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Development of Physics in the 20th Century
1933

Schrödinger Dirac

the birth of quantum mechanics

Δx ⋅ Δp >
ℏ
2

higher energy to explore the microscopic world

elementary particles and their interactions



What is the physics in the 21st century?

understanding of the diversity of matter/materials

designing of the quantum world



Quantum many-body problems in nature

Nuclear Physics Condensed-matter Physics

ℏc = 200 MeV fm
= 200 eV nm

universality and diversity in different hierarchies

MeV–GeV eV

fm nm
scale

nucleons, mesons, baryons
quarks and gluons

electronsingredient

strong electromagneticinteraction



nucleus

From QCD to nuclear physics
The existence of atomic nuclei itself is an amazing emergent behavior!

Quantum Chromodynamics QCD

2004

Gross Politzer Wilczek

asymptotic freedom

pQCD for the internal structure of nucleons

non-perturbative vacuum of QCD

confinement SSB of χ-symmetry

2008

Nambu

pion

nuclear force

hadron

1949 Yukawa



Nuclear mass: fundamental properties

• Atomic mass and nuclear mass

M(A, Z)c2 = Mnucl(A, Z)c2 + Zmec2 − Belectron(Z)
atomic mass nuclear mass mass of Z electrons electron binding energy

mec2 = 0.511 (MeV) a few eV‒1 keV

• Nuclear biding energy

Mnucl(A, Z)c2 = Zmpc2 + Nmnc2 − B(A, Z)Nuclear mass

Nuclear biding energy

B(A, Z) = Zmpc2 + Nmnc2 − Mnucl(A, Z)c2

= Zm(1H)c2 + Nmnc2 − M(A, Z)c2

mass excess: Δ = M(A, Z) − A × u
u =

1
12

M(12,6) = 931.49 MeV/c2atomic mass unit:

atomic massmass of Z hydrogen atoms
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B/A is around 8 MeV

maximum (most stable) at
62Ni: 8.794 MeV
58Fe: 8.792 MeV

6 結合エネルギー 32

6 結合エネルギー
6.1 結合エネルギー
粒子が集まって束縛系を形成しているとき, これらの粒子をばらばらに引き離すのに必要な最小

エネルギーを結合エネルギー ( binding energy )という。陽子数 (原子番号) Z, 中性子数 N の原子
核を考えよう。この原子核の質量を M(Z,N), 陽子と中性子の質量をそれぞれ mp, mn とすると,
原子核の結合エネルギー B(Z, N) は

B(Z, N) =
≥
Zmp + Nmn °M(Z, N)

¥
c
2 (6.1)

で定義される。Mc
2 + B = Zmpc

2 + Nmnc
2 であるから, 原子核に B のエネルギーを与えると, 原

子核はばらばらな核子の集りになることができる。核子あたりの結合エネルギーの実験値を下に示
す。§ 質量数 A = Z + N が偶数である原子核のアイソバー ( isobar, A が同じで Z, N が異なる核
種 )のうち, 結合エネルギーが最も大きなものを示した。なめらかな曲線はワイツゼッカー・ベー
テの質量公式 (6.4)による値である。
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§データは http://www.dne.bnl.gov/nndcscr/masses/mass rmd.mas95 による。

Nuclear biding energy

gradual change with some deviations
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A = 135

Z

isobar β- decay 

n → p + e− + ν̄e

p → n + e+ + νe

(A, Z) → (A, Z + 1) + e− + ν̄e

(A, Z) → (A, Z − 1) + e+ + νe

*does not occur in vacuum
mp < mn

Heisenberg’s valley: stability against the beta decay

β+ decay 

β- decay β+ decay 



Nuclear density distribution
Rutherford: finding of nucleus with a radius ~ 10−15 m

Density distribution

• electron scattering

⃗k

⃗k′￼

dσ
dΩ

= ( dσ
dΩ )

point
|F( ⃗q) |2 ⃗q = ⃗k − ⃗k′￼

momentum transfer

F( ⃗q) ∝ ∫ d ⃗rρ( ⃗r)ei ⃗q⋅ ⃗r
Fourier transform of density

de Broglie wave  at λe =
h
p

≈
2πℏc

Ee
∼ 6 fm Ee = 200 MeV

Bohr radius：aB =
4πε0ℏ2

e2m
∼ 200 fm

overlap with a nucleus

Coulomb potential: VCoul( ⃗r ) = − Zα∫ d ⃗rN
ρ( ⃗rN)

| ⃗r − ⃗rN |

mec2 = 0.511 MeV
mμc2 = 106 MeV

• X-rays from muonic atom



Hofstadter
Nobel lecture (1961)

R = r0A1/3

r0 ∼ 1.1 fm

Nuclear density

ρ0 =
A
V

=
A

4πR3

3

=
1

4πr3
0

3

∼ 0.17 fm−3

Nuclear radius

constant

Saturation of density distribution

liquid-drop picture



Binding energy = [volume term]

+[surface term]

+[Coulomb energy]

+[symmetry energy]

finite-size effect

charged system

stable along N=Z

B(A, Z) = avolA − asurf A2/3 − asym
(N − Z)2

A
− aCoul

Z2

A1/3
+ δ(A)

Bethe–Weizsäcker

Liquid drop model
liquid part (matter)



deviation from the LD model

oscillation pattern

28 50 82 126

Quantum effect in BE



For neutrons

For protons

N = 2,8,20,28,50,82,126

Z = 2,8,20,28,50,82

When the number of nucleons equals these magic numbers,

the nucleus exhibits special properties.

Magic number



Cowan and Sneden

An example of the quantum effects
solar-system elemental abundances

high abundance with 
A ∼ 90,140,210

corresponding to
N = 50,82,126



Neutron separation energy
Sn(N, Z) = M(N − 1,Z)c2 + mnc2 − M(N, Z)c2 = B(N, Z) − B(N − 1,Z)

Sp(N, Z) = M(N, Z − 1)c2 + mpc2 − M(N, Z)c2 = B(N, Z) − B(N, Z − 1)

 due to Sn ≃ Sp ∼ 8 MeV B(N, Z)/A ∼ 8 MeV

decreasing  as increasing the neutron number in isotopesSn

drip line

: limit against neutron emissionSn = 0

Limit of existence: stability against particle emission

Proton separation energy

decreasing  as increasing the proton number in isotonesSp : limit against proton emissionSp = 0



Radioactive beam facilities under operation/construction

FRIB
RIBF

FAIR
SPIRAL2

HIAF
RAON

New data coming and waiting for you!
Golden ages of nuclear physics



RIKEN RI Beam Factory: RIBF since 2007



220 new isotopes discovered at RIKEN
32: pre-RIBF
136: 2007–2017
52: 2018–

n-rich rare earth: 
γ-vibration, PLB(2016) 
β-decay, PRL(2017)

Nh(Z=113)

132Sn: GT resonance, PRL(2018)

110Zr: large deformation, PRL(2011)
72Rb: beyond proton drip line, PRL(2017)

37Mg: deformed halo, PRL(2014), PRC(2014)
32Ne: deformation, PRL(2019)

26,28O: beyond the neutron drip line, PRL(2016); Nature (2023)

78Ni: doubly magic, Nature(2019)

new insights into nuclei40Mg: novel quadrupole collectivity, PRL(2019)

Rich phenomena revealed by RIBF



A new element: the limit of heavy mass
The Asahi (Sep. 29, 2004)

Prof. Morita (RIKEN/Kyushu)

the third event
Sep. 27, 2012

November, 2016

the element 113 named Nihonium



Neutron number

Standard Model prediction 
of nuclear physics

Neutron-rich nuclei out of the «common sense» 

A. Ozawa et al., Nucl. Phys. A691 (2001) 599

Size

neutron halo

low-density neutrons
a new degree of freedom
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Fig. 1. A schematic drawing of the experimental setup.

shells has been considered along with nuclear deformation. The
nature of the inversion mechanism has been extensively studied
but remains unclear, and further experimental studies are needed.

An advanced radioactive-beam facility enables us to explore
the weakly-bound nuclei near the drip line in this island of in-
version, and we can investigate the single particle orbital of va-
lence nucleons in those nuclei through a search for the possible
large low-ℓ halo formation caused by the anomalous shell struc-
tures. The present Letter reports on the measurements of σI for
20–32Ne from the stability line to the vicinity of the neutron drip
line. Among the neutron-rich Ne isotopes, 29Ne and 31Ne are par-
ticularly loosely-bound, with neutron separation energies of only
0.95 ± 0.15 and 0.29 ± 1.6 MeV [10], respectively. In the stan-
dard shell model, the 19th valence neutron in 29Ne and the 21st
neutron in 31Ne are expected to occupy 0d3/2 and 0 f7/2 orbitals,
but when the lowering of the intruder f p-shell is taken into con-
sideration, the valence nucleon could occupy a 1p3/2-orbital state
and 29Ne and 31Ne could have p-orbital halo structures. Moreover,
the nuclear deformation could produce an elevation of the 1s1/2-
orbital component [11,12], which could even lead to the formation
of s-orbital halo structures in 29Ne and 31Ne. In order to clarify
the mechanism of the change of shell structure in nuclei in the is-
land of inversion, experimental evidence for the existence of halo
structures in those nuclei, including 29Ne and 31Ne, is essential.

Experiments were performed at the RI-beam factory (RIBF) op-
erated by the RIKEN Nishina Center and the Center for Nuclear
Study, University of Tokyo. An intense primary beam of 48Ca (max-
imum intensity was around 100 pnA) with a beam energy of
345 MeV/nucleon and Be production targets were used to produce
20–32Ne secondary beams with energies around 260 MeV/nucleon.
σI was measured by the transmission method. In the transmission
method, σI is derived from σI = − 1

t ln( Γ
Γ0

), where Γ is the ratio of
the number of noninteracting outgoing particles to the number of
incoming particles, Γ0 is the same ratio for an empty-target mea-
surement to correct for nuclear reactions in the detectors, and t
denotes the thickness of the reaction target. The BigRIPS fragment
separator [13,14] was used as a spectrometer to identify incoming
and outgoing particles [15]. Fig. 1 is a schematic drawing of the
experimental configuration using the second half of the BigRIPS.
A carbon reaction target of 1.80 or 3.60 g/cm2 thickness was lo-
cated at the F5 dispersive focal plane of BigRIPS. Incoming particles
were pre-separated and identified using the beam line between
the F3 and F5 focal planes, and outgoing particles were identified
between the F5 and F7 focal planes. For particle identification be-
fore and after the reaction target, magnetic rigidity, energy-loss,
and time-of-flight information from ion chambers at F3 and F7
and plastic scintillation counters at F3, F5, and F7 were used. The
position information from the PPACs at F3 was used to apply an
appropriate emittance-cut for the incident beam so as to accurately
count all of the noninteracting particles without missing them af-
ter the reaction target.

In Fig. 2, σI for Ne isotopes at 240 MeV/nucleon in the present
work are plotted as a function of mass number (solid circles).

Fig. 2. The present σI data for Ne isotopes on C targets are plotted as a function of
mass number (solid circles). The systematic mass-number dependence of σI for sta-
ble nuclei (solid curve with a shaded band) and a Glauber-type calculation with the
deformation effect (open triangles and dashed lines) are also shown for compari-
son. The open circles indicate the data for stable nuclei [16–20]. The insert shows
rms radii data for stable nuclei [21] and A1/3 dependence fitted to the data.

The beam energies of the Ne isotopes differ slightly from one an-
other depending on the separator settings. The effects on the σI
from these differences were corrected for by a Glauber calculation,
which introduces a negligible increase in the error in σI . For com-
parison, the systematic mass-number dependence of σI for stable
nuclei is shown as a solid curve. The dependence was calculated
by a Glauber-type calculation (MOL[FM] in Ref. [20]), which gives
the reaction cross section (σR = σI + σinel, where σinel is the to-
tal inelastic scattering cross section) using proper nucleon density
distributions as inputs. Note that at energies above a few hundred
MeV/nucleon σI can be assumed to be nearly equal to σR because
the contribution of σinel would be very small [37]. In order to cal-
culate the mass-number dependence of σI for stable nuclei in this
mass region, the nucleon density distributions of stable nuclei are
assumed to be Fermi distributions:

ρFermi(r) =
∫

ρ0

/(
1 + exp

[
r − R(θ)

c

])
dΩ,

R(θ) = R0
[
1 + β2Y20(θ)

]
.

Here, the quadrupole deformation parameter β2 is taken to be
zero. The diffuseness parameter c and R0 are set so as to sat-
isfy the condition that ρFermi(0) should be the typical value of the
nuclear saturation density (0.17 fm−3), and the root-mean-square
(rms) radius of the nucleon density distributions should follow the
A1/3 mass number dependence of experimental rms radii data for
stable nuclei shown in the insert of Fig. 2. The rms matter radii
of point-nucleon distributions for stable nuclei, shown by the solid
circles in the insert, were deduced from the experimentally deter-
mined charge radii [21] by unfolding them with the proton radius
0.85 fm assuming that the proton and neutron distributions in nu-
clei are the same. The solid curve in the insert shows the A1/3

dependence fitted to the data and the standard deviation of data
from the solid curve is shown by the shaded area. Thus, the solid

M. Takechi et al., Phys. Lett. B707 (2012) 357

Discovery of “deformed halo”

systematics considering the deformation

still a mystery



Quest for the origin of heavy elements beyond Fe and Ni

Neutrons play a key role: Protons feel the repulsive Coulomb forceequation

A
ZXN + n → A+1

Z XN+1 + γ
A+1
Z XN+1 → A+1

Z+1YN + e− + ν̄e

64
28Ni36 + 238

92 U146 → 302
120X182

1

neutron-rich environment: Supernova explosion, neutron-star mergers

gravitational-wave observation

Neutron-rich nuclei are created by the neutron capture (1)

(1)

(2)

The beta-decay increases the atomic number (2)



114
48Cd66 + n → 115

48Cd*67 → 115
48Cd67(gs) + γ

Ex.

 reaction(n, γ)

on the nuclear chart

114Cd 115Cd
(n, γ)

115Cd

114Cd + n
Sn

nEn

γ

Nucleosynthesis induced by neutron capture



• n-capture is slower than beta decay 114Cd → 115Cd → 115In

114Cd 115Cd

(n, γ)

115In β
s(low)-process

114Cd → 115Cd → 116Cd

114Cd 115Cd

(n, γ)

116Cd

(n, γ)

r(apid)-process

After capturing a neutron

• n-capture is faster than beta decay



Cowan and Sneden

Two-peak structure in the solar-system elemental abundances



s-process nucleosynthesis

114Cd 115Cd

116In115In

116Sn 117Sn 118Sn 119Sn 120Sn 121Sn

121Sb 122Sb

122Te 123Te 124Te

Element synthesis proceeds along the valley of stability.



s-process nucleosynthesis

termination of the s-process

206Pb 207Pb 208Pb 209Pb

209Bi 210Bi

210Po

α

up to 209Bi

Bi U, Th

does not reach U and Th

r-process



r-process nucleosynthesis

A large number of neutron-rich nuclei are 
rapidly produced, 

followed by beta decay toward stability.



waiting point nuclei
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nEn

E* = Sn + En

Γi→f =
2π
ℏ

|⟨ f |Hint | i⟩ |2 ρ(Ef)

low capture rate

sudden decrease in Sn
low level density ρ(E*)



We need data of neutron-rich nuclei: beta-decay rates, neutron-capture rates,…



Page and Reddy, 2012

Nuclear physics in the inner part of neutron star

J. W. Negele and D. Vautherin, 
Nucl. Phys. A207 (1973) 298

We need to describe the structure of extremely-neutron-rich nuclei.
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discrimination on the signals from the CsI(Tl) scintilla-
tors. With a trigger condition of three or more Compton-
suppressed Ge detectors firing in coincidence, a total of
1.2 3 109 events were collected. From the number of
hits in the charged particle detectors, events were sorted
into an Eg 2 Eg coincidence matrix for each evaporation
channel. However, the channel selection is limited by
the efficiency of the MICROBALL and by the occasional
misidentification of charged particle signals. The 2a gated
g 2 g matrix, therefore, contains contaminations from the
2a1p !39K" and 2a2p !38Ar" channels. Their contribu-
tions were subtracted to obtain a clean data set for 40Ca.

Some of the high-spin structures in 40Ca have previously
been studied [13,14]up to spin 81 at 8.1 MeV. An inter-
esting feature of the previous level schemes is the presence
of second 01

2 and third 01
3 states, which are indications of

shape coexistence [7]. In our work, the level scheme was
extended up to spin 161 at 22.1 MeV. Figure 1 shows a
partial level scheme for 40Ca, where only positive parity
states are reported. An article reporting the complete level
scheme is forthcoming [15]. The cascades ending at the
levels of 5213 (01

3 ) , 3352 (01
2 ) , 8103 (81), and 6030

(31) keV are labeled as bands 1, 2, 3, and 4, respectively.
Attention is focused on band 1 with g-ray transitions be-
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FIG. 1. Partial level scheme of 40Ca; the energy labels are
given in keV, and the widths of the arrows are proportional to
the relative intensities of the g rays. Only the levels below the
dashed line were known prior to this work.

tween 914 and 3563 keV. These are highlighted in Fig. 2.
Transitions above the 9856 keV level of the band are in co-
incidence with the previously known transitions of 3905,
1375, and 1653 keV and appear as strong peaks in the
spectrum.

Since band 1 is connected to the previously reported fast
E2 41 ! 21 transition of 914 keV [B!E2" ! 100 W.u.,
Qt ! 1.69eb] [7], and linked to the ground state by the
5630 keV transition, it is assigned to be built on the 01

3
level. In addition, the newly observed one- and two-step
links (!) to members of band 2 ensure the placement of
the individual transitions !"" in band 1.

Spins of the observed excited levels are assigned on the
basis of angular distributions. The multipolarities of the
in-band transitions of band 1 and band 2 are found to be
consistent with a stretched quadrupole character. The re-
maining transitions also have a quadrupole character, ex-
cept for the 2120, 2004, and 2037 keV transitions from the
7399, 8937 (band 4), and 15 154 keV (band 3) levels, re-
spectively, which are dipole in nature. Assuming that the
quadrupole transitions correspond to an E2 multipolarity,
the parity of the excited states is assigned as positive. All
states for each spin in band 1 lie at higher excitation than
those in band 2 (i.e., band 1 is not “yrast”).

In order to determine the deformation of the bands 1
and 2 in 40Ca, the residual Doppler shifts [16] of the g-ray
energies were measured. The procedure is described in
Ref. [17]. The average recoil velocity #b$ is expressed as
a fraction of the initial recoil velocity to obtain F!t" %
#b$&b0. In Fig. 3, the fractional Doppler shifts F!t" are
plotted as a function of the g-ray energies. The experi-
mental F!t" values are compared with the calculated val-
ues based on the known stopping powers from SRIM-2000
[18]. In this calculation the side feeding into each state is

FIG. 2. A g-ray spectrum obtained by summing coincidence
gates set on all members of band 1 !"" starting from the 21

up to the 161 state, except for the 1432 keV transition. The !
symbols indicate the transitions decaying from the band. The
peaks marked by } are background peaks due to accidental
doublets or identified single-escape peaks.

222501-2 222501-2

highly-deformed state

E. Ideguchi, et al., PRL87(2001)22501

doubly magic！

H. Ogasawara, KY, et al.,  
PTP121(2009)357

366 H. Ogasawara, K. Yoshida, M. Yamagami, S. Mizutori and K. Matsuyanagi

Fig. 2. Results of the RPA calculation for negative-parity excitation modes on the SD yrast states
in 40Ca, plotted as functions of the rotational frequency ωrot. Positive-signature excitations
are displayed on the left-hand side, while negative-signature excitations on the right-hand side.
From the top to the bottom, the RPA excitation energies, the octupole transition strengths S30−
(K = 0) and S31± (K = 1) for individual RPA modes, and the sum S(sum)

3K± of individual S3K±
values (over the RPA modes with excitation energies less than 5.5 MeV) are plotted as functions
of ωrot. The numbers adjacent to individual lines indicate their sequential order according to
excitation energy. (On each side, except the bottom panel, line types correspond to individual
excitation modes.) The deformation parameter β is fixed at 0.6. Note that there is no positive-
signature mode for K = 0. Note also that other RPA solutions in the region approximately
5 MeV are not displayed in order to avoid complicating the figure. Continuations of some of the
RPA modes of interest are also not shown when they strongly mix with other RPA modes and
lose their identities. The S31− strength of the fourth excitation mode is very small so that it is
hardly seen in this figure. In the bottom panel, the solid, broken, dotted, and dash-dotted lines
indicate the sum S(sum)

3K± for K = 0, 1, 2, and 3, respectively, while the bold-solid line shows the

sum of these,
P

K S(sum)
3K± . The sum S(sum)

33± is very small so that it is hardly seen in this figure.
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33± is very small so that it is hardly seen in this figure.

softening of octupole mode

ωrot

Vph(r1σ1τ1, r2σ2τ2) = [v00(r1) + v01(r1)σ1 · σ2]τ1 · τ2δ(r1 − r2)

+ (v10 + v11σ1 · σ2)τ1 · τ2[k†2δ(r1 − r2) + δ(r1 − r2)k
2]

+ (v20 + v21σ1 · σ2)τ1 · τ2[k† · δ(r1 − r2)k]

+ v4(σ1 + σ2)τ1 · τ2k† × k

v̄ph(12; 1
′2′) =Vph(r1σ1τ1, r2σ2τ2)δ(r

′
1 − r1)δσ′

1,σ1
δτ ′

1,τ1
δ(r′2 − r2)δσ′

2,σ2
δτ ′

2,τ2

Γ̂†
i =

∑

αβ

Xi
αβâ

†
α,ν â

†
β,π − Y i

αβâβ̄,πâᾱ,ν

EN =
N2

2M

[ĤRPA, Θ̂] =
1

i

N̂

M
[ĤRPA, N̂ ] = 0

EI =
I(I + 1)

2J

[ĤRPA, Ω̂] =
1

i

Ĵx

J
[ĤRPA, Ĵx] = 0

[ĤRPA, P̂0] = 0

ĤRPA =
∑

λ

(
P̂ 2

λ

2Dλ
+

Dλω2
λ

2
Q̂2

λ

)

=
P̂ 2

0

2D0
+
∑

λ ̸=0

(
P̂ 2

λ

2Dλ
+

Dλω2
λ

2
Q̂2

λ

)

[Ĥ, Q̂λ] =
1

Dλ

P̂λ

i

[Ĥ,
P̂λ

i
] = CλQ̂λ = ω2

λDλQ̂λ

1

Appearance of new types of state



KEK 

CNS, UT 

RRC 

多核子移行反応などによる 
超低速(E<30 keV) 
ＲＩビーム 
2016~ 

低速RIビームライン+スペクトロメータ 
 (5<E/A<50 MeV)  2017～ 

高速2次RIビーム(50<E/A<300 MeV) 
既存基幹実験装置にビーム配給 

RIKEN 

RCNP, Osaka 
次世代ガンマ線検出器 2016～ 

New-fRC 

S-LINAC 

SRC 

RIBF高度化：原子核物理学の多次元展開 

重元素へ 

中性子過剰へ 

高励起へ 

高スピンへ 

courtesy of H. Sakurai

RIBF upgrade
Nuclear physics in a multi-dimensional view

Heavy High spin

High energy

High isospin



How and where were heavy elements made?

How many elements can exist?

We are studying what material is.

To answer these questions, we have been investigating

properties of nuclei under extreme conditions
exotic nuclei

isopspin
mass

spin

energy
temperature

Current issues in (low-energy) nuclear physics 



one can solve the equation for up to A~12
w/modern supercomputers

Quantum many-body theory for nuclear problems

H = −
ℏ2

2m ∑
i

∇2
i +

1
2 ∑

i≠j

v(i, j)

We need a theory applicable to medium-heavy nuclei and infinite systems

our strategy:

to give up obtaining the many-body wave functions with 6A dim.

to construct a theory in which densities are a basic ingredient
radius, shape,…



Aim of this lecture

to understand the mean-field (MF) theory as an approximation to the 
quantum theory of many-body system

to obtain physical picture characterizing the system from experimental data 
with the help of mean field

to understand the similarity and difference between MF theory and 
Density-Functional theory

to understand physics behind the recent experiments



Nuclear collective phenomena and scopes of this lecture

DeformationSuperfluidity

microscopic approach:
nucleonic degrees of freedom

Monday: Nuclear mean-field theory for pairing

Tuesday: Nuclear deformation and collective excitations (rotation)

Wednesday: Collective vibration and the physics of exotic nuclei

Collective excitation

Prof. Tajima will also give a lecture on the pairing and superfluidity on Thursday.



Nuclear mean-field theory



A nucleus as a many fermion system
Two fermions cannot occupy the same quantum state.
The sign of the many-body wave function changes under the exchange 
of two particles.

Second quantization

a two-particle system

Ψ(x1, x2) = − Ψ(x2, x1)

=
1

2

h = −
ℏ2

2m
Δ + U

 ex. harmonic-
oscillator potential 
U :

hψi = ϵiψi

Ψ(x1, x2) =
1

2
[ψ1(x1)ψ2(x2) − ψ1(x2)ψ2(x1)]

ψ1(x1) ψ1(x2)
ψ2(x1) ψ2(x2)

product
x = ( ⃗rst)



Slater determinant for the A-body w.f.

Ψ( ⃗r1s1t1, ⋯, ⃗rAsAtA) =
1

A! ∑
π

(−1)π
A

∏
k=1

ψk(xkπ
)

=
1

A!

ψ1(x1) ψ1(x2) ψ1(xA)
ψ2(x1) ψ2(x2) ψ2(xA)

ψA(x1) ψA(x2) ψA(xA)

⋯
⋯

⋯

⋯ ⋯ ⋯⋯

permutation 1,2,…A 

+1 for even permutation,  
-1 for odd permutation

π :

Second quantization



An easy way to write down the Slater det. w.f.

a particle is occupied or not creation and annihilation c†
i , ci

{ci, cj} = 0, {c†
i , c†

j } = 0
{ci, c†

j } := cic†
j + c†

j ci = δij

anti-commutation relation

|k⟩ := c†
k |0⟩

vacuum: ci |0⟩ = 0

|Ψ⟩ =
A

∏
i

c†
i |0⟩Slater determinant is given as

single-particle state：

Second quantization

zero if two particles occupy the same s.p. state

c†
i c†

j + c†
j c†

i = 0

c†
i c†

i = 0

The sign changes under the exchange of two particles.

c†
i c†

j = − c†
j c†

i



H = ∑
i

ϵic†
i ci

Simplest case: free particles

many-body Hamiltonian

= ∑
i

hi
single-particle Hamiltonian

hi = ϵic†
i ci

H |k⟩ = hk |k⟩ = ϵk |k⟩

Eλ =
A

∑
i

ϵi

H |Ψλ⟩ = Eλ |Ψλ⟩

|Ψ0⟩ |Ψ1⟩ |Ψ2⟩ground state:

Fermi level

one-particle–one-hole



unknown single-particle states |α⟩ a†
α = ∑

k

Dkαc†
k

 unitary matrixDkα :

H = ∑
ij

hijc†
i cj = ∑

α

eαa†
αaα is determined such that  is diagonalD hij

Slater det. wf: |SD⟩ =
A

∏
α

a†
α |0⟩ H |SD⟩ =

A

∑
α

eα |SD⟩

{aα, aβ} = 0, {a†
α, a†

β} = 0{aα, a†
β} = δαβ,

SD is an eigenstate of the Hamiltonian for non-interacting systems

D†D = DD† = 1

Simplest case: free particles
: known, e.g., HO basis|k⟩

new fermion creation/annihilation operators satisfy the anti-commutation relations

H = ∑
ij

hijc†
i cj



Hartree–Fock approximation for interacting many-fermion systems

H = ∑
ij

tijc†
i cj +

1
4 ∑

ijkl

v̄ijklc†
i c†

j clck
v̄ijkl = vijkl − vijlk

|ΦHF⟩ =
A

∏
α=1

a†
α |0⟩

a†
α = ∑

l

Dlαc†
l

⟨ΦHF |H |ΦHF⟩ = ∑
ij

tij⟨ΦHF |c†
i cj |ΦHF⟩ +

1
4 ∑

ijkl

v̄ijkl⟨ΦHF |c†
i c†

j clck |ΦHF⟩

ρij := ⟨ΦHF |c†
j ci |ΦHF⟩ =

A

∑
α=1

DiαD*jαone-body density matrix: 

= ∑
ij

tijρji +
1
4 ∑

ijkl

v̄ijkl(ρkiρlj − ρkjρli) = ∑
ij

tijρji +
1
2 ∑

ijkl

ρkiv̄ijklρlj

v̄ijkl = v̄klij

Model assumption SD w.f.

then find the optimal s.p. states



*Note for the derivation*

∑
ij

tij⟨ΦHF |c†
i cj |ΦHF⟩ = ∑

ij

tij
A

∑
α,β=1

D*iαDjβ⟨ΦHF |a†
αaβ |ΦHF⟩

1
4 ∑

ijkl

vijkl⟨ΦHF |c†
i c†

j clck |ΦHF⟩ =
1
4 ∑

ijkl

v̄ijkl

A

∑
α,β,γ,δ=1

D*iαD*jβDlδDkγ⟨ΦHF |a†
αa†

βaδaγ |ΦHF⟩

|ΦHF⟩ =
A

∏
α=1

a†
α |0⟩

a†
α = ∑

l

Dlαc†
l

c†
l = ∑

α

D*lαa†
α

= δα,β

= ∑
ij

A

∑
α=1

tijD*iαDjα = ∑
ij

tijρji
ρij := ⟨ΦHF |c†

j ci |ΦHF⟩ =
A

∑
α=1

DiαD*jα

=
1
4 ∑

ijkl

v̄ijkl

A

∑
α,β=1

D*iαD*jβ(DlβDkα − DlαDkβ)

= δα,γδβ,δ − δα,δδβ,γ

=
1
4 ∑

ijkl

v̄ijkl(ρkiρlj − ρkjρli) =
1
2 ∑

ijkl

v̄ijklρkiρlj



c†
i c†

j clck =: c†
i c†

j clck : + : c†
i c†

j clck : + : c†
i c†

j clck : + : c†
i c†

j clck : + : c†
i c†

j clck : + : c†
i c†

j clck : + : c†
i c†

j clck :

+ : c†
i c†

j clck : + : c†
i c†

j clck : + : c†
i c†

j clck :

⟨Φ |c†
i c†

j clck |Φ⟩ = ⟨Φ |c†
i c†

j |Φ⟩⟨Φ |clck |Φ⟩ + ⟨Φ |c†
i ck |Φ⟩⟨Φ |c†

j cl |Φ⟩ − ⟨Φ |c†
i cl |Φ⟩⟨Φ |c†

j ck |Φ⟩

AB := ⟨Φ |AB |Φ⟩

= ρkiρlj − ρliρkj

*Note for the derivation by using the Wick’s theorem*
to reduce arbitrary products of creation and annihilation 
operators to sums of products of pairs of these operators

contraction
⟨Φ | : X : |Φ⟩ = 0



ρ2 = ρIdempotency

∑
l

ρilρlj = ∑
l

A

∑
α,β=1

DiαD*lαDlβD*jβ = ∑
α

DiαD*jα = ρij

when Trρ = A

D†ρD = (1 0
0 0)
A

A

D†D = 1

 is SD|Φ⟩ ⟺ρ2 = ρ

ρij := ⟨ΦHF |c†
j ci |ΦHF⟩ =

A

∑
α=1

DiαD*jα

using

the eigenvalues are zero or one
“occupied”“unoccupied”

Hartree–Fock approximation



Hartree–Fock approximation

EHF[ρ] = ⟨ΦHF |H |ΦHF⟩ = ∑
ij

tijρji +
1
2 ∑

ik

Γikρki

Γik[ρ] = ∑
jl

v̄ijklρljHartree–Fock potential:

hij :=
∂EHF[ρ]

∂ρji
= tij + Γij[ρ]

HHF = ∑
ij

hijc†
i cj

one-body potential: mean field

The energy, mean field, and the Hamiltonian are a functional of density matrix.



Hartree–Fock approximation

ρij =
A

∑
k=1

DikD*jk

Γik[ρ] = ∑
jl

v̄ijklρlj

hij = tij + Γij[ρ]

∑
j

hijDjk = ϵkDik

nonlinear problem

input of the cal.: (effective) interaction, basis set, and initial values of the SD (density matrix)

density matrix

mean field

diagonalization

self-consistency

find the s.p. orbital giving the lowest total energy



Hartree–Fock equation

∑
j

hijDjk = ϵkDik ρij =
A

∑
k=1

DikD*jk

∑
j

hijρjm = ∑
j

A

∑
k=1

hijDjkD*mk =
A

∑
k=1

ϵkDikD*mk = ∑
j

A

∑
k=1

DikD*jkh*mj

= ∑
j

ρijh*mj

= ∑
j

ρijhjm

[h[ρ], ρ] = 0

∑
j

D*jkh*ij = ϵkD*ik

(HF eq.)*

one can diagonalize the HF Hamiltonian and 
the density matrix simultaneously



Hartree–Fock equation in the coordinate-space rep.

∑
j

hijDjk = ϵkDik, hij = tij + ∑
ln

A

∑
m=1

v̄injlDlmD*nm

ψ†( ⃗r) |0⟩ = c†
⃗r
|0⟩ = | ⃗r⟩ {c ⃗r, c†

⃗r′￼

} = δ( ⃗r − ⃗r′￼)
{c ⃗r, c ⃗r′￼

} = 0, {c†
⃗r
, c†

⃗r′￼

} = 0
a†

k = ∫ d ⃗rφk( ⃗r)c†
⃗r

−
ℏ2

2m
Δφk( ⃗r) +

A

∑
m=1

∫ d ⃗r′￼̄v( ⃗r, ⃗r′￼)φ*m( ⃗r′￼)[φm( ⃗r′￼)φk( ⃗r) − φm( ⃗r)φk( ⃗r′￼)] = εkφk( ⃗r)

Hartree potential: ΓH( ⃗r) = ∫ d ⃗r′￼̄v( ⃗r, ⃗r′￼)
A

∑
m=1

|φm( ⃗r′￼) |2 = ∫ d ⃗r′￼v( ⃗r, ⃗r′￼)ρ( ⃗r′￼)

Fock potential: ΓF( ⃗r, ⃗r′￼) = − v̄( ⃗r, ⃗r′￼)
A

∑
m=1

φ*m( ⃗r′￼)φm( ⃗r) = − v( ⃗r, ⃗r′￼)ρ( ⃗r, ⃗r′￼)

= D ⃗rk v̄( ⃗r1, ⃗r′￼1) local potential

grid basis:

arbitrary basisi, j, n, l :



ΓH( ⃗r) = ∫ d ⃗r′￼v( ⃗r, ⃗r′￼)ρ( ⃗r′￼)

Mean field potential

∝ ρ( ⃗r) when the interaction is short-ranged

r−V0 R

0

Woods–Saxon (WS)
Harmonic oscillator (HO)

Square well

phenomenological mean-field potentials
V( ⃗r ) = − V0

1
1 + exp[(r − R)/a]

2 4 6 8 10 12 14

-50
-40
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-10

(M
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0
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SkM*

ρn

Un
self-consistent mean field



ρ( ⃗rσ, ⃗r′￼σ′￼) = ⟨Φ |ψ†( ⃗r′￼σ′￼)ψ( ⃗rσ) |Φ⟩

Density matrix and local densities
Density matrix:

time-reversal operation
ρT( ⃗rσ, ⃗r′￼σ′￼) = 4σσ′￼ρ*( ⃗r − σ, ⃗r′￼− σ′￼)

Density matrix in terms of the scalar and vector parts

ρ( ⃗r, ⃗r′￼) = ∑
σ

ρ( ⃗rσ, ⃗r′￼σ) s( ⃗r, ⃗r′￼) = ∑
σσ′￼

ρ( ⃗rσ, ⃗r′￼σ)⟨σ′￼|σ |σ⟩

ρ( ⃗rσ, ⃗r′￼σ′￼) =
1
2

[ρ( ⃗r, ⃗r′￼)δσ,σ′￼
+ ∑

ν

⟨σ |σν |σ′￼⟩sν( ⃗r, ⃗r′￼)]

2 × 2 = 4 = 1 + 3

hermitian

ρT( ⃗r, ⃗r′￼) = ρ*( ⃗r, ⃗r′￼) = ρ( ⃗r′￼, ⃗r)

sT( ⃗r, ⃗r′￼) = − s*( ⃗r, ⃗r′￼) = − s( ⃗r′￼, ⃗r)

T = − iσyK
Tφi( ⃗rσ) = − 2σφ*i ( ⃗r − σ)



particle density: ρ(r) = ρ(r, r)

Local densities: ingredients of energy density functional

τ(r) = (∇ ⋅ ∇′￼)ρ(r, r′￼)
r=r′￼

kinetic density: 

spin density: s(r) = s(r, r)

current density: j(r) =
1
2i

(∇ − ∇′￼)ρ(r, r′￼)
r=r′￼

time reversal
ρT( ⃗r, ⃗r′￼) = ρ*( ⃗r, ⃗r′￼) = ρ( ⃗r′￼, ⃗r)

sT( ⃗r, ⃗r′￼) = − s*( ⃗r, ⃗r′￼) = − s( ⃗r′￼, ⃗r)

ρT(r) = ρ(r), τT(r) = τ(r), sT(r) = − s(r), jT(r) = − j(r)

“time-even” densities “time-odd” densities
If the situation is invariant under time-reversal,

the time-odd densities vanish.



ESky = ∑
t=0,1

∫ d ⃗rχt

χeven
t = Cρ

t [ρ0]ρ2
t + CΔρ

t ρtΔρt + Cτ
t ρtτt + C∇J

t ρt∇ ⋅ Jt + CJ
t J 2

t

χodd
t = Cs

t [ρ0]s2
t + CΔs

t st ⋅ Δst + Cj
t j2

t + C∇j
t st ⋅ (∇ × jt) + CT

t st ⋅ Tt + C∇s
t (∇ ⋅ st)2

Skyrme Hartree–Fock model: A nuclear energy-density functional method

Total energy of a system as density functional:

E = ∫ d ⃗rℰ[ρ( ⃗r)] h :=
δℰ[ρ]

δρ
= t + vKS[ρ] + vCoul[ρ]

= Ekin + ESky + ECoul + Epair
introduced in the next session 

hϕi = εiϕi
very similar to the HF eq.

Kohn–Sham eq.



Mean-field theory for open-shell nuclei

—pairing—



B(A, Z) = avolA − asurf A2/3 − asym
(N − Z)2

A
− aCoul

Z2

A1/3
+

Bethe–Weizsäcker mass formula

δ(A)

Odd–even effect in the nuclear mass

0 50 100 150 200 250 300
0

2
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M
eV

Δ(3)
n (N, Z) =

1
2

[M(N + 1,Z) − 2M(N, Z) + M(N − 1,Z)]

Δ(3)
p (N, Z) =

1
2

[M(N, Z + 1) − 2M(N, Z) + M(N, Z − 1)]

strong binding for even-even nuclei

Mass number



Odd–even effect in the low-lying spectra



Bardeen–Cooper–Schrieffer (BCS) theory
h | i⟩ = εi | i⟩

HF basis

 is a time-reversed state of | ĩ⟩ | i⟩

A† := ∑
i

φiA†
i ⟨0 | [A, A†] |0⟩ = 1

|Φ⟩ ∝ (A†)n |0⟩, n = N/2

A†
i := c†

i c†
ĩ

 pair (in spherical nuclei)J = 0
ĩ = (nlj −m)
i = (nljm)

large overlap

Cooper pair like a boson

 Cooper-pairs condensed state:n

ui = cos θi( ≠ 0), vi = sin θi, φi = tan θi|BCS⟩ = ∏
i>0

(ui + viA†
i ) |0⟩

= ∏
i>0

ui(1 + φiA†
i ) |0⟩

vi

ui
= tan θi = φi

= ∏
i>0

uieφiA†
i |0⟩ (A†

i )2 |0⟩ = 0

∝
1
n!

eA† |0⟩

BCS state:

superposition of the condensed states with 
different numbers of particle



1 = ⟨BCS |BCS⟩ u2
i + v2

i = 1

N = ⟨BCS | N̂ |BCS⟩ = 2∑
i>0

v2
i

BCS theory

normalization

particle #  occupation prob.v2
i :

|BCS⟩ = ∏
i>0

(ui + viA†
i ) |0⟩ A†

i := c†
i c†

ĩ

 pairJ = 0



|ΦHF⟩ =
A

∏
i=1

a†
i |0⟩ = ∏

i

bi |0⟩ |ΦBCS⟩ = ∏
i>0

(ui + via†
i a†

ĩ
) |0⟩

εF
λ

v2
i

v2
i

a†
i = θia†

i + (1 − θi)a†
i

=: bi + d†
i

hole particle

The Hartree–Fock and the BCS states

occupation prob. occupation prob.

s.p. states are occupied up to the Fermi energy s.p. orbitals are partially occupied

10 0 1



= ∑
i>0

(εi − λ)(c†
i ci + c†

ĩ
cĩ) − ∑

i,j>0

GijA†
i Aj

H′￼ = H − λN  Lagrange multiplierλ :

δ⟨BCS | Ĥ′￼|BCS⟩ = 0

u2
i + v2

i = 10 =
∂

∂vi
2∑

j>0

(εj − λ)v2
j − ∑

j,k>0

Gjk 1 − v2
j vj 1 − v2

k vk

= u−1
i 4(εi − λ)uivi − 2(u2

i − v2
i )∑

j>0

Gijujvj

Δi := ∑
j>0

Gijujvj 2(εi − λ)uivi = Δi(u2
i − v2

i )

BCS theory
The particle # is broken

variation

pair potential variational eq.



Δi =
1
2 ∑

j>0

Gij
Δj

(εi − λ)2 + Δ2
i

N =
1
2 ∑

i>0

1 −
εi − λ

(εi − λ)2 + Δ2
i

gap eq.

particle #

trivial solution:
Δi = 0

vi = 1, ui = 0 vi = 0, ui = 1

in the case , Gij = G
G
2 ∑

j>0

1
|εj − λ |

< 1

BCS theory

normal(fluid)
or

hole particle

stays as normal

Cooper instability in infinite systems

shell structure around the Fermi level is important in finite systems



HF+BCS scheme
solve the HF eq. h | i⟩ = εi | i⟩

initial values for Δi

N = ⟨BCS | N̂ |BCS⟩ = 2∑
i>0

v2
i

BCS amplitudes ui, vi
v2

i =
1
2

1 −
εi − λ

(εi − λ)2 + Δ2
i

u2
i =

1
2

1 +
εi − λ

(εi − λ)2 + Δ2
i

,

the pair field  is updatedΔi Δi = ∑
j>0

Gijujvj

the chemical potential  is determined withλ
particle # condition



vacuum for q.p.: |ΦBCS⟩ = ∏
i>0

(ui + vic†
i c†

ĩ
) |0⟩

=

a†
i a†

j |ΦBCS⟩

Excitation energy

Ei = (εi − λ)2 + Δ2
i

H′￼MF = ∑
i>0

Ei(a†
i ai + a†

ĩ
aĩ) + const

Ei + Ej ≥ 2Δ

a†
0 |ΦBCS⟩

a†
i |ΦBCS⟩

Ei − E0 ∼ Ei − Δ

different level densities in low energy in e-e and odd nuclei

|ε − λ |

E

Δ

Excited states in the BCS model

 pairJ = 0
g.s. of an even–even nucleus

excited states  2qp excitations:=

g.s. of a neighboring odd nucleus  
lowest 1qp excitation:

=

excited states of a neighboring odd nucleus  
1qp excitations:

=

Excitation energy



HF+BCS: the s.p. orbitals are unchanged

c†
i cj = ρji + : c†

i cj :
Wick’s theorem

c†
i c†

j clck = ρkiρlj − ρliρkj + κ*ij κkl

κji = ⟨Φ |cicj |Φ⟩, κ*ij = ⟨Φ |c†
i c†

j |Φ⟩

+ρki : c†
j cl : + ρlj : c†

i ck : − ρli : c†
j ck : − ρkj : c†

i cl :

+ : c†
i c†

j clck :

+κ*ij : clck : + κkl : c†
i c†

j :

ρji = ⟨Φ |c†
i cj |Φ⟩,

not considered in the HF approx.

Generalized mean-field theory: Hartree–Fock–Bogoliubov

simultaneous optimization of the HF field and the pair field



H − λN = ∑
ij

(tij − λδij)c†
i cj +

1
4 ∑

ijkl

v̄ijklc†
i c†

j clck

= const + ∑
ij

(tij − λδij) : c†
i cj : + ∑

ijkl

v̄ijklρki : c†
j cl : +

1
4 ∑

ijkl

v̄ijkl(κ*ij : clck : + κkl : c†
i c†

j :)

Γij = ∑
kl

v̄ikjlρlk

Δij =
1
2 ∑

kl

v̄ikjlκkl

+
1
4 ∑

ijkl

v̄ijkl : c†
i c†

j clck :

H′￼MF = const + ∑
ij

(tij + Γij − λδij) : c†
i cj : +

1
2 ∑

ij

(Δij : c†
i c†

j : + Δ*ij : cjci :)

= const +
1
2 ∑

ij

: ψ†
i [h − λ Δ

−Δ* −(h* − λ)]
ij

ψj :

= const + ∑
α

Eαa†
αaα

ℋ
=

we want to diagonalize it

ψj = (
cj

c†
j )

Generalized mean-field theory: Hartree–Fock–Bogoliubov
mean-field approx.

Nambu–Gorkov



∑
j

[h − λ Δ
−Δ* −(h* − λ)]

ij
ϕαj = Eαϕαi, ϕαi = (Uαi

Vαi)
when  is the solution, then  is also the solutionEα, (Uαi, Vαi)T −Eα, (V*αi, U*αi)

T

ψi = ∑
α

[aα (Uαi

Vαi) + bα (V*αi

U*αi)]
ψ̂i = ∑

α
[ ̂aα (Uαi

Vαi) + b̂α (V*αi

U*αi)] = (
̂ci

̂c†
i )

Generalized mean-field theory: Hartree–Fock–Bogoliubov

any vectors (fields) are given by the linear combination

promote the fields to the operators



hermicity ̂ci = ( ̂c†
i )

†

̂ci = ∑
α

( ̂aαUαi + b̂αV*αi)

( ̂c†
i )

† = ∑
α

( ̂aαVαi + b̂αU*αi)
†

= ∑
α

( ̂a†
αV*αi + b̂†

αUαi)

b̂α = ̂a†
α

̂a†
α = ∑

i

Uiα ̂c†
i + Viα ̂ci

Generalized mean-field theory: Hartree–Fock–Bogoliubov

annihilation of the hole creation of the particle=

quasiparticles:
a†

ĩ
= uic†

ĩ
+ vici

BCS:

amplitudesu, v :matricesU, V :



generalized Bogoliubov trans.: α†
α = ∑

i

Uiαc†
i + Viαci

(
αα

α†
α) = ∑

i
(U† V†

VT UT)
αi

(
ci

c†
i ) = 𝒲† (

ci

c†
i )

𝒲 = (U V*
V U*), 𝒲𝒲† = 𝒲†𝒲 = 1

U†U + V†V = 1, UU† + V*VT = 1

UTV + VTU = 0, UV† + V*UT = 0

Generalized mean-field theory: Hartree–Fock–Bogoliubov

unitary matrix

u2
i + v2

i = 1
BCS:



κij = ⟨Φ |cjci |Φ⟩ρij = ⟨Φ |c†
j ci |Φ⟩,

= (V*VT)ij = (V*UT)ij = − (UV†)ij

ρ2 − ρ = − κκ†, ρκ = κρ*properties of  matricesU, V

ℛ := (
⟨Φ |c†

j ci |Φ⟩ ⟨Φ |cjci |Φ⟩

⟨Φ |c†
j c†

i |Φ⟩ ⟨Φ |cjc†
i |Φ⟩) = ( ρ κ

−κ* 1 − ρ*), ℛ2 = ℛ

[ℋ, ℛ] = 0ℋ = (h − λ Δ
−Δ* −h* + λ)

[h, ρ] = 0,

HFB eq

Hartree–Fock:

Hartree–Fock–Bogoliubov (HFB) equation

generalized density matrix

ρ2 = ρ



initial values for  and ρij κij

N = ⟨Φ | N̂ |Φ⟩ = 2 ∑
i,α>0

V*iαViα

Γij = ∑
kl

v̄ikjlρlk, Δij =
1
2 ∑

kl

v̄ikjlκkl

∑
j

[h − λ Δ
−Δ* −(h* − λ)]

ij (
Uαj

Vαj) = Eα (Uαi

Vαi)
the densities are updated

ρij = ⟨Φ |c†
j ci |Φ⟩ = ∑

α

V*iαVjα, κij = ⟨Φ |cjci |Φ⟩ = ∑
α

V*iαUjα

: quasiparticle basisα

HFB scheme

mean fields

the chemical potential  is determined withλ

eigenvalue prob.

ph-channel: HF potential pp-channel: pair potential



Exercise 1

Basics of the mean-field calculation

Eigen-value problem



Independent-particle model: mean field approach
understanding the shell effect–magic number

cf. atomic periodicity

stability of novel gas: He, Ne, Ar, Kr, Xe,... (2, 10, 18, 36, 54,…)

n = 1

n = 2
n = 3

ℓ = 0 ℓ = 1 ℓ = 2

2

10 single-particle orbital in the Coulomb 
potential generated by a nucleus with  Ze

En = −
13.6Z2

n2
eV, n = nr + ℓ + 1

 electrons in each orbital2(2l + 1)



Hartree potential: ΓH( ⃗r) = ∫ d ⃗r′￼v( ⃗r, ⃗r′￼)
A

∑
j=1

|φj( ⃗r′￼) |2 = ∫ d ⃗r′￼v( ⃗r, ⃗r′￼)ρ( ⃗r′￼)

phenomenological shell model potential

Woods–Saxon potential

Harmonic Oscillator potential

Square well potential

V( ⃗r) = − V0
1

1 + exp[(r − R)/a]

V( ⃗r) = − V0 +
1
2

kr2

−V0 R

0

r

proportional to the density distribution



Single-particle orbital

−
ℏ2

2m
Δφk( ⃗r) + V( ⃗r)φk( ⃗r) = εkφk( ⃗r) neglecting the spin d.o.f

polar coordinate: 
φnℓm( ⃗r) =

unℓ(r)
r

Yℓm(θϕ) : magnetic quantum numberm

Schrödinger eq.

 is a good quantum number for the central potentialℓ

−
ℏ2

2m
d2

dr2
unℓ(r) + (V(r) +

ℏ2ℓ(ℓ + 1)
2mr2 ) unℓ(r) = εnℓunℓ(r)

Woods–Saxon (WS) potential 

Harmonic Oscillator (HO) potential

Square well potential

solved numerically

solved analytically

solved analytically for infinite well

εnl = ℏω(N +
3
2

),

εnℓ = − V0 +
ℏ2k2

nℓ

2m
jℓ(knℓR) = 0

N = 2n + ℓ



−
ℏ2

2m
d2

dr2
unℓ(r) + (V(r) +

ℏ2ℓ(ℓ + 1)
2mr2 ) unℓ(r) = εnℓunℓ(r)

Let’s try to solve the Sc. eq. numerically

0 RN

u

discretization of the radial coordinate
r(i) = ri = i × Δ, i = 0,1,⋯Nr

: radial mesh sizeΔ
: number of mesh pointsNr

representation of differential operator
d2ui

dr2
≃

1
Δ2

(ui+1 − 2ui + ui−1)

three-point formula of the finite-difference method

should be small
should be large

r



r(i) = ri = i × Δ

Boundary conditions important!

u(0) = u1 = 0

u(RN) = uN = 0 box boundary condition (bound-state approximation)

ℏ2

2m
= B =

1972

2 × 939
= 20.7 MeV fm2The kinetic energy is represented as

−
ℏ2

2m
d2u
dr2

= − B

−2 1 0 ⋯ 0
1 −2 1 ⋯ 0
0 1 −2 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 1
0 ⋯ 0 1 −2

u2
u3
u4
⋮

uN−1

= infinite square well potential



−
ℏ2

2m
d2

dr2
un(r) + V(r)un(r) = εnun(r)For ℓ = 0,

Solve the Sc. equation with the HO potential by diagonalizing the matrix numerically

V(r) =
mω2

2
r2, ℏω = 41 × A−1/3 MeV

then find the optimal values of  and  by comparing with the analytical solution.Δ Nr

εn = [2(n − 1) + 3/2]ℏω

ε1 = 3/2ℏω
ε2 = 7/2ℏω

Find the solutions for every .ℓ

mass number


