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Extremely dense matter

K. Fukushima, et al., Rep. Prog. Phys. 74, 014001 (2011). A. L. Watts, et al., RMP 88, 021001 (2016).

Dense QCD phase diagram Neutron star as a testing ground of dense matter

How does the hadronic phase change into quark matter at finite densities?



Extremely dense matter

K. Fukushima, et al., Rep. Prog. Phys. 74, 014001 (2011). A. L. Watts, et al., RMP 88, 021001 (2016).

Dense QCD phase diagram Neutron star as a testing ground of dense matter

How does the hadronic phase change into quark matter at finite densities?

× Sign problem in lattice QCD × Limited information in the observation



Hadron-quark (HQ) crossover
G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

normal nuclear density

𝑛0 = 0.16 fm−3

:baryon density



Hadron-quark (HQ) crossover
G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

Ab initio simulation with

realistic nuclear force,

Chiral EFT, etc…

Quark matter EOS

(e.g., NJL with mean field)

normal nuclear density

𝑛0 = 0.16 fm−3

:baryon density



Analogy with BEC-BCS crossover?
Review: Y. Ohashi, HT, and P. van Wyk, Prog. Part. Nucl. Phys. 111, 103739 (2020).

≃ HQ crossover in “2-color” QCD

D. Suenaga, Symmetry 17, 124 (2025).

BEC-BCS crossover realized 

in ultracold Fermi gases

Interaction strength

Photo: http://www.sci.osaka-cu.ac.jp/phys/laser/research_Li.html



BEC-BCS crossover 
≃ HQ crossover in “3-color” QCD?

Dimer 

“boson”

Baryon

“fermion”



BEC-BCS crossover 
≃ HQ crossover in “3-color” QCD?

Dimer BEC

(ℓ ≪ 𝑑)

Dilute nuclear matter

(ℓ ≪ 𝑑)

𝑑

ℓ

𝑑

ℓ

ℓ: molecular size

𝑑: interparticle distance

Let us consider density evolution

*Proton size ~0.9 fm

*𝑑 ∼ 0.75 fm at 𝑛 = 𝑛0 = 0.16 fm−3

⇔ 𝑛𝐵 ≪ 𝑛0



BEC-BCS crossover 
≃ HQ crossover in “3-color” QCD?

Dense dimer gas 

(ℓ ≃ 𝑑)

Dense nuclear matter

(ℓ ≃ 𝑑)

𝑑

ℓ

𝑑

ℓ

ℓ: molecular size

𝑑: interparticle distance

Let us consider density evolution

*Proton size ~0.9 fm

*𝑑 ∼ 0.75 fm at 𝑛 = 𝑛0 = 0.16 fm−3

⇔ 𝑛𝐵 ≃ 𝑛0



BEC-BCS crossover 
≃ HQ crossover in “3-color” QCD?

Crossover to quark matter

(𝑑 < ℓ)

ℓ: molecular size

𝑑: interparticle distance

Crossover to the BCS phase

(𝑑 < ℓ)

Let us consider density evolution

⇔ 𝑛𝐵 > 𝑛0

*Proton size ~0.9 fm

*𝑑 ∼ 0.75 fm at 𝑛 = 𝑛0 = 0.16 fm−3



𝑑

ℓ

Dimer (𝑑 ≫ ℓ) Cooper pairs (𝑑 ≲ ℓ)

𝑑

ℓ

Trimer (𝑑 ≫ ℓ) Cooper triples (𝑑 ≲ ℓ)

Two-body crossover

Three-body crossover

Increasing density 

(𝑑 ↘ )

Increasing density 

(𝑑 ↘ )



Increasing density 

(𝑑 ↘ )

Increasing density 

(𝑑 ↘ )

𝑑

ℓ

Dimer (𝑑 ≫ ℓ) Cooper pairs (𝑑 ≲ ℓ)

𝑑

ℓ

Trimer (𝑑 ≫ ℓ) Cooper triples (𝑑 ≲ ℓ)

Two-body crossover

Three-body crossover

Y. Nakagawa, 

et al., Science 

372, 6538 

(2021).

Density-induced BEC-BCS 

crossover in LixZrNCl

Carrier dope (density)



Increasing density 

(𝑑 ↘ )

Increasing density 

(𝑑 ↘ )

𝑑

ℓ

Dimer (𝑑 ≫ ℓ) Cooper pairs (𝑑 ≲ ℓ)

𝑑

ℓ

Trimer (𝑑 ≫ ℓ) Cooper triples (𝑑 ≲ ℓ)

Two-body crossover

Three-body crossover

G. Baym, et al., Rep. Prog. Phys. 81, 

056902 (2018).

Density-induced HQ crossover?



Conventional nuclear EOS

= Effective theory of nucleons

(Nucleons + nuclear force)

Theoretical approaches to nuclear equation of state (EOS)

In the sense of BEC-BCS crossover…

𝐻 = 𝐻0 + 𝑉𝑁𝑁 + 𝑉𝑁𝑁𝑁 +⋯



Conventional nuclear EOS

= Effective theory of nucleons

(Nucleons + nuclear force)

𝐻 = 𝐻0 + 𝑉𝑁𝑁 + 𝑉𝑁𝑁𝑁 +⋯

In the sense of BEC-BCS crossover…

𝑎𝑑𝑑: dimer-dimer scattering length

Effective theory of dimers

➡ never describe the crossover regime 

Theoretical approaches to nuclear equation of state (EOS)

Molecular BEC EOS N. Navon et al., 

Science 328, 729 (2010).



Conventional nuclear EOS
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the hadron-quark crossover

Theoretical approaches to nuclear equation of state (EOS)
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Conventional nuclear EOS

= Effective theory of nucleons

(Nucleons + nuclear force)

In the sense of BEC-BCS crossover…

𝑎𝑑𝑑: dimer-dimer scattering length

Effective theory of dimers

➡ never describe the crossover regime 

Interpolated EOS based on 

the hadron-quark crossover

Theoretical approaches to nuclear equation of state (EOS)

G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

Phenomenologically interpolating 

BCS and BEC EOS

➡ no microscopic foundation

Molecular BEC EOS

Molecular BEC EOS

Fermi gas EOS at weal coupling
Interpolate!

𝐻 = 𝐻0 + 𝑉𝑁𝑁 + 𝑉𝑁𝑁𝑁 +⋯

N. Navon et al., 

Science 328, 729 (2010).



Many-body theory for the crossover

In the case of the BEC-BCS crossover, the mean-field (BCS-Eagles-

Leggett) theory is “qualitatively” valid at zero temperatures.

Mean field = Superfluid/superconducting order parameter 𝚫

Y. Ohashi, HT, and P. van Wyk, Prog. Part. Nucl. Phys. 111, 103739 (2020).

(exp.1)
(exp.2)
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Mean field

Interaction parameter
BCS BEC



Many-body theory for the crossover
In the absence of order parameters for crossover (e.g., hadron-quark crossover),

the mean-field theory is INVALID even qualitatively

BCS BEC
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Δ 𝑇 = 𝑇c = 0



Many-body theory for the crossover

Nozieres-Schmitt-Rink (NSR) approach to pairing fluctuations

➡ Theory for “tripling” fluctuations is needed

P. Nozières, and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

BCS BEC
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w fluctuations

(NSR)
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(molecular BEC temperature)𝑇 c
/
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Δ 𝑇 = 𝑇c = 0

In the absence of order parameters for crossover (e.g., hadron-quark crossover),

the mean-field theory is INVALID even qualitatively



Two key points to understand the 
hadron-quark crossover

1. Peaked speed of sound

K. Masuda, T. Hatsuda, and T. Takatsuka, PTEP 2013, 073D01 (2013).

Rapid increase of P(ρ)

➡ 𝒗𝒔
𝟐 =

𝒅𝑷

𝒅𝑬
exhibits a peak
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Two key points to understand the 
hadron-quark crossover

1. Peaked speed of sound

K. Masuda, T. Hatsuda, and T. Takatsuka, PTEP 2013, 073D01 (2013).

2. Non-monotonic behavior of baryon-momentum distribution

Y. Fujimoto, T. Kojo, and L. D. 

McLerran, Phys. Rev. Lett. 132, 

112701 (2024).

Explicit duality model:

Rapid increase of P(ρ)

➡ 𝒗𝒔
𝟐 =

𝒅𝑷

𝒅𝑬
exhibits a peak
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In this talk…
• In analogy with the BEC-BCS crossover, we discuss the role 

of tripling fluctuations in the hadron-quark crossover.

• Considering tripling fluctuations within the phase-shift 
representation of three-body propagators, we investigate 
equation of state as well as momentum distributions of 
fermions and three-body bound states.

G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

Y.-J. Huang, et al., Phys. Rev. 

Lett. 129, 181101 (2022)

Y. Fujimoto, et al., 

Phys. Rev. Lett. 132, 

112701 (2024).

Momentum shell structure of baryons

Peaked speed of sound
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N-body clustering fluctuations

N-body propagator and phase shift:

Clustering fluctuations on thermodynamic potential:
R. Dashen, S.-K. Ma, and H. J. Bernstein, Phys. Rev. 187, 345 (1969).

Exact constraint: 𝜑 𝑲,𝜔 → −∞ = 𝜑 𝑲,𝜔 → ∞ = 0



N-body clustering fluctuations

    
3
     ... 

 

 

 

N-body propagator and phase shift:

Clustering fluctuations on thermodynamic potential:

Tripling fluctuations: N = 3 (N = 2 reproduces NSR theory)

𝑉: short-range interaction responsible for N-body cluster formation

Exact constraint: 𝜑 𝑲,𝜔 → −∞ = 𝜑 𝑲,𝜔 → ∞ = 0

R. Dashen, S.-K. Ma, and H. J. Bernstein, Phys. Rev. 187, 345 (1969).



Role of the phase shift

Bound state Scattering state

Baryon kinetic energy: Baryon chemical potential:

:Cluster binding energy

𝜑 ෥𝜔 = 𝜋Θ ෥𝜔 + ℬ Θ −෥𝜔 + Θ ෥𝜔 𝜑scatt.(෥𝜔)

Structure of the phase shift

𝛿Ω𝑁=3 = 𝑇෍

𝑲

න
−∞

∞ 𝑑𝜔

𝜋
ln 1 + 𝑒− Τ𝜔 𝑇 𝜕𝜔 𝜑(𝑲,𝜔)

subtracted three-body energy: 𝜔 → ෥𝜔 = 𝜔 − 𝐸B
kin 𝐾 + ෤𝜇B

=෍

𝑲

න
−∞

∞ 𝑑෥𝜔

𝜋

1

𝑒 Τ𝜔+𝐸B
kin(𝐾)−෥𝜇B 𝑇 + 1

𝜑(෥𝜔)

Integration 

by part

&

Changing 

variable

𝜑 ෥𝜔 → ∞ = 0

෥𝜔
0−ℬ



Bound state v.s. Scattering state

𝛿𝑛 = −
𝜕𝛿Ω3
𝜕𝜇

= 3෍

𝑲

න
−∞

∞

𝑑 ෥𝜔
1

𝑒 Τ𝜔+𝐸B
kin 𝐾 −෥𝜇B 𝑇 + 1

𝜕෥𝜔𝜑(෥𝜔)

𝜋

Tripling fluctuation contribution to the particle number density

𝜕෥𝜔𝜑 ෥𝜔

𝜋
= 𝛿 ෥𝜔 + ℬ + Θ ෥𝜔

𝜕෥𝜔𝜑scatt.( ෥𝜔)

𝜋

Bound state Scattering statev.s.

> 𝟎 < 𝟎

෥𝜔
0−ℬ



Bound state v.s. Scattering state

“Strong cancellation”

“No cancellation”

𝑲 − 𝝎 plane

~Fermi step

~Fermi step

Fermi step for clusters
𝜔

Tripling fluctuation contribution to the particle number density

𝜕෥𝜔𝜑 ෥𝜔

𝜋
= 𝛿 ෥𝜔 + ℬ + Θ ෥𝜔

𝜕෥𝜔𝜑scatt.( ෥𝜔)

𝜋

Bound state Scattering statev.s.

(Fermi step for clusters)

𝛿𝑛 = −
𝜕𝛿Ω3
𝜕𝜇

= 3෍

𝑲

න
−∞

∞

𝑑 ෥𝜔
1

𝑒 Τ𝜔+𝐸B
kin 𝐾 −෥𝜇B 𝑇 + 1

𝜕෥𝜔𝜑(෥𝜔)

𝜋



Baryon momentum distribution

No cancellation

𝑛 = −
𝜕ΩHF
𝜕𝜇

−
𝜕𝛿Ω3
𝜕𝜇

≡ 3෍

𝒌

𝑓𝑄(𝒌) + 3෍

𝑲

𝑓𝐵(𝑲)Number density:

0 K

Strong cancellation

Non-trivial CoM momentum (K) 

dependence arises via interplay 

of bound and scattering states

𝑓𝐵 𝑲 = න
−∞

∞ 𝑑𝜔

𝜋
𝜕𝜔𝜑 𝜔 𝑓(𝜔 − ෤𝜇𝐵 + 𝐸𝐵

kin(𝐾))

𝜔 𝜔



P. Nozieres and S. Schmitt-Rink, JLTP 59, 195 (1985).

𝜂𝑞 =
𝑞2

4𝑚
− 𝔅

𝑔 𝜔 =
1

𝑒𝛽𝜔 − 1
𝑓(𝜔 − ෤𝜇𝐵 + 𝐸𝐵

kin(𝐾)) =
1

𝑒𝛽(𝜔−෥𝜇𝐵+𝐸𝐵
kin(𝐾)) + 1

Difference btw pairing and tripling fluctuations

Even for pairing fluctuations, the cancellation can 

occur but masked by enhanced Bose distribution.

Tripling fluctuation casePairing fluctuation case
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Latter section: 1D nonrelativistic (1DNR) three-color Fermi gases with three-body attraction

How to demonstrate the crossover physics?
-1D nonrelativistic three-color fermions-

Why?

・Sign problem free Quantum Monte Carlo

・Similarity with HQ crossover

・Possible realization in future atomic experiments



J. McKenny, et al., Phys. 

Rev. A 102, 023313 (2020).

Peaked speed of sound

Both systems exhibit a characteristic 

peaked behavior in the crossover regime

Y.-J. Huang, et al., Phys. Rev. 

Lett. 129, 181101 (2022)

HQ matter 1DNR

Latter section: 1D nonrelativistic (1DNR) three-color Fermi gases with three-body attraction

How to demonstrate the crossover physics?
-1D nonrelativistic three-color fermions-

Why?

・Sign problem free Quantum Monte Carlo

・Similarity with HQ crossover

・Possible realization in future atomic experiments



J. McKenny, et al., Phys. 

Rev. A 102, 023313 (2020).

Why?

・Sign problem free Quantum Monte Carlo

・Similarity with HQ crossover

・Possible realization in future atomic experiments

Latter section: 1D nonrelativistic (1DNR) three-color Fermi gases with three-body attraction

Peaked speed of sound

Asymptotic freedom and trace anomaly

𝜕𝑔3
𝜕lnΛ

=
𝑚

3𝜋
𝑔3
2

J. Drut, et al., Phys. Rev. Lett. 120, 243002 (2018).

𝐶
3
=
𝑃
−
2
𝜀

J. McKenny, et al., 

Phys. Rev. A 102, 

023313 (2020).

Y. Fujimoto, et al., Phys. Rev. 

Lett. 129, 252702 (2022).

HQ matter 1DNR 1DNRHQ matter

Trace anomaly would influence EOS

Y.-J. Huang, et al., Phys. Rev. 

Lett. 129, 181101 (2022)

Both systems exhibit a characteristic 

peaked behavior in the crossover regime

How to demonstrate the crossover physics?
-1D nonrelativistic three-color fermions-



How to demonstrate the crossover physics?
-1D nonrelativistic three-color fermions-

• Hamiltonian density: ෡𝐻 = ෡𝐻0 + ෠𝑉3

෡𝐻0 = ෍

𝑎=r,g,b

𝜓𝑎
† −

𝜕𝑥
2

2𝑚
− 𝜇 𝜓𝑎

𝜇: chemical potential

One-body kinetic term

𝑎 = r, g, b: pseudo-color (hyperfine states)

Three-body interaction (involving quantum anomaly with asymptotic freedom)

෠𝑉3 = 𝑉(𝜓r
†𝜓r)(𝜓g

†𝜓g)(𝜓b
†𝜓b)

𝜓𝑎
†, 𝜓𝑎: fermionic field operator

𝑉 < 0 : three-body attraction

Three-body binding energy

𝓑 =
Λ2

𝑚
exp

2 3𝜋

𝑚𝑉

Λ: UV cutoff scale

J. Drut, et al., PRL 120, 243002 (2018).

𝑚: mass



Phase shift of three-body propagator

𝒢 𝐾,𝜔 =
𝒢0(𝐾, 𝜔)

1 − 𝑉𝒢0(𝐾, 𝜔)

𝜕෥𝜔𝜑 ෥𝜔 = 𝜋𝛿 ෥𝜔 + ℬ − Θ(෥𝜔)
𝜋

෥𝜔 ln2(෥𝜔/ℬ) + 𝜋2

Three-body propagator

*Mott effect (medium suppression of bound state at small K) is neglected

Derivative of the phase shift

 

 

 

 

 

       
  

  

  

 

 

 

 

       

𝜕
෥𝜔
𝜑

෥𝜔

𝜑
෥𝜔

෥𝜔/ℬ ෥𝜔/ℬ

Phase shift Derivative of phase shift

Bound sate Scattering sate



Crossover equation of state and 
baryonic distribution functions

Ω = ΩHF + 𝛿Ω3 ΩHF: Hartree-Fock contribution

Baryon kinetic energy: Baryon chemical potential:

Tripling fluctuations:

Baryonic distribution:

−
𝜕𝛿Ω3
𝜕𝜇

= 3෍

𝐾

𝑓B(𝐾)

:Bound state

:Scattering state



Momentum distributions

Fermion (quark)

cluster (baryon)

Τ𝑇 𝓑 = 0.2

𝑘𝑇 = 2𝑚𝑇: Thermal momentum scale

Model: 1D non-relativistic three-color fermions with color-singlet three-body interaction

Tripling fluctuation theory (present work)



Momentum distributions

Explicit Duality model
Fermion (quark)

cluster (baryon)

Τ𝑇 𝓑 = 0.2

𝑘𝑇 = 2𝑚𝑇: Thermal momentum scale

PRL 132, 112701 (2024).

Model: 1D non-relativistic three-color fermions with color-singlet three-body interaction

Fermion (quark)

cluster (baryon)

Tripling fluctuation theory (present work)



Baryonic momentum shell

Strong cancellation No cancellation

K/kF

Baryon-like trimer momentum distribution



Baryonic momentum shell

Strong cancellation No cancellation

K/kF

Momentum-shell width:

𝐾th = 3𝑘F

Baryon-like trimer momentum distribution

Analytical expression:

(𝑇 → 0)



Peaked speed of sound

𝑐𝑠
2 =

𝑛

𝑚

𝜕𝑛

𝜕𝜇

−1

𝜕𝑛

𝜕𝜇
=
𝜕𝑛Q
𝜕𝜇

+
𝜕𝑛B
𝜕𝜇

Squared speed of sound:

𝜕𝑛B
𝜕𝜇

= 3෍

𝐾

𝜕𝑓B(𝐾)

𝜕𝜇
< 0

Density susceptibility:

Peaked speed of sound is induced by suppressed 

baryon distributions at low momenta



Comparison with QMC

Speed of sound in the duality model

Y. Fujimoto, PRL 132, 112701 (2024).

Density equation of state
Speed of sound

QMC: J. McKenny, et al., Phys. Rev. A 102, 023313 (2020).

QMC ( Τ𝜀B 𝑇 = 2)

QMC ( Τ𝜀B 𝑇 = 2.5)

Qualitatively OK, but better approximation is needed for quantitative calculation 



Finite-temperature phase diagram

𝜇BMS

𝜇peak

● QMC: J. McKenny, et al., Phys. Rev. A 102, 023313 (2020).

𝜇BMS : baryonic momentum shell starts to appear

𝜇peak : sound velocity is peaked

𝑇
/ℬ

𝜇/ℬ



Three-body force in ultracold atoms?

Pion ⇔
Nucleon ⇔

Δ resonance ⇔

HT, E. Nakano, and K. Iida, arXiv:2505.19117

Fujita-Miyazawa three-body force



Three-body force in ultracold atoms?

Pion ⇔ superfluid phonon

Nucleon ⇔ polaron (particle immersed in BEC)

Δ resonance ⇔ Feshbach molecule (closed-channel)

HT, E. Nakano, and K. Iida, arXiv:2505.19117

Fujita-Miyazawa three-body force Tunable counterpart in ultracold atoms



Three-body force in ultracold atoms?

Pion ⇔ superfluid phonon

Nucleon ⇔ polaron (particle immersed in BEC)

Δ resonance ⇔ Feshbach molecule (closed-channel)

HT, E. Nakano, and K. Iida, arXiv:2505.19117

Fujita-Miyazawa three-body force Tunable counterpart in ultracold atoms

Chiral EFT interactions can be 

mimicked in low-energy EFT 

of ultracold atomic superfluid!
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Summary of part 8

• In analogy with the BEC-BCS crossover in two-component 
Fermi gases, we have discussed the three-body counterpart in 
three-color fermions, where bound trimer gases change into 
degenerate Fermi state with tripling fluctuations.

• It is found that tripling fluctuations can induce a peaked speed 
of sound as well as quarkyonic-like momentum distributions.

HT, K. Iida, T. Kojo, and H. Liang, PRL 135, 042701 (2025).

Future perspectives: Application to more realistic systems relevant to neutron-star matter, 

Bose-Fermi mixture, quantitative comparison with Monte Carlo simulation



Summary of the lecture
• We have discussed the interdisciplinary perspective on 

ultracold atoms and nuclear matter.

• Focus on pairing phenomena, BCS-BEC crossover, unitary 
Fermi gas, nucleon superfluid

• Success and failure of mean field theory, and how to go 
beyond within the diagrammatic approach

• Finally, we go beyond pairing and discussed tripling
fluctuations in the hadron-quark crossover

Interdisciplinary scientific communications might lead to new discovery!

Thank you very much for your attention!



Appendix



Yukawa interaction in cold atoms

Two-polaron interaction in BEC is induced by exchange 
of superfluid phonons (analogous to pion exchange)

Nils B. Jørgensen, et al., PRL 117, 055302 (2016).

“Bose” polaron

by Chat GPT画伯

M. J. Mijslma, et al., PRA 61, 053601 (2000).
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Impurity immersed in BEC



Analogy between polaron and nucleon

SF phonon
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Nuclear forceInter-polaron force

Fujita-Miyazawa counterpart in three-polaron force?

by Chat GPT画伯



Fujita-Miyazawa-type three-body force 
among polarons

Pion ⇔ superfluid phonon

Nucleon ⇔ polaron

Δ resonance ⇔ Feshbach molecule (closed-channel)

HT, E. Nakano, and K. Iida, arXiv:2505.19117
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Two-channel model of cold atoms near the 
Feshbach resonance

Kinetic energies: 𝑀𝑏,𝑐,𝐴: mass

𝜇𝑏,𝑐: chemical potential

𝜈(𝐵): closed-channel energy
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Medium boson Impurity Closed-channel molecule

Boson-boson interaction
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Two-channel model of cold atoms near the 
Feshbach resonance

Medium boson Impurity Closed-channel molecule

Boson-boson interaction

Boson-impurity interaction

Feshbach coupling

Kinetic energies: 𝑀𝑏,𝑐,𝐴: mass

𝜇𝑏,𝑐: chemical potential

𝜈(𝐵): closed-channel energy

𝑈𝑏𝑏

𝑈𝑏𝑐

𝑔



Polaron in Bose-Einstein condensate

𝑛0: BEC condensate density

Feshbach coupling

𝑔



Polaron in Bose-Einstein condensate

𝑛0: BEC condensate density

Feshbach coupling Coherent atom-molecule mixing

𝑔
𝑔 𝑛0

BEC



Polaron in Bose-Einstein condensate

𝑛0: BEC condensate density

Feshbach coupling Coherent atom-molecule mixing

𝑔
𝑔 𝑛0

BEC

Nucleon-like and Δ-like polarons as diagonalized eigenstates

Bogoliubov Hamiltonian for pion-like boson excitation
Ground state:

Excited state:



Absorption and emission
of pion-like boson excitations

*Higher order at 𝑛0 ≫ 1



We do not have to resort to path integral formalism

Grand-canonical partition function

Hamiltonian effective field theory based on 
the open-system description
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We do not have to resort to path integral formalism

Grand-canonical partition function “Effective nucleon system”

Tr𝑁[… ]: partial trace of N state

෠𝑉eff: effective interaction

Equation for effective interaction S-matrix operator

Interaction representation in the imaginary time formalism

Perturbative expression of the effective interaction

“Trace out”

Hamiltonian effective field theory based on 
the open-system description



Fujita-Miyazawa three-body force

𝑈𝒌1,𝒌2,𝒌3 𝒒1, 𝒒2 ∝
1

(𝒒1
2 + 𝜉−2)(𝒒2

2 + 𝜉−2)

At 𝑔 ≪ 𝑈𝑏𝑐 𝑛0

𝜉: BEC healing length

Δ prop. π-like SF phonon prop.

with form factors

𝟐𝝅-exchange-like form of coupling strength



How to measure?

K. Patel, et al., PRL 

131, 083003 (2023)

Observation of fermion-

mediated three-body force
Interaction energy in the impurity equation of state

𝑛𝑁: ground-state polaron density
F
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Closed-channel energy level:

Tunable via 𝝂(𝑩)!



Realization of tunable three-body interaction 
in cold atoms

Breezing mode frequency

A. Hammond, et al., Phys. Rev. Lett. 128, 083401 (2022)

EOS in Rabi-coupled 2-com. 1D BEC

Low-energy EFT



Recent experiments of three-component 
Fermi gases

G. L. Schumacher, et al., arXiv:2301.92237



1D nonrelativistic three-color fermions 
with three-body interaction

• Hamiltonian density: ෡𝐻 = ෡𝐻0 + ෠𝑉3

෡𝐻0 = ෍

𝑎=r,g,b

𝜓𝑎
† −

𝜕𝑥
2

2𝑚
− 𝜇 𝜓𝑎

𝜇: chemical potential

One-body kinetic term

𝑎 = r, g, b: pseudo-color (hyperfine states)

Three-body interaction

෠𝑉3 = 𝑉(𝜓r
†𝜓r)(𝜓g

†𝜓g)(𝜓b
†𝜓b)

𝜓𝑎
†, 𝜓𝑎: fermionic field operator

𝑉 < 0 : three-body attraction

Three-body binding energy (broken scale invariance)

𝓑 =
Λ2

𝑚
exp

2 3𝜋

𝑚𝑉

Λ: UV cutoff scale

(classically scale invariant: 𝑥 → 𝜆−1𝑥)

J. Drut, et al., PRL 120, 243002 (2018).



Three-body T-matrix for three-body 
interaction

T3

Ξ0 𝑃, Ω+ =෍

𝑘,𝑞

1

Ω+ − 𝜀𝑃
3
+𝑘−

𝑞
2
− 𝜀𝑃

3
+𝑞

− 𝜀𝑃
3
−𝑘−

𝑞
2

𝑇3 𝑃, Ω+ =
1

𝑔3
− Ξ0(𝑃,Ω+)

−1

= −
𝑚

2 3𝜋
ln

Λ2 + 𝑃2/6 −𝑚Ω+
𝑃2/6 − 𝑚Ω+

Ξ0: Three-body propagator in vacuum

Three-body binding energy

1

𝑔3
− Ξ0 0,Ω = −𝜀B = 0 𝜀B =

Λ2

𝑚
exp

2 3𝜋

𝑚𝑔3

Λ: cutoff

Three-body coupling constant 𝒈𝟑 can be represented by the three-body binding energy 𝜺𝑩



In-medium three-body T-matrix

In-medium three-body equation

HT, S. Tsutsui, T. M. Doi, and K. Iida, Phys. Rev. Research 4, L012021 (2022).

Ξ: In-medium three-particle (three-hole) propagator

Ω𝑛 = 2𝑛 + 1 𝜋𝑇: Fermion Matsubara frequency

“Tripling fluctuations”



Three-body spectral function

Low density

𝜇/𝐸B = −1
High-density

𝜇/𝐸B = 2

In-medium three-body spectra In-medium three-body binding energy

𝐴3 𝑃, Ω = −Im𝑇3
MB(𝑃, Ω+)

The three-body pole survives even at high density

Three-body problem

𝑬𝐁
𝐌/𝑬𝐁 ≃ 𝟎. 𝟎𝟒

HT, S. Tsutsui, T. M. Doi, and K. Iida, Phys. Rev. Research 4, L012021 (2022).



Toy model for hadron-quark crossover

HT, S. Tsutsui, T. M. Doi, and K. Iida, Symmetry 15, 333 (2023). 

arXiv:2211.14674

Our scenario is close to quarkyonic

Quarkyonic or Baryquark?

𝑚𝑞 = 0.34GeV, 𝑀𝐵 = 0.91GeV



Non-relativistic trace anomaly

Comparison with QMC results

Lattice artifact

2𝐸 − 𝑃 = 𝐶3

2෡𝐻 − ෠𝑇𝑥𝑥 = −
𝑔3
2

3𝜋
(𝜓r

†𝜓r)(𝜓g
†𝜓g)(𝜓b

†𝜓b)

෠𝑇𝑖𝑗: energy-momentum tensor

Trace anomaly equation

W. S. Dasa, et al., Mod. Phys. Lett. A 34, 1950291 (2019). 

Statistical average:

Three-body contact

𝜆b = 2𝜋/𝑚𝐸b: length scale associated eith 𝐸𝑏

QMC: J. McKenny, et al., PRA 102, 023313 (2020).

𝐸: energy density 𝑃: pressure



Nozières-Schmitt-Rink-type approach 
for the three-body crossover

In-medium three-body T-matrix

Self-energy for tripling fluctuations

Truncated at O(Σ) (NSR approximation)

Dyson equation

“Tripling fluctuations”

PPNP 111, 103739 (2020).

:Hartree-Fock propagator
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