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Development of Physics in the 20th Century

the birth of guantum mechanics

A A>h
x. S
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higher energy to explore the microscopic world Schrodinger — Dirac

elementary particles and their interactions



What is the physics in the 21st century?

understanding of the diversity of matter/materials

designing of the quantum world



Quantum many-body problems in nature

Nuclear Physics Condensed-matter Physics
MeV-GeV eV
scale hc = 200 MeV fm
fm nm
= 200 eV nm
nucleons, mesons, baryons ,
ingredient electrons
guarks and gluons
strong Interaction electromagnetic

universality and diversity in different hierarchies



From QCD to nuclear physics
The existence of atomic nuclei itself is an amazing emergent behavior!

Quantum Chromodynamics OCD
Y 1 a L/
Lacp = (in,D¥ —m)q — S tr(G, GAY)

¢ ¢

. asymptotic freedom non-perturbative vacuum of QCD
Y 2004 ¢ ¢
confinement SSB of x-symmetr
. ' A hadron pion
Gross  Politzer  Wilczek ¢

nuclear force

¢

nucleus

v

pQCD for the internal structure of nucleons



Nuclear mass: fundamental properties

e Atomic mass and nuclear mass

M(A,Z)c* = M (A, Z)c* + Zmc* — B...oon(Z)

atomic mass  nuclear mass mass of Zelectrons electron binding energy
mec2 = 0.511 (MeV) a few eV-1 keV

mass excess: A = M(A,Z) —AXu 1
atomic mass unit; u = EM(12’6) = 931.49 MeV/c?

e Nuclear biding energy
Nuclear mass M (A, 7Z)c? = Zlfiflpc2 + Nmn(:2 — B(A, 7Z)

Nuclear biding energy
B(A,Z) = Zmpc2 +Nm c*—M_ (A, Z)c?

= Zm('H)c? + Nmnc2 — M(A, Z)c?

mass of Zhydrogen atoms atomic mass



Nuclear biding energy
BE per particle

B/A (MeV)
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Nuclear biding energy

B/A is around 8 MeV ool 2
gradual change with some deviations
s
-
maximum (most stable) at s
<
62Nj: 8.794 MeV =
s8Fe: 8.792 MeV = T
7.0
L T ) T —T



Heisenberg'’s valley: stability against the beta decay

isobar 3-decay
8.4 000 A =135 n—pte +u,
s A,Z) > A,Z+ 1) +e +7,
> 8.3
O
2 g
R B+ decay
X 8. p—on+e +u,
. (A, 2) > (A, Z—1)+et +u,
*does not occur in vacuum
7.9

m, < m,




Nuclear density distribution

Rutherford: finding of nucleus with a radius ~ 10> m
Density distribution

o electron scattering s y momentum transfer

¥ - (=) |FG) G=Fi—F
dQ B dQ point !

k F@) o | arp(es

Fourier transform of density

h 2nh
de Broglie wave 1, = — = 7; " ~ 6fmat E, =200 MeV
P e
 X-rays from muonic atom 2 = 0511 MeV
. ] 47T80h2 ) P
Bohr radius * ap = ——— ~ 200 fm m,c” = 106 MeV
e-m

overlap with a nucleus n i)

. - - P\I'y

Coulomb potential: Vcou(r) = = Za | dry 7]
J —I'n




Saturation of density distribution

Nuclear radius

Nuclear density
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constant

liquid-drop picture

Hofstadter

Nobel lecture (1961)
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Liquid drop model

Binding energy = [volume term] liquid part (matter)
+[surface term] finite-size effect
+[symmetry energy] stable along N=Z
+[Coulomb energy] charged system

(N — Z)? 77

BA,Z)=a, A —a, A" —a + 5(A)

surf Sym A — UCoul A3

Bethe-Weizsacker



Quantum effect in BE
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Magic number

For neutrons

N = 2,8,20,28,50,82,126

For protons

/Z = 2,8,20,28,50,82

When the number of nucleons equals these magic numbers,

the nucleus exhibits special properties.



An example of the quantum effects
solar-system elemental abundances
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Limit of existence: stability against particle emission

Neutron separation energy
S (N,Z) = M(N — 1,Z)c* + m,c* — M(N, Z)c* = B(N,Z) — B(N — 1,7)

Proton separation energy
S(N,Z) = M(N,Z - 1)c* + myc*— M(N,Z)c* = B(N,Z) — B(N,Z — 1)

S, =S, ~8MeV dueto B(NV, Z)/A ~ 8 MeV

decreasing §, as increasing the neutron number in isotopes §, = 0: limit against neutron emission

decreasing S, as increasing the proton number in isotones §, = 0:limit against proton emission

drip line



NS,

Radioactive beam facilities under operatlon/constructlon
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New data coming and waiting for you!

Golden ages of nuclear physics
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RIKEN RI Beam Factory: RIBF since 2007
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a Nh(Z=113)

Rich phenomena revealed by RIBF

220 new isotopes discovered at RIKEN o Sisiiinssiiies

32: pre-RIBF T - T

136:2007-2017 - e P T T

52:2018- i rahid

n-rich rare earth:
@V-vibration, PLB(2016)
B decay, PRL(2017)

126

maaic #

1107Zr: large deformation, PRL(2011)



it of heavy mass
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A new element

Prof. Morita (RIKEN/Kyushu)

the third event

Sep. 27,2012
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Neutron-rich nuclei out of the «common sense»

A. Ozawa et al., Nucl. Phys. A691 (2001) 599

neutron halo

Size

Standard Model prediction IOW'denSity neutrons
of nuclear physics a new degree of freedom

6 3 10 12 14 16

Neutron number



Discovery of “deformed halo”

M. Takechi et al., Phys. Lett. B707 (2012) 357

systematics considering the deformation

® Present Data
O Data for Stable Nuclei
19|:, ZONe, 23Na, 24Mg,27A|

24 26 28 30 32 still a mystery

Mass Number




Quest for the origin of heavy elements beyond Fe and Ni

Neutrons play a key role: Protons feel the repulsive Coulomb force

éXN +n — é 1XN_|_1 —|—’Y (1)

7 ' Xny1 — g Ynte 4 (2

Neutron-rich nuclei are created by the neutron capture (1)

The beta-decay increases the atomic number (2)

neutron-rich environment: Supernova explosion, neutron-star mergers

gravitational-wave observation



Nucleosynthesis induced by neutron capture

EX
' 114 115 115

(n, y) reaction

_________ — 1N
the nuclear chart T £,
t 114Cd
+ n
114 ‘ 115 / S
Cd Cd n

(n,y)



After capturing a neutron

e n-capture is slower than beta decay

1151n

114Cd

115Cd

e

(n, y)

» n-capture is faster than beta decay

114Cd

—t—p>

n,7) (,y)

115Cd

116Cd

I

114Cd N 115Cd N IISIn

s(low)-process

114Cd N IISCd N 116Cd

r(apid)-process



Two-peak structure in the solar-system elemental abundances

3.00

2.50

2.00

1.90

1.00 *

log ¢

0.50 | '

b

0.00

H .::E 318 a
~0.50 | R e :
---------- SS s—Process fﬂf jr i Pt

—1.00 }t —— SS r-Process i )

Cowan and Sneden

A DR RV B
120 140 160

Mass Number

A I
180 200 220

e ——
60 80 100



s-process nucleosynthesis

122Te 123Te | 124Te
_|—>

116Sn 117Sn 1188n 119Sn 12OSn IZISn

115In 116In

114Cd 115Cd
_I—>

Element synthesis proceeds along the valley of stability.



s-process nucleosynthesis

termination of the s-process

206Pb 2O7Pb 208Pb 2O9Pb

does not reach U and Th

r-process



r-process nucleosynthesis , ik

\\c\é\ |
(Sn) 50 : 5‘3‘0\8‘\
L
: ; SHEHHH A large number of neutron-rich nuclei are
(Ni) 28 = .
Ca) 2 - , rapidly produced,
il RIS ‘ followed by beta decay toward stability.
OF i




waiting point nuclei

Neutron separation energy (MeV)

18
16
14
12
10

o N B O

50

60

low capture rate

Sn isotopes

70
Neutron number

80

90

on T ? D
Sn
(Z,A+ 1)

sudden decreasein §,

low level density p(E£*)

2T ,
Cip = —= |1 Hin | )" p(Ep



\Nucleosynthesis In the r-process
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Joint Institute for Nuclear Astrophysics 2002 wd L

Novie - H. Schatz, National Superconducting Cyclotron Laboratory =i

Calculation :K.Vaughan, J.L. Galache,
and A. Aprahamian, University of Notre Dame

ode . B. Meyer, Clemson University 7
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Temperature: 1.50 GK
Time: 2.7e-14 s

We need data of neutron-rich nuclei: beta-decay rates, neutron-capture rates,...



Nuclear physics in the inner part of neutron star

Page and Reddy, 2012

Depth (km)
‘0001 001 01 1 J. W. Negele and D. Vautherin,
10"4F | e /—-"_‘ 100 Nucl. Phys. A207 (1973) 298
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104&" o 2 S T
" ¥ f
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/ \
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We need to describe the structure of extremely-neutron-rich nuclei.



Appearance of new types of state
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Current issues in (low-energy) nuclear physics

How and where were heavy elements made?

How many elements can exist?

We are studying what material is.

To answer these questions, we have been investigating
energy

properties of nuclei under extreme conditions temperature
exotic nuclei spin

mass
Isopspin



Quantum many-body theory for nuclear problems

one can solve the equation for up to A~12

v

We need a theory applicable to medium-heavy nuclei and infinite systems

w/modern supercomputers

our strateqy:

to give up obtaining the many-body wave functions with 6A dim.

to construct a theory in which densities are a basic ingredient
radius, shape,...



Aim of this lecture

to understand the mean-field (MF) theory as an approximation to the
guantum theory of many-body system

to understand the similarity and difference between MF theory and
Density-Functional theory

to obtain physical picture characterizing the system from experimental data
with the help of mean field

to understand physics behind the recent experiments



Nuclear collective phenomena and scopes of this lecture

Superfluidity Deformation Collective excitation

microscopic approach:
nucleonic degrees of freedom

Monday: Nuclear mean-field theory for pairing
Tuesday: Nuclear deformation and collective excitations (rotation)

Wednesday: Collective vibration and the physics of exotic nuclei

Prof. Tajima will also give a lecture on the pairing and superfluidity on Thursday.



Nuclear mean-field theory




Second quantization

A nucleus as a many fermion system

Two fermions cannot occupy the same quantum state.

The sign of the many-body wave function changes under the exchange
of two particles.

a two-particle system

R U : ex. harmonic-
‘P(xla xz) — = ‘P(XZa xl) x = (rst) oscillator potential

| product 2
Y(xp, xp) = _Z[WI(XI)WZ(XZ) — Y1 (0)yn(xy)] h=—-_—A+U
hy; = €y

1 y(xy)  y(x)
V2 | WX ya(xp)




Second quantization

Slater determinant for the A-body w.f.

, . 1 -
W(r st =, FaSaly) = —— Z (— 1)”1_[ Wi )
V Al T k=1

permutation 7 :1,2,...A

+1 for even permutation,
-1 for odd permutation

w(x)  w(n) e yn(xy)
1 Yr(x)  yh(xy) oo ynr(xy)

i) ) e way)




Second quantization

An easy way to write down the Slater det. w.f.

a particle is occupied or not 0 creation and annihilation cf, C;

anti-commutation relation

{c,,cl) :=ccl +cle;, =6,
single-particle state : | k) := C”O) C A A

vacuum: ¢;|0) =0

A

- A _ f AT Tat —
Slater determinantis givenas |¥) = Hcl. |10) ¢, ¢, + ¢ c; = 0

l

zero if two particles occupy the same s.p. state C;C‘; =0

The sign changes under the exchange of two particles.

C.TC.T — — C'TC'}L

LJ J



Simplest case: free particles

many-body Hamiltonian H = Z eicfcl-

l
B z h single-particle Hamiltonian
— i
l- h, = el-c;ci
HIWY)N=FE, |¥Y
|¥,) =E;|¥,) . .
— _ Fermi level
H|ky = | k) = €| k) ermilevel ... oceuen o
@ @
3 ® ® ®
L, = Z €
i ground state: | W) [P, P,

one-particle-one-hole



Simplest case: free particles
| k): known, e.g., HO basis H = Z h.ole.

D, : unitary matrix
unknown single-particle states | ) ay = Z DkaC/j DD =DD =1
k

D is determined such that hlj is diagonal H = Z hsz;Cj = Z eaa;%

new fermion creation/annihilation operators satisfy the anti-commutation relations

Ty — — T 4T —
{aaa aﬂ} — 561,5’ {aaa aﬂ} — Oa {aaa Clﬁ} — O

A A
Slater det. wf: |SD) = Ha;f |10) * H|SD) = Z e,|SD)

SD is an eigenstate of the Hamiltonian for non-interacting systems



Hartree—Fock approximation for interacting many-fermion systems

T Vs = Veerg — V-
H = 2 i lC + — Z lelC e) CiCy, ijkl ijkl ijlk
k! Viiki = Vkiij

Model assumption |®yp) = H 10) SD wif.

a_

then find the optimal s.p. states a3 = D D¢,
[

(Ppp | H| Pyp) = ZQ;((DHH \q)HF) T — 2 l]kl<(DHF‘C ¢, Cle‘(DHF>
l]kl

Z ]p]l T — Z l]kl(pklpl] pk]plz) — Z ]/0]1 T - Zpkz l]klpl]

l]kl l]kl

one-body density matrix: p;; := (CI)HF\(: C;| Pyp) = ZD

a=1

™ jor



*Note for the derivation*

A
2. i @url e | Oup) = Dty ) DD @ypl afay| D) ay= 2, Duc/
i 1 a,p=1 — 50[, 5 l
A ¢, = 2, Dista
= 2. 2 DD = 2t ‘L
ij a=l 1 Pij -= <(I)HF|C]'TCZ | Pyp) = Z DzaD;Z

1 [ A
4 Z Vit P | CiTCjTCle‘ Pyp) = 2 Vijki Z DD ;}DléDky@)HF | aga Jfa(say\ Dyr)

- 4 ~
ijkl ijkl a.p.y.o=1 = 0{,}/5,3,5 o 06,55,5,}’
I ) A
) Z Vijki Z DiiDjj;(DlﬂDka — Dy, Dyp)
ijkl a,p=1
| l o _
— n Z Vi PriPij — PriPii) = 5 Z ViikiPkiPlj

ikl 1kl



*Note for the derivation by using the Wick’s theorem*

to reduce arbitrary products of creation and annihilation
operators to sums of products of pairs of these operators

[ [ [ I I I I I I

Tl — Tt g T AT g T AT .4 ATAT .4 ATAT o4 ATAT .4 ATAT :
CiCjCle—-CiC}CzCk-+-CiC}CzCk-+-Cl-CjCZCk-+-C,-CjCle-+-C,-Cjclck-+-cicjclck-"‘-C,-CjCle-

I | | I II_II I II —
+:cJIcJIcc °+'CILCILCC '+°cTcIcc :
ik T T ke T Tk AB ;= (D |AB| D)

contraction
(P : X:|D)=0

<(D | C;C]'Jrclck‘ (I)> — <(I) ‘ C;C; ‘ (I)><(I) | Cle‘ (I)> T <(I) ‘ C;Ck‘ (I)><(I) ‘ C]TCZ | (I)> IR <(I) ‘ C;Cl ‘ (I)><(D | CjJer‘ (I)>

= PriP1i — PiiPk;



Hartree-Fock approximation
ldempotency  p? =p

Zpllpl] Z Z Dla laDlﬁD*_ ZDlaD;I;_

[ a,p=1
using DD = 1

the eigenvalues are zero or one
“unoccupied” “occupied”

when Trp = A

pij

| D) is SDe=p* = p



Hartree—Fock approximation

1
Enrlp]l = (Pup | H| Pyp) = Z LiiPji T B Z Lixpri
ij ik

Hartree—-Fock potential: Tulpl = ) 7,0,
il

hy; = =1+ I';[p]
one-body potential: mean field

The energy, mean field, and the Hamiltonian are a functional of density matrix.



Hartree-Fock approximation  nonlinear problem

input of the cal.: (effective) interaction, basis set, and initial values of the SD (density matrix)

A
density matrix  p; = ) DD

mean field Fudpl = Z ViikiPlj

/! self-consistency

hij — tlj T Fz][p]

Z hl] jk — — Glek

diagonalization

find the s.p. orbital giving the lowest total energy



Hartree—Fock equation ) (HF eq.)*

Z hiijk = e D, Pii = ;; DikD;/i Z D;li hl;k = ¢, D>I<
J — .
J
A A
» Z hijp m — Z Z hz] ]k Z ekDian%;k — Z Z D D]ih’jfl]
j j k=1 k=1 J k=1

-} [Alpl,p] =0

one can diagonalize the HF Hamiltonian and
the density matrix simultaneously



Hartree—Fock equation in the coogdinate—space rep.

Z hiDp = &Die by =15+ 2, ) Vi I, ], n, [ :arbitrary basis
[n m=1
> - 5 i — =
grid basis:  w'(¥)|0) = c1|0) = | 7) {ccl} =0(F = F)
{C;;, C;;} — O, {C;, C;} — ()

v(ry,7;) local potential
hZ

A
———Ag(F) + ). Jd (T, P (P @, (P (1) — ¢, (P (F)] = i (F)
m=1

2m

Hartree potential: TI'n(r) = J rv(r, ) Z | 9, (F)|” = J v(r, r)p(r)

Fock potential: CR(7, 7) = = 0(F, F) Z PEF)P,(F) = — V(7. F)p(F, F)



Mean field potential

['L(F) = Jd?’v(?, p(F) o p(?) when the interaction is short-ranged

2 phenomenological mean-field potentials

< |- 208 ; :
0.08 Pb Woods-Saxon (WS) ==Yy exp[(r — R)/a]
0.06 - SkM* Harmonic oscillator (HO)
0.04 |-

Square well
002} Pn
0 | | | ' |
0 2 4 6 8 10 12 14

>

)

= —+—
10 10 12 14
20 (fm)
-30
U,
-50 self-consistent mean field




Density matrix and local densities = —io K

S o S S To(ro) = — 260 (7 —
Density matrix: p(Fo, 7'o’) = (@ |y (Fo (7o) | D) pi(r0) = = 2097(r = o)

Eaess——

time-reversal operation

Density matrix in terms of the scalar and vector parts
2X2=4 =143

(7.7 = Zp(m (7. 7)) = Zp(ra || o) hermitian

4

p (7, 7) = p*(F,7) = p(¥, T)

p(Fo, F'o’) = —[p(* )85+ Z (o]0, 105,77

sT(7, ) = = s*(F, F) = = s(F, F)




Local densities: ingredients of energy density functional

particle density: pr) = p(r,r)

kinetic density: 7)) = (V- V')p(r,r’)

prr)=pr), ') =1@),

‘“time-even” densities

r=r’

time reversal ‘

spin density: s(r) =s(r,r)

1
current density: Jjr) = T(V — V)p(r,r’)
l

p (7, 7) = p*(F,7) = p(¥, T)

sT(7, 7) = —s*(/, 7) = — s(F, F)

s'(r) = —s(r), Jj' () =—jr)

“time-odd” densities

If the situation Is invariant under time-reversal,

the time-odd densities vanish.

r=r’



Skyrme Hartree-Fock model: A nuclear energy-density functional method

ESky — Z Jd7)(t

1=0,1
PN
X = C}O [Po]Prz T CtAthApt + Cipt, + CtVthV -J, + Ct] J t2

104 = Cllpolsy + CP's, - As,+ Clj7 + CVs, - (VXj) + Cls, - T,+ CY5(V - 5,)°

Total energy of a system as density functional:
0&|p]

— |arsiocry hi= g = sl el
Kohn-Sham eq,.
= Ly + ESky T ECoul T Epalr h¢l — 8i¢i

introduced in the next session very similar to the HF ed.



Mean-field theory for open-shell nuclei

—pairing—



Odd-even effect in the nuclear mass

Bethe-Weizsacker mass formula

(N — Z)? 77
B(A,Z) = aypA — agA™” — agy, 1 deouy T o(A)

strong binding for even-even nuclei > 10}

> n

AB(N, Z) = %[M(N +1,72) = 2M(N,Z) + M(N — 1,7)] Sp |
| 6

AY(N,Z) = SIM(N.Z+ 1) = 2M(N, Z) + M(N, Z = 1)] N

D -
0

0 50 100 150 200 250 300
Mass number
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Odd-even effect in the low-lying spectra
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Bardeen-Cooper-Schrieffer (BCS) theory

HF basis
J = 0 pair (in spherical nuclei) hli) =gl i = (nljm)
A‘r N N i = (nlj —m)
;i Ci C;‘ |7) is a time-reversed state of |i)
large overlap
Cooper pair AT = Z (pl-AlT like a boson (0|[A4,A7]]|0) =1
l

n Cooper-pairs condensed state: |®) « (A")*|0), n=N/2

BCS state: IBCS) = [ [, +v.A1)|0) u, = cos 6 # 0),v, = sin b, ¢, = tan 6,
>0
Vi
= [Ju1 +0:A110) W=
>0
T
= Huie¢iAi |10) (Af)2 10) =0
>0 oL )
. superposition of the condensed states with
x —e” |0)

n! different numbers of particle



BCS theory

J = 0 pair
IBCS) = [ [ +vAD)|0) AT = clel
>0 l
normalization 1 = (BCS|BCS) u>+ v =1
particle N = (BCS|N|BCS) =2 Z V? vl.2 . occupation prob.

>0



The Hartree-Fock and the BCS states

A
| Ppi) = Haf [0) = Hb,-\()) | Ppes) = H(ui + Via;a;) [0)
i=1 i

>0

] 0 1
occupation prob. occupation prob.

s.p. states are occupied up to the Fermi energy s.p. orbitals are partially occupied



BCS theory
The particle # is broken

H =H- /AN A : Lagrange multiplier
= Z (& — /1)(cl ¢+ ¢ e -) — Z GUAZTA]
>0 1,]>0

variation  §(BCS|H’|BCS) =0

22(8 —/l)v — ZG]k\/l—v v\/l—vkvk

J,k>0

_1 |:4(8 — AUy, — 2(u — vz) 2 Gl]ujvj}

j>0

pair potential variational eq,.

A, = Z G iu;v; 2(gl. — ﬂ)uivi —

>0

|



BCS theory

particle #

trivial solution:

A.=0 normal(fluid)

Vl=1,bll=0 or Vl=0,l/tl=1
hole particle

G 1

i =G, — <1 normal
in the case G;; = G, 2j>zo PRy stays as norma

&) Cooperinstability in infinite systems

shell structure around the Fermi level is important in finite systems



HF+BCS scheme

solve the HF eq. hli) = e|i)

initial values for A.

particle # condition
the chemical potential 1 is determined with N = (BCS|N|BCS) = 22 v/

>0
BCS amplitudes u;, v, ot e a1 e
2 \/(e,-—z)2+A% B \/(ei—ﬂ>2+A%
the pair field A;isupdated A, = ) Guv.




Excited states in the BCS model Hip = Y E(ala;+ alas) + const

>0
— 2 2
vacuum for q.p.. | Ppcg) = H (u; + ViCiTC;) 10) £ = \/(gi — AT+ A
“ >0 J = 0 pair

g.s. of an even-even nucleus
excited states = 2gp excitations: Cljd; | CI)B(;S)

Excitation ener g y Ei + E'] Z 2 A )

) I R

g.5. of a neighboring odd nucleus = ., : ‘ (I)B CS> A L] ' || —
lowest qu excitation: 0 R ” : "
excited states of a neighboring odd nucleus = a;f | Dpg)

1gp excitations:
Excitationenergy E;,—Ey~LE — A

different level densities in low energy in e-e and odd nuclei



Generalized mean-field theory: Hartree—Fock-Bogoliubov

HF+BCS: the s.p. orbitals are unchanged

» simultaneous optimization of the HF field and the pair field

Pji = <(D‘C;Cj\(b>, Kij = <(D|C | D), K; — <<I>\cfcj\<1>>

Wick’s theorem

T, — cata
C.Ci=pj+:1CC:

C;C]-Tclck = PPy — PiiPrj + K i Kkl
+py c.Tcl i cTck F =Pl C;ck L= Py cfcl

+l<>I< CiCx  + Ky T T , ,
el not considered in the HF approx.

+ CT Tclck



Generalized mean-field theory: Hartree—Fock-Bogoliubov

mean-field approx.

H — AN = Z (t —ﬂél])c C. +— Z l]klc CTCle
l]kl

= const + Z (t; — 40;) c >+ Z VikiPri - €, €t + — Z l],d( L CiCy L Ky c;c; )
1kl l]kl

H’F—const+2(t + 1 —/151]) c L+ — Z(AU c'e T A* CiC; D)
ij

L' = VikilP
—const+lZ' T h—4 A : C; ] % v
n R I BV LR AN S -
l Y J C; ~ 5 Z Vikji®ki
N\ kl
% Nambu-Gorkov

= const + Z E
a

we want to diagonalize it



Generalized mean-field theory: Hartree—Fock-Bogoliubov

h—A A U, .
Z [_A* _(h>!< _ /1)] ij¢aj — Ea¢ai9 ¢ai — (V )

al

J

whenE ., (U,

1°

V)" is the solution, then —E,, (V*, U*)" is also the solution

Uai V;I;i
any vectors (fields) are given by the linear combination ¥, = Z [Cla (Vo) + b, <U§i)]

a

~ A Uai » V;I;i 8i
promote the fields to the operators W = Z a, v + b, e )| T At

al ]
o al



Generalized mean-field theory: Hartree—Fock-Bogoliubov

hermicity ¢, = ((?T)T
o Z (aa al aV;)

(@T)T—Z(a V. .+ b U*)

a’ai a al

— Z @tve+biu )

a ai

=) ) = cAz:; annihilation of the hole=creation of the particle

a

BCS:

Clj — I/thIL + ViCi
l l

quasiparticles: 6/1\2 = Z Um@j + V

U, V :matrices u, v :amplitudes



Generalized mean-field theory: Hartree—Fock-Bogoliubov

10N

a R4l C; C;
a\ [/ V l B + l
(0‘;) - 2 (VT UT>W- <C:) =7 (C;>

l

generalized Bogoliubov trans.: a; = Z Uiacj + V. c;
l

U V*

unitary matrix % = (

UU+Vv=1, UU +VvVI =1
U'v+VvViu=0, UV '+Vv*U! =0

BCS:

w4+ v =1



Hartree-Fock-Bogoliubov (HFB) equation

Pij = (D | C;Ci‘q)% Kij = (D | CjCi‘(m
= (V*V1), = (V*UT), = — (UV),

properties of U, V matrices p2 —p = — kk',  pk=kp*

generalized density matrix
%_(«b\cjci\@ <<I>\cjci\<1>>>_< p K ) g
o P i S\ =kF 1 =p*) =
(@|cjc/ | D) (Dcic/ | D) K p A

(h=2 A =
r=("34 L) HrBec

, Hartree—Fock:

[hap] — Oa ,02=,0



HFB scheme

initial values for p;; and «;,

ph-channel: HF potential pp-channel: pair potential

_ I o
mean fields L= Z Vikj1Plic A= B Z VikjiKii
ki

the chemical potential 4 is determined with N =(®|N|®) =2 Z ViVia

1,0>(0

— Ua' Uai
eigenvalue prob. Z [}im’} —(h*A— /1)] (V]> =E, (V )
j A\ Ve .

al

a: quasiparticle basis

the densities are updated

— i —
pij—(cblcjci\d))— ViV K —(CID\CC\CI))—Z U,

a



Exercise 1

Basics of the mean-field calculation

Eigen-value problem



Independent-particle model: mean field approach

understanding the shell effect-magic number

cf. atomic periodicity
stability of novel gas: He, Ne, Ar, Kr, Xe,... (2, 10, 18, 36, 54,...)

=07¢=1 =2

single-particle orbital in the Coulomb

n=>2 potential generated by a nucleus with Ze
2
n

2(21 + 1) electrons in each orbital



A
Hartree potential: T'u(?) = [d?”v(?, )Y o) = Jd?”v(?, rp(r)
j=1
proportional to the density distribution

phenomenological shell model potential 1

1 + exp[(r — R)/a]

Woods-Saxon potential V(r) = -V,

N 1
Harmonic Oscillator potential  V(r) = =V + Ekr2

Square well potential




Single-particle orbital

—2—A(Pk(7”) + V(P (F) = e.,(F) neglecting the spin d.o.f
m
polar coordinate: u A7) £ is a good quantum number for the central potential
Prem(T) = - Yy (09) m: magnetic quantum number
Schrodinger eq.
R h2 (¢ + 1)
R u,(r)+ | V(r) + Sy u, (r) =g, u, (r)
Woods-Saxon (WS) potential solved numerically

3
Harmonic Oscillator (HO) potential  solved analytically &y = ho(N + 5)» N=2n+7

h2k>,

2m

solved analytically for infinite well ¢,, = — V|,
]f(knLﬂR) — O

Square well potential



Let’s try to solve the Sc. eg. numerically

nh* d?
U 2m dr? ne

el + 1)

2mr?

(r) + (V(r) + ) u, (r) = g€, u, (r)
discretization of the radial coordinate
r()) =r,=iXA4A, i=0,1,-N,
A: radial mesh size should be small
N : number of mesh points  should be large

0 Ry ' representation of differential operator

d*u, 1
ﬁzz(qu—Zu +l/t )

three-point formula of the finite-difference method



Boundary conditions important!
r(i) =r=1XxXA
u(Q) =u, =0

u(Ry) =uy =0 boxboundary condition (bound-state approximation)
= infinite square well potential

The kinetic energy is represented as o T MV 2
2m 2 X939
-2 1 0 0 U
72 g2, 1 =2 1 0 Us
— = — 0 | ) : Uy
2m dr? , )



n* d-

" 2m dr?

ForZ = 0,

u,(r)+ V(ru (r) = €,u,(r)

Solve the Sc. equation with the HO potential by diagonalizing the matrix numerically

mo” y 13
V(r) — re, ho =41 X A MeV
2 mass number

then find the optimal values of A and N, by comparing with the analytical solution.
e = 3/2hw
e, ="7T12hw

e, =[2(n—1)+3/2]hw

Find the solutions for every 7.



