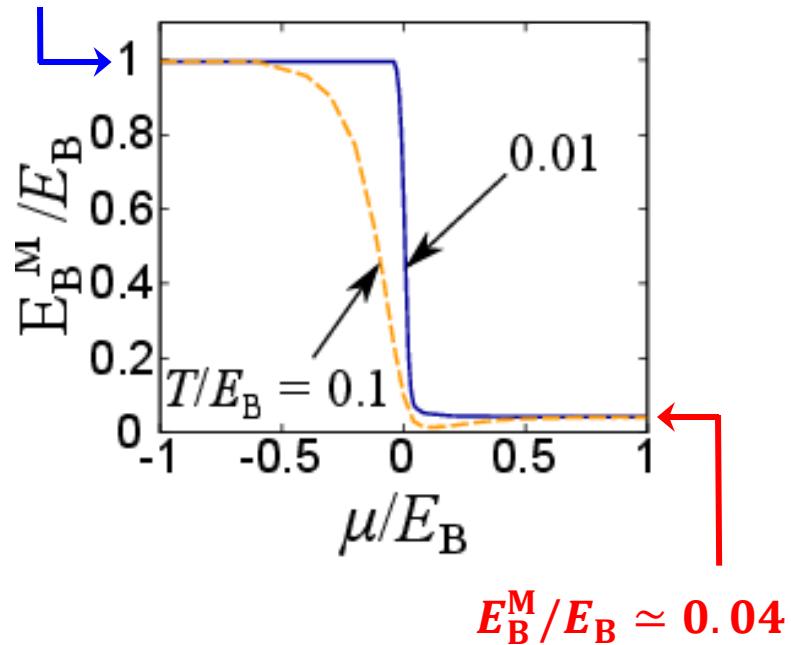
In-medium three-body spectra

$$A_3(P, \Omega) = -\text{Im}T_3^{\text{MB}}(P, \Omega_+)$$



In-medium three-body binding energy

Three-body problem

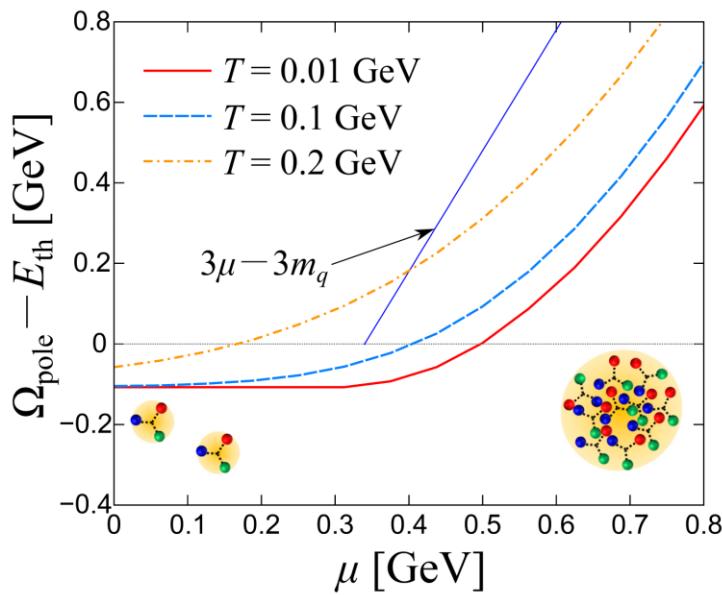
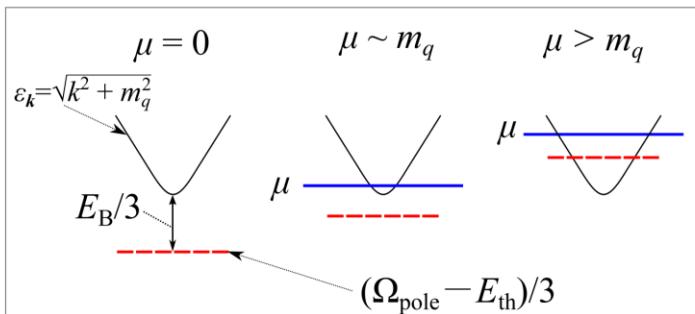


The three-body pole survives even at high density

Toy model for hadron-quark crossover

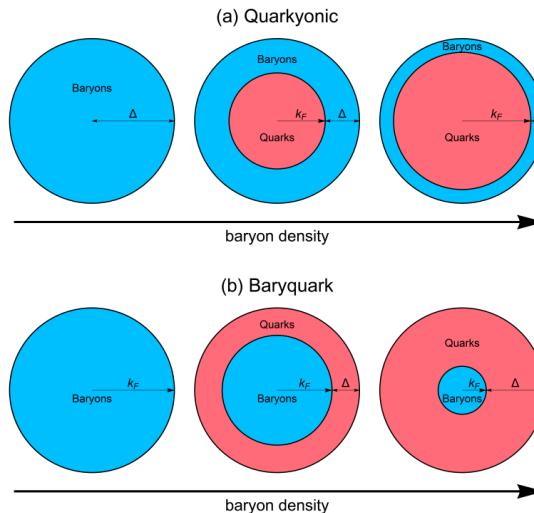
HT, S. Tsutsui, T. M. Doi, and K. Iida, Symmetry **15**, 333 (2023).

$$H = \sum_p \sum_j \varepsilon_p \psi_{p,j}^\dagger \psi_{p,j} + \sum_{k,q,k',q',P} V_{k,q,k',q',P} \psi_{k,r}^\dagger \psi_{q,g}^\dagger \psi_{P-k-q,b}^\dagger \psi_{P-k'-q',b} \psi_{q',g} \psi_{k',r}$$



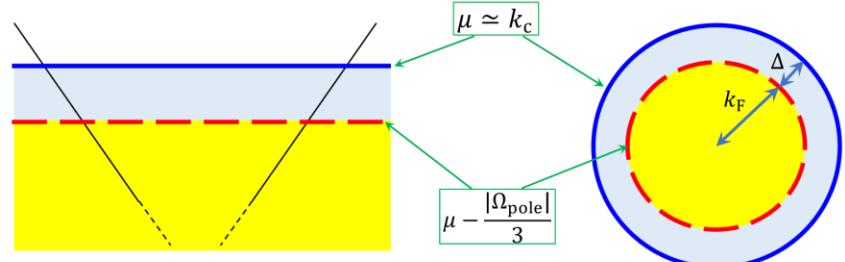
$$m_q = 0.34 \text{ GeV}, M_B = 0.91 \text{ GeV}$$

Quarkyonic or Baryquark?



arXiv:2211.14674

Our scenario is close to quarkyonic



Non-relativistic trace anomaly

Trace anomaly equation

$$2\hat{H} - \hat{T}_{xx} = -\frac{g_3^2}{\sqrt{3}\pi} (\psi_r^\dagger \psi_r)(\psi_g^\dagger \psi_g)(\psi_b^\dagger \psi_b)$$

\hat{T}_{ij} : energy-momentum tensor

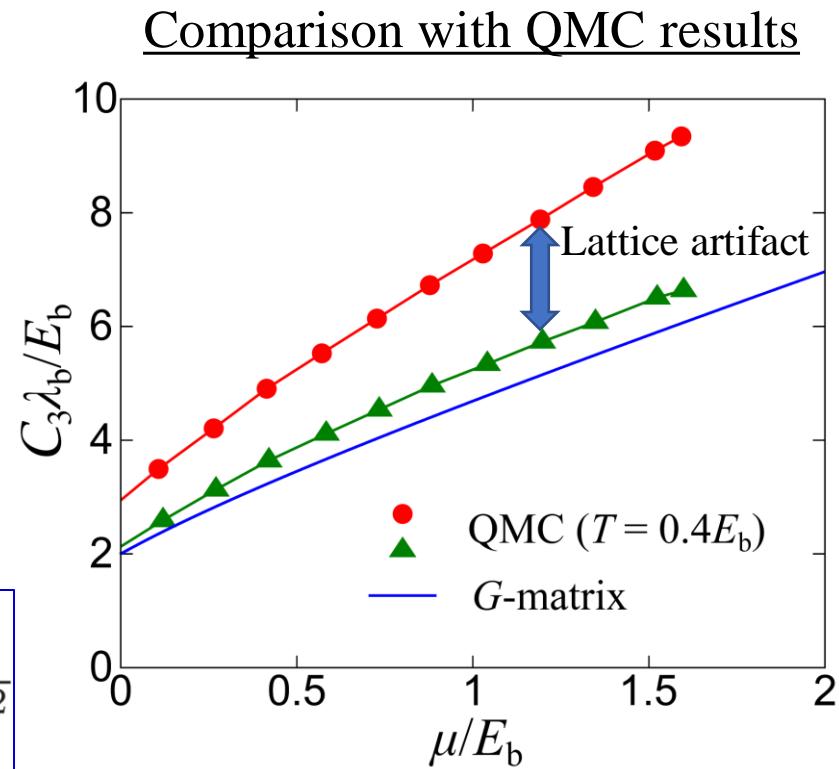
W. S. Dasa, et al., Mod. Phys. Lett. A **34**, 1950291 (2019).

Three-body contact

Statistical average: $2E - P = C_3$

$$C_3 = \frac{8\sqrt{3}}{3\pi} \rho E_F \frac{3E_F/E_b}{\left(1 + \frac{3E_F}{E_b}\right) \left[\ln\left(1 + \frac{3E_F}{E_b}\right)\right]^2}$$

E : energy density P : pressure



$\lambda_b = \sqrt{2\pi/mE_b}$: length scale associated with E_b

QMC: J. McKenny, et al., PRA **102**, 023313 (2020).

Nozières-Schmitt-Rink-type approach for the three-body crossover

In-medium three-body T -matrix

$$\boxed{\Gamma_3} = g_3 + \text{---} + \dots$$


“Tripling fluctuations”

Self-energy for tripling fluctuations

$$\Sigma = \Gamma_3 - \text{Diagram with a red circle at the bottom}$$

Dyson equation

$$G_k(i\omega_\ell) = G_k^{\text{HF}}(i\omega_\ell) + G_k^{\text{HF}}(i\omega_\ell)\Sigma_k(i\omega_\ell)G_k(i\omega_\ell)$$

$$\simeq G_k^{\text{HF}}(i\omega_\ell) + \left[G_k^{\text{HF}}(i\omega_\ell)\right]^2\Sigma_k(i\omega_\ell)$$