
Collective motions in nuclei: vibration



Vibrational modes of excitation

surface vibration

change of density in time

classical picture

time-dependent DFT



HMF = ∑
i

εia†
i ai

= ∑
m

εmd†
mdm − ∑

i

εib†
i bi

Excitations in the HF approximation

HMFd†
k |ΦHF⟩ = εkd†

k |ΦHF⟩  is an eigenstate of (A+1)-body systemd†
k |ΦHF⟩

HMFb†
l |ΦHF⟩ = − εlb†

l |ΦHF⟩  is an eigenstate of (A-1)-body systemb†
l |ΦHF⟩

HMFd†
k b†

l |ΦHF⟩ = (εk − εl)d†
k b†

l |ΦHF⟩ one-particle–one-hole state

cf.

HMFd†
k1

d†
k2

b†
l1
b†

l2
|ΦHF⟩ = (εk1

+ εk2
− εl1 − εl2)d

†
k1

d†
k2

b†
l1
b†

l2
|ΦHF⟩

1p1h

2p2h
two-particle–two-hole state



ℏω = 41 × A−1/3 (MeV)

negative-parity 1p1h excitation

ΔN = 1



41 × 197−1/3 = 7.05 MeV
just a half !?



Collective vibrations
coherent superposition of ph excitations due to the residual interaction

Tamm–Dancoff approximation (TDA)

|λ⟩ = ∑
ph

Cλ
phd

†
pb†

h |ΦHF⟩ := Γ†
λ |ΦHF⟩

HTDA = HMF + ∑
λ

EλΓ†
λΓλ

H = HMF + ∑ v : c†c†cc :

c†c†cc ∼ a†a†aa ∼ (d†

b ) (d†

b ) ( d
b†) ( d

b†)
 part of d†b†db

Tamm–Dancoff equation (eigenvalue problem)

∑
p′￼h′￼

[(εp′￼
− εh′￼

)δpp′￼
δhh′￼

+ v̄ph′￼hp′￼
]Cλ

p′￼h′￼
= EλCλ

ph



RPA: Random Phase Approximation to include the ground-state correlations

H |λ⟩ = Eλ |λ⟩

|λ⟩ = Γ†
λ |0⟩ Γλ |0⟩ = 0

Γ†
λ = ∑

ph

Cλ
phd

†
pb†

hTDA:

RPA: Γ†
λ = ∑

ph

[Xλ
phd

†
pb†

h − Yλ
phbhdp]

backward-going amplitude

c†c†cc ∼ a†a†aa ∼ (d†

b ) (d†

b ) ( d
b†) ( d

b†)
 parts ofd†b†db, d†d†b†b†, ddbb

Collective vibrations
coherent superposition of ph excitations due to the residual interaction



RPA Hamiltonian

Γ†
λ = ∑

ph

[Xλ
phd

†
pb†

h − Yλ
phbhdp] =: ∑

ph

[Xλ
phA†

ph − Yλ
phAph]

HRPA = EHF + ΔEHF + ∑
λ

ΩλΓ†
λΓλ

[H, Γ†
λ] = ΩλΓ†

λ, [H, Γλ] = − ΩλΓλ

like harmonic oscillator

RPA equation: ( A B
B* A*) (Xλ

Yλ) = Ωλ (1 0
0 −1) (Xλ

Yλ)
Aphp′￼h′￼

= ⟨ΦHF | [Aph, [H, A†
p′￼h′￼

]] |ΦHF⟩ = (εp − εh)δpp′￼
δhh′￼

+ v̄ph′￼hp′￼
,

Bphp′￼h′￼
= − ⟨ΦHF | [Aph, [H, Ap′￼h′￼

]] |ΦHF⟩ = v̄pp′￼hh′￼

normalization ⟨λ |λ′￼⟩ = δλλ′￼
= ⟨ΦRPA | [Γλ, Γ†

λ′￼
] |ΦRPA⟩ ≈ ⟨ΦHF | [Γλ, Γ†

λ′￼
] |ΦHF⟩ = ∑

ph

(Xλ*
phXλ′￼

ph − Yλ*
phYλ′￼

ph)

[Aph, A†
p′￼h′￼

] = [bhdp, d†
p′￼

b†
h′￼

] = δpp′￼
δhh′￼

− δpp′￼
b†

h′￼
bh + δhh′￼

d†
p′￼

dp
deviation from the boson

⟨ΦRPA | [Aph, A†
p′￼h′￼

] |ΦRPA⟩ ≈ ⟨ΦHF | [Aph, A†
p′￼h′￼

] |ΦHF⟩ = δpp′￼
δhh′￼quasi-boson approx.



Extension to the superfluid systems

Γ†
λ = ∑

μν

[Xλ
μνa†

μa†
ν − Yλ

μνaνaμ]superposition of two-quasiparticle excitations

H′￼ = H − λN

Aμν,μ′￼ν′￼
= ⟨ΦHFB | [aνaμ, [H′￼, a†

μ′￼
a†

ν′￼
]] |ΦHFB⟩

Bμν,μ′￼ν′￼
= − ⟨ΦHFB | [aνaμ, [H′￼, aν′￼

aμ′￼
]] |ΦHFB⟩

[H′￼, Γ†
λ] = ΩλΓ†

λ, [H′￼, Γλ] = − ΩλΓλ

( A B
B* A*) (Xλ

Yλ) = Ωλ (1 0
0 −1) (Xλ

Yλ)

like harmonic oscillator

Quasiparticle RPA equation:



Transition matrix elements
one-body operator ̂F = ∑

ij

Fijc†
i cj = ∑

μν

F20
μνa†

μa†
ν + F02

μνaνaμ + ⋯

matrix elements ⟨0 | ̂F |λ⟩ = ⟨0 | ̂FΓ̂†
λ |0⟩ = ⟨0 | [ ̂F, Γ̂†

λ] |0⟩ ≈ ⟨ΦHFB | [ ̂F, Γ̂†
λ] |ΦHFB⟩

quasi-boson approx.

⟨0 | ̂F |λ⟩ = ⟨0 | ̂FΓ̂†
λ |0⟩ ≈ ⟨ΦHFB | ̂FΓ̂†

λ |ΦHFB⟩

collectivity: strong transition strength w.r.t. the single particle-hole ex.

Low-energy states: sensitive to the details of the shell structure around the Fermi level

High-energy state: corresponding to the classical picture of surface vibration
"Giant Resonances"

the ground-state correlation cannot be considered by replacing  with |0⟩ |ΦHFB⟩



Some examples

TDA |λ⟩ = ∑
ph

Cλ
phd

†
pb†

h |ΦHF⟩ := Γ†
λ |ΦHF⟩

TDA eq. ∑
p′￼h′￼

[(εp′￼
− εh′￼

)δpp′￼
δhh′￼

+ v̄ph′￼hp′￼
]Cλ

p′￼h′￼
= EλCλ

ph

εp − εh = ϵ, v̄ph′￼hp′￼
= gmodel space consisting of three configurations



H = (
ϵ 0 0
0 ϵ 0
0 0 ϵ) + g (

1 1 1
1 1 1
1 1 1)

λ = ϵ, ϵ, ϵ + 3g
diagonalization

excitation energyϵ

ϵ + 3g ϵ

unperturbed = mean field

TDA

ϵ

g < 0

g > 0
when the interaction is attractive  (repulsive )g < 0 g > 0

low-energy state (high energy state)

TDA for a simple case

excitation energy

excitation energy



what is the structure of the collective state? λ = ϵ + 3g

ϵ + g g g
g ϵ + g g
g g ϵ + g

⋅
1

3 (
1
1
1) = (ϵ + 3g) ⋅

1

3 (
1
1
1)

in-phase contribution of three ph excitations
=coherent superposition

the other states:
1

6 (
1

−2
1 ),

1

2 (
1
0

−1)
incoherent

TDA for a simple case



separable interaction: v̄ph′￼hp′￼
= λDphD*p′￼h′￼

Dph = ⟨ph |r2Y2μ |0⟩ = Q2μ,phQQ interaction:

TDA equation (Eν − εp + εh)Cν
ph = λDph ∑

p′￼h′￼

D*p′￼h′￼
Cν

p′￼h′￼

1
λ

= ∑
ph

|Dph |2

Eν − εph
, εph = εp − εh

Cν
ph = 𝒩

Dph

Eν − εph
, 𝒩−2 = ∑

ph

|Dph |2

(Eν − εph)2
,

TDA for a more realistic case



1
λ

= ∑
mi

|Dmi |
2

Eν − εmi

λ > 0

λ < 0

high-energy 
collective state

low-energy 
collective state

TDA for a more realistic case

repulsive

attractive



RPA with a separable interaction

( A B
B* A*) (Xλ

Yλ) = Ωλ (1 0
0 −1) (Xλ

Yλ)
Aphp′￼h′￼

= ⟨ΦHF | [Aph, [H, A†
p′￼h′￼

]] |ΦHF⟩ = (εp − εh)δpp′￼
δhh′￼

+ v̄ph′￼hp′￼
,

Bphp′￼h′￼
= − ⟨ΦHF | [Aph, [H, Ap′￼h′￼

]] |ΦHF⟩ = v̄pp′￼hh′￼

v̄ph′￼hp′￼
= λDphD*p′￼h′￼

v̄pp′￼hh′￼
= λDphDp′￼h′￼

1
λ

= ∑
ph

|Dph |2 2εph

Ω2
ν − ε2

ph
, εph = εp − εh



λ > 0

λ < 0

RPA with a separable interaction

repulsive

attractive



Some features of RPA with λ < 0
① the low-energy state can have an imaginary solution

degenerated unperturbed states: εph = ϵ

1
λ

= ∑
ph

|Dph |2 2εph

Ω2
ν − ε2

ph

E2
coll = ϵ2 + 2ϵλ∑

ph

|Dph |2

λcrit = −
ϵ

2∑ph |Dph |2

② the low-energy state has an energy lower than in TDA

ETDA
coll (λcrit) =

ϵ
2

1
λ

= ∑
ph

|Dph |2

Eν − εph

ETDA
coll = ϵ + λ∑

ph

|Dph |2ETDA
coll (2λcrit) = 0

RPA dispersion

TDA dispersion



③ larger transition strengths than in TDA

|⟨ν |D |0⟩ |2 = λ2 ∑
ph

|Dph |2 4εphΩν

(Ω2
ν − ε2

ph)2

−1

|⟨ν |D |0⟩ |2 =
ϵ

Ecoll ∑
ph

|Dph |2

degenerate case

|⟨ν |D |0⟩ |2 = ∑
ph

|Dph |2 for TDA

stronger collectivity than TDA thanks to the 
ground-state correlation

Γ†
λ = ∑

ph

[Xλ
phd

†
pb†

h − Yλ
phbhdp]

Xph
Yph

Some features of RPA



Sum rule
-th moment of transition strengthsk mk(F) = ∑

i

(ℏωi)k |⟨0 | ̂F | i⟩ |2

mean-energy of excited state Eλ =
mλ

mλ−2

 energy-weighted sum rule (EWSR)k = 1 :

m1(F) =
1
2

⟨[ ̂F, [Ĥ, ̂F]]⟩ =
1
2

⟨[ ̂F, [ ̂T, ̂F]]⟩(1 + κ) =
ℏ2

2m ∫ dr |∇f(r) |2 ρ(r)(1 + κ)

constant when  F ∝ ∑
i

ri

 dielectric theoremk = − 1 :

m−1(F) =
1
2

∂2

∂λ2
ℰ[ℛ(λ)]

λ=0
=

1
2

∂
∂λ

⟨ϕ(λ) | ̂F |ϕ(λ)⟩
λ=0

 HF(B) state with |ϕ(λ)⟩ : −λ ̂F

curvature of the total energy 

model independent



Ē =
m1

m−1

̂F =
A

∑
i

r2
i

mean energy

m1 =
2ℏ2

m
A⟨r2⟩, m−1 =

1
2

∂2⟨Ĥ⟩
∂λ2

λ=0
=

1
2 ( ∂2⟨Ĥ⟩

∂⟨ ̂F⟩2 )
−1

Ĥ → Ĥ + λ ̂F

= 4
ℏ2

m
⟨r2⟩

∂2E
∂⟨r2⟩2

= 4A
ℏ2

m⟨r2⟩
⟨r2⟩2 ∂2(E/A)

∂⟨r2⟩2

=: KA
ℏ2

m⟨r2⟩
KA = KV + KSA−1/3 + Kτα2 + KC

Z2

A4/3
Blaizot (1980)

⟨H⟩

⟨F⟩0

=
1
2

χF

susceptibility in response to ̂F

m1 =
1
2

d2

dη2
⟨Φ0 |e−iηFHeiηF |Φ0⟩

η=0

Nuclear matter properties from the sum rule

mk(F) = ∑
i

(ℏωi)k |⟨0 | ̂F | i⟩ |2 , Isoscalar monopole



Stability of the mean-field solution

Solutions of the (Q)RPA：when  is a solution, then  is also a solutionX, Y, Ω Y*, X*, − Ω
if the HF(B) is stable against any "deformation", all the  are realΩ
if the HF(B) is unstable against some "deformation",  is imaginaryΩ Nakada 2016, 2017 

any configurations (such as deformation) some configurations

Ex.: spherical solution of HF(B) is unstable against the quadrupole deformation

deformed state is energetically favored



PQ-representation of the (Q)RPA eq.

(Q)RPA eq. [H′￼, Γ†
λ] = ℏΩλΓ†

λ, [H′￼, Γλ] = − ℏΩλΓλ

same form in the HO potential coordinate and momentum

𝒫λ =
1
i

MλℏΩλ

2
(Γλ − Γ†

λ), 𝒬λ =
ℏ

2MλΩλ
(Γλ + Γ†

λ)

[𝒫λ, 𝒫λ′￼
] = 0, [𝒬λ, 𝒬̂λ′￼

] = 0 ⟨ΦHFB | [𝒬λ, 𝒫λ′￼
] |ΦHFB⟩ = δλλ′￼

(Q)RPA eq. in the PQ rep. [H′￼, 𝒫λ] = iℏωλMλ𝒬λ, [H′￼, 𝒬λ] = −
iℏ
Mλ

𝒫λ

H′￼ = H − λN = const + ∑
λ ( 1

2Mλ
𝒫2

λ +
Mλ

2
Ω2

λ𝒬
2
λ)



( A B
B* A*) ( Pλ

−Pλ*) = iℏΩ2
λMλ ( Qλ

Qλ*)
( A B

B* A*) ( Qλ

−Qλ*) =
ℏ
i

1
Mλ ( Pλ

Pλ*)
normalization (Qλ* Qλ) ( Pλ′￼

−Pλ′￼*) = iℏδλλ′￼

𝒫λ = ∑
μν

Pλ
μνa†

μa†
ν + Pλ*

μνaνaμ, 𝒬λ = ∑
μν

Qλ
μνa†

μa†
ν + Qλ*

μνaνaμ

PQ-representation of the (Q)RPA eq.

The (Q)RPA defines the generalized coordinates and momenta on the HF(B) equilibrium.



Symmetries and the (Q)RPA
The HF(B) solutions breaks the symmetries

translational: locality

rotational: deformation

particle number: superfluidity

while the many-body Hamiltonian possesses the sym.： , [H′￼, P] = 0 [H′￼MF, P] ≠ 0

QRPA eq. PQ rep. [H′￼, 𝒫λ] = iℏωλMλ𝒬λ, [H′￼, 𝒬λ] = −
iℏ
Mλ

𝒫λ

[H′￼, P]RPA = 0 the zero-energy solution the (Q)RPA eq.

the broken sym. in the MFA is restored in the RPA

ℏωsym = 0



H′￼RPA = const +
1

2M0
𝒫2

0 + ∑
Ωλ≠0 ( 1

2Mλ
𝒫2

λ +
Mλ

2
Ω2

λ𝒬
2
λ) zero-energy solution

[H′￼RPA, 𝒫0] = 0

translational: [H′￼RPA, R] =
1

iAm
P, [H′￼RPA, P] = 0, [R, P] = i

rotational: [H′￼RPA, Ω] =
1

i𝒥
Jx, [H′￼RPA, Jx] = 0, [Ω, Jx] = i

global U(1): [H′￼RPA, Θ] =
1

iℳ
N, [H′￼RPA, N] = 0, [Θ, N] = i

Thouless–Valatin moment of inertia

Symmetries and the (Q)RPA

M0 = A

M0 = 𝒥

M0 = ℳ



DFT for dynamics and excitations: TDDFT

E. Runge and E. K. U. Gross, PRL52(1984)997
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6= ck0(= const.)

v(r, t) =
1X

k=0

1

k!
@k
t v(r, t)

���
t=t0

v0(r, t) =
1X

k=0

1

k!
@k
t v

0(r, t)
���
t=t0

v(r, t), v0(r, t)

⇢(r, t), ⇢0(r, t)

| (t0)i

V = {v(r, t) : v(r, t) =
1X

k=0

1

k!
@k
t v(r, t)

���
t=t0

(t�t0)
k; v0(r, t) 6= v(r, t)+c(t)}

N = {⇢(r, t) :⇢(r, t) = h (r, t)|⇢̂(r)| (r, t)i; i~@t| (r, t)i = Ĥ(t)| (r, t)i;
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∫ t1

t0
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∇(vk0(r) − v′
k0
(r)) ̸= 0

ρ0(r) = 0

I = −
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V
dr(v∗

k0
(r) − v′∗

k0
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1
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�A[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� v(r, t) �

�Ae↵ [⇢]

�⇢(r, t)
= 0

A[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

�As[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� vs(r, t) = 0

As[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drvs[⇢](r, t)⇢(r, t)

Bs[⇢] =

Z t1

t0

dth [⇢](t)|i~@t � T̂ | [⇢](t)i

⇢(r, t) =
NX

i=1

|�i(r, t)|
2

i~@t�i(r, t) =

⇢
�

~2

2m
r

2 + vs[⇢](r, t)

�
�i(r, t)

�A

�⇢(r, t)
= 0

A[⇢] =

Z t1

t0

dth [⇢, 0](t)|i~@t � Ĥ(t)| [⇢, 0](t)i (1)
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|Ψ(t)⟩ = |Ψ[ρ,Ψ0](t)⟩
|Ψ(t)⟩

δA

δ⟨Ψ(t)|
= [i!∂t − Ĥ]|Ψ(t)⟩
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= −
ρ0(r)

m
∇[v(r, t0) − v′(r, t0)]

1

Action density functional

Theorem 2: δA

δρ(r, t)
= 0

A[ρ] =

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i!∂t − Ĥ(t)|Ψ[ρ,Ψ0](t)⟩ (1)
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= −
ρ0(r)

m
∇[v(r, t0) − v′(r, t0)]

1

the exact density

I = �

Z

V
dr(v⇤

k0
(r) � v0⇤

k0
(r))r · [⇢0(r)r(vk0(r) � v0

k0
(r))]

+

Z

@V
dS · (v⇤

k0
(r) � v0⇤

k0
(r))⇢0(r)r(vk0(r) � v0

k0
(r))

= 0

I =

Z

V
dr⇢0(r)|r(vk0(r) � v0

k0
(r))|2

r · [⇢0(r)r(vk0(r) � v0
k0
(r))] = 0

@k0+2

t [⇢(r, t) � ⇢0(r, t)]
���
t=t0

= �r · @k0+1

t [j(r, t) � j0(r, t)]

=
1

m
r · [⇢0(r)r(vk0(r) � v0

k0
(r))]

@t[⇢(r, t) � ⇢0(r, t)] = �r · [j(r, t) � j0(r0, t)]

@t⇢(r, t) + r · j(r, t) = 0

@k0+1

t [j(r, t) � j0(r, t)]
���
t=t0

= �
n0(r)

m
r[vk0(r) � v0

k0
(r)]

j(r, t), j0(r, t)
v(r, t0) 6= v0(r, t0) + c0

@t[j(r, t) � j0(r, t)]
���
t=t0

= �
i

~

Z
dr0[v(r0, t0) � v0(r0, t0)]h (t0)|[ĵ(r), ⇢̂(r
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Practical method for TDDFT: the Time Dependent Kohn-Sham equation
Reference system: without interactions
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Action density functional for the reference system
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k0
(r)) 6= 0

⇢0(r) = 0
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TDKS eq.

Interacting system

B[⇢] ⌘ A[⇢] +

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

=

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

B[⇢] =

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

�A[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� v(r, t) �

�Ae↵ [⇢]

�⇢(r, t)
= 0

A[⇢] = B[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

A[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

�As[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� vs(r, t) = 0

As[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drvs[⇢](r, t)⇢(r, t)

Bs[⇢] =

Z t1

t0

dth [⇢](t)|i@t � T̂ | [⇢](t)i

⇢(r, t) =
NX

i=1

|�i(r, t)|
2

i@t�i(r, t) =

⇢
�

~2

2m
r

2 + vs[⇢](r, t)

�
�i(r, t)

�A

�⇢(r, t)
= 0

A[⇢] =

Z t1

t0

dth [⇢, 0](t)|i~@t � Ĥ(t)| [⇢, 0](t)i (1)

14

Action density functional

B[⇢] ⌘ A[⇢] +

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

=

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

B[⇢] =

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

�A[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� v(r, t) �

�Ae↵ [⇢]

�⇢(r, t)
= 0

A[⇢] = B[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

A[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

�As[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� vs(r, t) = 0

As[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drvs[⇢](r, t)⇢(r, t)

Bs[⇢] =

Z t1

t0

dth [⇢](t)|i@t � T̂ | [⇢](t)i

⇢(r, t) =
NX

i=1

|�i(r, t)|
2

i@t�i(r, t) =

⇢
�

~2

2m
r

2 + vs[⇢](r, t)

�
�i(r, t)

�A

�⇢(r, t)
= 0

A[⇢] =

Z t1

t0

dth [⇢, 0](t)|i~@t � Ĥ(t)| [⇢, 0](t)i (1)
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Theorem 2

B[⇢] ⌘ A[⇢] +

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

=

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

B[⇢] =

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

�A[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� v(r, t) �

�Ae↵ [⇢]

�⇢(r, t)
= 0

A[⇢] = B[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

A[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

�As[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� vs(r, t) = 0

As[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drvs[⇢](r, t)⇢(r, t)

Bs[⇢] =

Z t1

t0

dth [⇢](t)|i@t � T̂ | [⇢](t)i

⇢(r, t) =
NX

i=1

|�i(r, t)|
2

i@t�i(r, t) =

⇢
�

~2

2m
r

2 + vs[⇢](r, t)

�
�i(r, t)

�A

�⇢(r, t)
= 0

A[⇢] =

Z t1

t0

dth [⇢, 0](t)|i~@t � Ĥ(t)| [⇢, 0](t)i (1)
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i!∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2+

vext(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

B[ρ] ≡ A[ρ] +

∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

=

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i!∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

δA[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− v(r, t) −

δAeff [ρ]

δρ(r, t)
= 0

A[ρ] = Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) + {B[ρ] − Bs[ρ]}

= Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) − Aeff [ρ]

δAs[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− vs(r, t) = 0

As[ρ] = Bs[ρ] −
∫ t1

t0

dt

∫
drvs[ρ](r, t)ρ(r, t)

Bs[ρ] =

∫ t1

t0

dt⟨Ψ[ρ](t)|i!∂t − T̂ |Ψ[ρ](t)⟩

ρ(r, t) =
N∑

i=1

|φi(r, t)|2

i!∂tφi(r, t) =

{
−

!2

2m
∇2 + vs[ρ](r, t)

}
φi(r, t)

δA

δρ(r, t)
= 0

1

the exact density of the int. system

B[⇢] ⌘ A[⇢] +

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

=

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

B[⇢] =

Z t1

t0

dth [⇢, 0](t)|i@t � T̂ � Ŵ | [⇢, 0](t)i

�A[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� v(r, t) �

�Ae↵ [⇢]

�⇢(r, t)
= 0

A[⇢] = B[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t)

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

A[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) + {B[⇢] � Bs[⇢]}

= Bs[⇢] �

Z t1

t0

dt

Z
drv(r, t)⇢(r, t) � Ae↵ [⇢]

�As[⇢]

�⇢(r, t)
=

�Bs[⇢]

�⇢(r, t)
� vs(r, t) = 0

As[⇢] = Bs[⇢] �

Z t1

t0

dt

Z
drvs[⇢](r, t)⇢(r, t)

Bs[⇢] =

Z t1

t0

dth [⇢](t)|i@t � T̂ | [⇢](t)i

⇢(r, t) =
NX

i=1

|�i(r, t)|
2

i@t�i(r, t) =

⇢
�

~2

2m
r

2 + vs[⇢](r, t)

�
�i(r, t)

�A

�⇢(r, t)
= 0

A[⇢] =

Z t1

t0

dth [⇢, 0](t)|i~@t � Ĥ(t)| [⇢, 0](t)i (1)
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Linear-response TDDFT for vibrational modes: RPA

δρ(r, t) =
∑

i

φ∗
i (r)δψi(r, t) + φi(r)δψ

∗
i (r, t)

ρ(r, t) = ρ0(r) + δρ(r, t)

i!∂tδψi(r, t) = (h0(r)−ϵi)δψi(r, t)+

(∫
dr′dt′

δh[ρ](r, t)

δρ(r′, t′)
δρ(r′, t) + vext(r, t)

)
φi(r)

ψi(r, t) = (φi(r) + δψi(r, t))e
−iϵit/!

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i!∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

v(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

B[ρ] ≡ A[ρ] +

∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

=

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i!∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

δA[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− v(r, t) −

δAeff [ρ]

δρ(r, t)
= 0

A[ρ] = Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) + {B[ρ] − Bs[ρ]}

= Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) − Aeff [ρ]

δAs[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− vs(r, t) = 0

1

vext(r, t) = vext(r)e
−iωt + v∗

ext(r)e
iωt

δψi(r, t) = fi(r)e
−iωt + gi(r)e

iωt

δρ =
χR,s

1 − χR,sw
v1

= χRv1

w(rt, r′t′) = wad[ρ0](r, r
′)δ(t − t′)

wad[ρ0](r, r
′) =

δ2F

δρ(r)δρ(r′)

∣∣∣
ρ=ρ0

w(rt, r′t′) =
δ2Aeff [ρ]

δρ(r, t)δρ(r′, t′)

χR(rt, r′t) =
δρ(r, t)

δv(r′, t′)

=

∫
dxdτ

δρ(r, t)

δvs(x, τ )

δvs(x, τ )

δv(r′, t′)

=

∫
dxdτχR,s(rt, xτ )

[
δ(x − r′)δ(τ − t′) +

∫
dx′dτ ′ δ2Aeff [ρ]

δρ(x, τ )δρ(x′, τ ′)
χR(x′τ ′, r′t′)

]

= χR,s(rt, r′t′) +

∫
dxdx′dτdτ ′χR,s(rt, xτ )

δ2Aeff [ρ]

δρ(x, τ )δρ(x′, τ ′)
χR(x′τ ′, r′t′)

δvs(r, t)

δv(r′, t′)
= δ(r − r′)δ(t − t′) +

∫
dxdτ

δ2Aeff [ρ]

δρ(r, t)δρ(x, τ )

δρ(x, τ )

δv(r′, t′)

vs(r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

δρ(r, t) =

∫
dr′dtχR,s(rt, r′t)δvs(r

′, t)

χR,s(rt, r′t) =
δρ(r, t)

δvs(r′, t′)

χR(rt, r′t′) = −
i

!
Θ(t − t′)⟨[ρ̂(rt), ρ̂(r′t′)]⟩

1

perturbing field oscillates at a frequency ω

δρ(r, t) =

∫
dr′dt′

δρ(r, t)

δvs(r′, t′)
δvs(r

′, t′)

=

∫
dr′dt′χR,s(rt, r′t)δvs(r

′, t′)

δρ(r, t) =

∫
dr′dt′

δρ(r, t)

δv(r′, t′)
δv(r′, t′)

=

∫
dr′dt′χR(rt, r′t)v1(r

′, t′)

v(r, t) =

{
v0(r) for t ≤ 0

v0(r) + v1(r, t) for t > 0

δρ(r, t) =
∑

i

φ∗
i (r)δψi(r, t) + φi(r)δψ

∗
i (r, t)

ρ(r, t) = ρ0(r) + δρ(r, t)

i∂tδψi(r, t) = (h0(r)−ϵi)δψi(r, t)+

(∫
dr′dt′

δh[ρ](r, t)

δρ(r′, t′)
δρ(r′, t) + vext(r, t)

)
φi(r)

ψi(r, t) = (φi(r) + δψi(r, t))e
−iϵit/!

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

v(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

13

TDKS eq. for t>0

P = i

√
!ω
2

(X + Y ), Q =

√
!
2ω

(X − Y )

∑

nj

(
Aminj Bminj

Bminj Aminj

)(
Xnj

Ynj

)
= !ω

(
1 0
0 −1

)(
Xmi

Ymi

)

Aminj =(ϵm − ϵi)δm,nδn,j +

∫ ∫
drdr′φ∗

m(r)φ∗
j (r

′)w(r, r′)φi(r)φn(r
′)

Bminj =

∫ ∫
drdr′φ∗

m(r)φ∗
n(r

′)w(r, r′)φi(r)φj(r
′)

Θ(t− t1) = lim
η→+∞

1

1 + eη(t1−t)

ωXmi =(ϵm − ϵi)Xmi +
∑

nj

∫∫
drdr′φ∗

m(r)φ∗
j (r

′)
δh

δρ
φi(r)φn(r

′)Xnj +
∑

nj

∫∫
drdr′φ∗

m(r)φ∗
n(r

′)
δh

δρ
φi(r)φj(r

′)Ynj

−ωYmi =(ϵm − ϵi)Xmi +
∑

nj

∫∫
drdr′φ∗

m(r)φ∗
j (r

′)
δh

δρ
φi(r)φn(r

′)Ynj +
∑

nj

∫∫
drdr′φ∗

m(r)φ∗
n(r

′)
δh

δρ
φi(r)φj(r

′)Xnj

Xmi =

∫
drφ∗

m(r)fi(r)

Ymi =

∫
drφ∗

m(r)gi(r)

!ωfi(r) = (h0(r)− ϵi)fi(r) +
∑

j

∫
dr′φi(r)

δh

δρ
φ∗

j (r
′)fj(r

′) +
∑

j

∫
dr′φi(r)

δh

δρ
φj(r

′)gj(r
′)

−!ωgi(r) = (h0(r)− ϵi)gi(r) +
∑

j

∫
dr′φi(r)

δh

δρ
φ∗

j (r
′)gj(r

′) +
∑

j

∫
dr′φi(r)

δh

δρ
φj(r

′)fj(r
′)

φ∗
i (r)

δρ(r) =
∑

i

φ∗
i (r)fi(r) + φi(r)g

∗
i (r)

fi(r) = (!ω − h0 + ϵi)
−1
r,r′φi(r

′)

(
δh

δρ
δρ+ vext

)

gi(r) = (−!ω − h0 + ϵi)
−1
r,r′φi(r

′)

(
δh

δρ
δρ∗ + vext

)

vext(r, t) = vext(r)e
−iωt + v∗

ext(r)e
iωt

δψi(r, t) = fi(r)e
−iωt + gi(r)e

iωt
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RPA eq.

i∂tδψi(r, t) = (h0(r)−ϵi)δψi(r, t)+

(∫
dr′dt′

δh[ρ](r, t)

δρ(r′, t′)
δρ(r′, t) + vext(r, t)

)
φi(r)

ψi(r, t) = (φi(r) + δψi(r, t))e
−iϵit

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

v(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

B[ρ] ≡ A[ρ] +

∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

=

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

B[ρ] =

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

δA[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− v(r, t)−

δAeff [ρ]

δρ(r, t)
= 0

A[ρ] = B[ρ]−
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

= Bs[ρ]−
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) + {B[ρ]−Bs[ρ]}

= Bs[ρ]−
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)−Aeff [ρ]

14

Oscillation around the ground state:

i∂tδψi(r, t) = (h0(r)−ϵi)δψi(r, t)+

(∫
dr′dt′

δh[ρ](r, t)

δρ(r′, t′)
δρ(r′, t) + vext(r, t)

)
φi(r)

ψi(r, t) = (φi(r) + δψi(r, t))e
−iϵit

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

v(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

B[ρ] ≡ A[ρ] +

∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

=

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

B[ρ] =

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

δA[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− v(r, t)−

δAeff [ρ]

δρ(r, t)
= 0

A[ρ] = B[ρ]−
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

= Bs[ρ]−
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) + {B[ρ]−Bs[ρ]}

= Bs[ρ]−
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)−Aeff [ρ]
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Linearized TDKS eq.

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i!∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

vext(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

B[ρ] ≡ A[ρ] +

∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

=

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i!∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

δA[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− v(r, t) −

δAeff [ρ]

δρ(r, t)
= 0

A[ρ] = Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) + {B[ρ] − Bs[ρ]}

= Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) − Aeff [ρ]

δAs[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− vs(r, t) = 0

As[ρ] = Bs[ρ] −
∫ t1

t0

dt

∫
drvs[ρ](r, t)ρ(r, t)

Bs[ρ] =

∫ t1

t0

dt⟨Ψ[ρ](t)|i!∂t − T̂ |Ψ[ρ](t)⟩

ρ(r, t) =
N∑

i=1

|φi(r, t)|2

1

for t<0

δρ(r, t) =

∫
dr′dt′

δρ(r, t)

δvs(r′, t′)
δvs(r

′, t′)

=

∫
dr′dt′χR,s(rt, r′t)δvs(r

′, t′)

δρ(r, t) =

∫
dr′dt′

δρ(r, t)

δv(r′, t′)
δv(r′, t′)

=

∫
dr′dt′χR(rt, r′t)v1(r

′, t′)

v(r, t) =

{
v0(r) for t ≤ 0

v0(r) + v1(r, t) for t > 0

δρ(r, t) =
∑

i

φ∗
i (r)δψi(r, t) + φi(r)δψ

∗
i (r, t)

ρ(r, t) = ρ0(r) + δρ(r, t)

δρ(r, t) = δρ(r)e−iωt + δρ∗(r)eiωt

i∂tδψi(r, t) = (h0(r)−ϵi)δψi(r, t)+

(∫
dr′dt′

δh[ρ](r, t)

δρ(r′, t′)
δρ(r′, t) + vext(r, t)

)
φi(r)

ψi(r, t) = (φi(r) + δψi(r, t))e
−iϵit/!

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

v(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)
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δρ(r, t) =

∫
dr′dt′

δρ(r, t)

δvs(r′, t′)
δvs(r

′, t′)

=

∫
dr′dt′χR,s(rt, r′t)δvs(r

′, t′)

δρ(r, t) =

∫
dr′dt′

δρ(r, t)

δv(r′, t′)
δv(r′, t′)

=

∫
dr′dt′χR(rt, r′t)v1(r

′, t′)

v(r, t) =

{
v0(r) for t ≤ 0

v0(r) + v1(r, t) for t > 0

δρ(r, t) =
∑

i

φ∗
i (r)δψi(r, t) + φi(r)δψ

∗
i (r, t)

ρ(r, t) = ρ0(r) + δρ(r, t)

δρ(r, t) = δρ(r)e−iωt + δρ∗(r)eiωt

i∂tδψi(r, t) = (h0(r)−ϵi)δψi(r, t)+

(∫
dr′dt′

δh[ρ](r, t)

δρ(r′, t′)
δρ(r′, t) + vext(r, t)

)
φi(r)

ψi(r, t) = (φi(r) + δψi(r, t))e
−iϵit/!

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

v(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

13

transition density also oscillates at a frequency ω

vext(r, t) = vext(r)e
−iωt + v∗

ext(r)e
iωt

δψi(r, t) = fi(r)e
−iωt + gi(r)e

iωt

δρ =
χR,s

1 − χR,sw
v1

= χRv1

w(rt, r′t′) = wad[ρ0](r, r
′)δ(t − t′)

wad[ρ0](r, r
′) =

δ2F

δρ(r)δρ(r′)

∣∣∣
ρ=ρ0

w(rt, r′t′) =
δ2Aeff [ρ]

δρ(r, t)δρ(r′, t′)

χR(rt, r′t) =
δρ(r, t)

δv(r′, t′)

=

∫
dxdτ

δρ(r, t)

δvs(x, τ )

δvs(x, τ )

δv(r′, t′)

=

∫
dxdτχR,s(rt, xτ )

[
δ(x − r′)δ(τ − t′) +

∫
dx′dτ ′ δ2Aeff [ρ]

δρ(x, τ )δρ(x′, τ ′)
χR(x′τ ′, r′t′)

]

= χR,s(rt, r′t′) +

∫
dxdx′dτdτ ′χR,s(rt, xτ )

δ2Aeff [ρ]

δρ(x, τ )δρ(x′, τ ′)
χR(x′τ ′, r′t′)

δvs(r, t)

δv(r′, t′)
= δ(r − r′)δ(t − t′) +

∫
dxdτ

δ2Aeff [ρ]

δρ(r, t)δρ(x, τ )

δρ(x, τ )

δv(r′, t′)

vs(r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

δρ(r, t) =

∫
dr′dtχR,s(rt, r′t)δvs(r

′, t)

χR,s(rt, r′t) =
δρ(r, t)

δvs(r′, t′)

χR(rt, r′t′) = −
i

!
Θ(t − t′)⟨[ρ̂(rt), ρ̂(r′t′)]⟩

1

δρ(r, t) =
∑

i

φ∗
i (r)δψi(r, t) + φi(r)δψ

∗
i (r, t)

ρ(r, t) = ρ0(r) + δρ(r, t)

i!∂tδψi(r, t) = (h0(r)−ϵi)δψi(r, t)+

(∫
dr′dt′

δh[ρ](r, t)

δρ(r′, t′)
δρ(r′, t) + vext(r, t)

)
φi(r)

ψi(r, t) = (φi(r) + δψi(r, t))e
−iϵit/!

h0(r)φi(r) = ϵiφi(r)

h0(r) = h[ρ0](r)

ρ0(r) =
∑

i

|φi(r)|2

i!∂tψi(r, t) = {h[ρ](r, t) + vext(r, t)}ψi(r, t)

ρ(r, t) =
∑

i

|ψi(r, t)|2

h[ρ](r, t) = −
!2

2m
∇2 +

δAeff [ρ]

δρ

vext(r, t) =

{
0 for t ≤ 0

vext(r, t) for t > 0

vs[ρ](r, t) = v(r, t) +
δAeff [ρ]

δρ(r, t)

B[ρ] ≡ A[ρ] +

∫ t1

t0

dt

∫
drv(r, t)ρ(r, t)

=

∫ t1

t0

dt⟨Ψ[ρ,Ψ0](t)|i!∂t − T̂ − Ŵ |Ψ[ρ,Ψ0](t)⟩

δA[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− v(r, t) −

δAeff [ρ]

δρ(r, t)
= 0

A[ρ] = Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) + {B[ρ] − Bs[ρ]}

= Bs[ρ] −
∫ t1

t0

dt

∫
drv(r, t)ρ(r, t) − Aeff [ρ]

δAs[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− vs(r, t) = 0

1

Xmi =

∫
drφ∗

m(r)fi(r)

Ymi =

∫
drφ∗

m(r)gi(r)

!ωfi(r) = (h0(r) − ϵi)fi(r) +
∑

j

∫
dr′φi(r)

δh

δρ
φ∗

j (r
′)fj(r

′) +
∑

j

∫
dr′φi(r)

δh

δρ
φj(r

′)gj(r
′)

−!ωgi(r) = (h0(r) − ϵi)gi(r) +
∑

j

∫
dr′φi(r)

δh

δρ
φ∗

j (r
′)gj(r

′) +
∑

j

∫
dr′φi(r)

δh

δρ
φj(r

′)fj(r
′)

φ∗
i (r)

δρ(r) =
∑

i

φ∗
i (r)fi(r) + φi(r)g

∗
i (r)

fi(r) = (!ω − h0 + ϵi)
−1
r,r′φi(r

′)

(
δh

δρ
δρ+ vext

)

gi(r) = (−!ω − h0 + ϵi)
−1
r,r′φi(r

′)

(
δh

δρ
δρ∗ + vext

)

vext(r, t) = vext(r)e
−iωt + v∗

ext(r)e
iωt

δψi(r, t) = fi(r)e
−iωt + gi(r)e

iωt

δρ =
χR,s

1 − χR,sw
v1

= χRv1

w(rt, r′t′) = wad[ρ0](r, r
′)δ(t − t′)

wad[ρ0](r, r
′) =

δ2F

δρ(r)δρ(r′)

∣∣∣
ρ=ρ0

w(rt, r′t′) =
δ2Aeff [ρ]

δρ(r, t)δρ(r′, t′)

χR(rt, r′t) =
δρ(r, t)

δv(r′, t′)

=

∫
dxdτ

δρ(r, t)

δvs(x, τ )

δvs(x, τ )

δv(r′, t′)

=

∫
dxdτχR,s(rt, xτ )

[
δ(x − r′)δ(τ − t′) +

∫
dx′dτ ′ δ2Aeff [ρ]

δρ(x, τ )δρ(x′, τ ′)
χR(x′τ ′, r′t′)

]

= χR,s(rt, r′t′) +

∫
dxdx′dτdτ ′χR,s(rt, xτ )

δ2Aeff [ρ]

δρ(x, τ )δρ(x′, τ ′)
χR(x′τ ′, r′t′)

1



Vibrational modes of excitation



GR is strongly excited by a one-body operator, and exhausts a sum-rule value

F = ∑
σ,σ′￼

∑
τ,τ′￼

∫ drrLYL( ̂r)ψ†(rστ)⟨σ |{1
⃗σ} |σ′￼⟩⟨τ |{1

⃗τ} |τ′￼⟩ψ(rσ′￼τ′￼)

space spin isospin

Rich variety of collective vibrations
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FIG. 3: (Color online) Same as Fig. 2 for the IV-GQR.

the signal Fourier transformation. An illustration of the
technique is given in appendix B.

A. Comparison with QRPA

The response of superfluid nuclei is generally studied
using the QRPA approach that is the small amplitude
limit of TDHFB. In the present work, we do not perform
the full TDHFB evolution but approximate the pairing
field to obtain a simpler TDHF+BCS version. This ap-
proximation was found to work remarkably well in the
case of spherical nuclei. Here we show that this con-
clusion still holds in the case of deformed systems. For
comparison, we took one of the latest results obtained
with state of the art QRPA approach allowing for axial
deformation using Skyrme functional [25]. Note that, the
same SkM* functional has been used also in the QRPA
case but the pairing interaction used here is the surface
interaction of Ref. [35] that differs from Ref. [25].
In Fig. 4, the response function shown in Ref. [25]

is compared with our TDHF results for the different K
values. A very good agreement with the QRPA result is
obtained even if the BCS approximation is made in our
calculation. In particular the peak position are perfectly

154Sm
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FIG. 4: (Color online) Comparison between the TDHF+BCS
IS-GQR strength distributions obtained in 154Sm for |K| = 0
(green open squares line), |K| = 1 (orange short dashed line)
and |K| = 2 (red long dashed line). The different curves are
the corresponding QRPA results from Ref. [25]. Note that
the TDHF+BCS strengths have been smoothed with a width
of 2 MeV consistently with the QRPA results.

reproduced. This confirm our previous finding [16] that,
except in the low-lying energy sector, the TDHF+BCS
approximation provides a powerful theory to account for
pairing effects in giant resonances. It should be noted
that a small physical damping of the order of 0.5 MeV
is present in the QRPA results that we do not have
in TDHF+BCS. Indeed, the two calculations perfectly
match with each others if a Lorentzian smoothing width
γ = 2.5 MeV is used instead of γ = 2.0 MeV. This seems
to be systematically the case for the IS-GQR but not for
the IV-GQR where a perfect agreement is found without
increasing artificially the smoothing parameter.

In Fig. 5 and 6, we systematically compare the mean
energy, denoted by E2+ and total width Γ of the total IS-
GQR and IV-GQR response for the Nd and Sm isotopic
chain, the total strength being obtained by summing all
K response function. The values of E2+ and Γ have been
obtained here by fitting the main collective peak with a
single Lorentzian distribution. Again, for both IS and IV
excitations a rather good agreement for the energy and
width is found with the QRPA results. Note that a more
detailed discussion on the width evolution is made below.

In all the comparisons we have made with QRPA, very
good agreements were found. In our opinion, this agree-
ment is due to the fact that the main effect of pairing on
normal giant resonances stems from its influence to de-
cide the ground state initial deformation and initial frag-
mentation of single-particle occupation around the Fermi
energy. These effects are rather well described in the BCS
approach for not too exotic nuclei. True dynamical pair-
ing effects are only affecting the response function in the
low-lying sector or the response that explicitly involve
the anomalous density and change particle number, like
pairing vibrations.

Scamps et al.
QRPA and LR-TDDFT(BCS)

Giant Quadrupole Resonance (GQR)

SkM*

pairing and deformation taken into account

K. Washiyama et al., PRC96(2017)041304R 

T. Nikšić et al., PRC88(2013)044327
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Deformation effect in Giant Monopole Resonance?

volume change
J.-P. Blaizot, 

Phys. Rep. 64(1980)171

incompressibility of nuclear matter

the Fermi mass distribution with c!6.107 fm and a
!0.523.
Fits to the angular distributions obtained from the peak

were carried out with a sum of isoscalar 0", 1#, 2", 3#,
and at higher excitation, 4" strengths. The isovector giant
dipole resonance contribution is relatively small but was cal-
culated from the known distribution !18" and held fixed in
the fits. The strengths of the multipoles were varied to mini-
mize #2. The errors in strengths were estimated by changing
the magnitude of the strength of one component until refit-
ting by varying the other components resulted in a #2 twice
that of the best fit. The fits obtained along with the individual
components of the fits are shown superimposed on the data
in Fig. 2. The continuum angular distributions could not be
fit with a sum of multipole strengths, suggesting that other
processes dominate the continuum. The best fit obtained is
shown in Fig. 2$c%.
The E0 and E2 strength distributions obtained for the

giant resonance peak are shown in Fig. 3. The errors ob-
tained as described above are shown. Uncertainties due to the
separation of the peak and continuum are not included. Both
distributions are quite asymmetric and the E0 distribution
contains (104#20

"15)% of the E0 energy-weighted sum rule
$EWSR%, while the E2 distribution contains (103#20

"18)% of
the E2 EWSR. The L!1 T!0 strength is distributed

roughly uniformly from Ex!10–25MeV while the higher
multipole strength $the data does always permit a reliable
distinction between L!3 and 4% is distributed evenly be-
tween Ex!8 and 30 MeV. To provide a rough quantitative
comparison with theory, the E0 and E2 distributions were
fitted with the predicted number of Gaussian peaks $two for
E0 and three for E2), varying the position and strength of
each independently, but constraining the widths of each com-
ponent to be the same for E0 and E2 separately. The E0
distribution was fitted with two Gaussians at Ex!12.1
$0.4MeV and 15.5$0.3MeV containing (36$10)% and
(68$9)% of the EWSR, while the E2 distribution was fitted
with three Gaussians at Ex!11.3$0.2MeV, 14.5
$0.5MeV, and 17.5$0.5MeV containing (44$7)%, (44
$8)%, and (15$8)%, respectively, of the E2 EWSR. The
earlier models for the GQR splitting $Kishimoto et al. !1",
Suzuki and Rowe !6", Auerbach and Yeverechyahu !5", and
Zawischa, Speth and Pal !7"% do not agree with the data,
generally predicting a much smaller splitting than observed.
The strength distributions calculated by Adgrall et al. and

by Suzuki and Rowe are shown superimposed on the data in
Fig. 3. The calculation for the GQR by Suzuki and Rowe is
much too narrow while that of Abgrall et al. agrees reason-
ably well with the data, though the experimental splitting
appears a little larger than predicted and the highest (K
!2) component is stronger than predicted. The GMR distri-
bution calculated by Abgrall et al. is in reasonable agreement
with the data though the experimental splitting is somewhat
less than the calculation. The positions and strengths of the
components extracted from the data are compared with those
predicted by Adgrall et al. in Fig. 4 and are in fair agree-
ment.

This work was supported in part by the U.S. Department
of Energy under Grant No. DE-FG03-93ER40773 and by the
Robert A. Welch Foundation.

FIG. 3. The fractions of the E0 and E2 isoscalar EWSR in
154Sm are shown by the histograms. The error bars represent the
uncertainty due to the fitting of the angular distributions as de-
scribed in the text. The thick lines are the predictions of Abgrall
et al. !8", while the dashed line shows the prediction of Suzuki and
Rowe !6".

FIG. 4. Comparison of the predictions by Abgrall et al. !8" to
the parameters for the fits to the distributions shown in Fig. 3.
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no angle dependence as in GDR

F = ∫ d ⃗rr2ψ†( ⃗r)ψ( ⃗r)
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to statistical fluctuations in the subtracted spectrum. At high
excitation, small cross sections correspond to large E0
strength @5,6#. The E0 strength above EX59 MeV in the

subtracted spectrum corresponds to 76615% of the E0
EWSR, where the uncertainty is due to the uncertainty of the
angle bin width of the two spectra @5,6#, in excellent agree-
ment with the 72% obtained from the fits. The centroid

FIG. 7. ~a!–~d! The solid lines show the fractions of the isosca-
lar EWSR in 24Mg obtained in this work for the multipolarities
indicated. The error bars represent the uncertainty due to the fitting
of the angular distributions.

FIG. 8. ~a! The solid line shows the fraction of the E0 EWSR in
24Mg obtained from the fits to the angular distributions of the con-
tinuum. The error bars represent the uncertainty due to the fitting of
the angular distributions. ~b!–~d! The solid line shows the fraction
of the isoscalar EWSR obtained for the multipolarity indicated from
the fits to the angular distributions of the continuum.

TABLE IV. Sum rule strengths and energy moments obtained
for the distributions shown in Fig. 7 for the excitation range Ex
9–41 MeV.

L %EWSR
m1 /m0
~MeV!

rms width
~MeV!

0 72610 21.060.6 7.361.2
1 81214

126 18.861.7 6.761.0
2 72610 16.960.6 3.460.6
3 3126

19 25.261.0 4.561.2

GIANT RESONANCES IN 24Mg PHYSICAL REVIEW C 60 014304
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FIG. 3. (Color online) The multipole strength distributions ob-
tained are shown. The black histogram shows those obtained by
analyzing the data for which the out-of-plane angle was measured.
The gray histogram shows those obtained in the reanalysis of the data
reported in Ref. [3] (in-plane only), and the wide gray histograms
show the distributions reported in Ref. [3]. Error bars represent the
uncertainty from the fitting of the angular distributions as described
in the text and do not include systematic errors.

in the different analyses. The ISGDR distribution has a peak
∼20 times its minimum cross section at lower excitation, but in
240-MeV α scattering in many nuclei [8] including 24Mg [3],
the continuum angular distribution is very similar to that of the
ISGDR, making the extracted strength very sensitive to contin-
uum choices. Much of the ISGDR strength also lies at higher
excitation where the angular distributions are less distinctive.

Pèru, Goutte, and Berger [9] have calculated GMR,
ISGDR, and GQR distributions in 24Mg and 28Si using
the quasi-particle random phase approximation based on
Hartree-Fock-Bogolyubov states calculated with the Gogny
D1S effective force. These are shown compared with
multipole distributions obtained with 6Li scattering and α
scattering in Figs. 19 and 20 of Ref. [4]. The agreements
with the GMR distributions are fairly good, but there are
substantial differences for the ISDGR and GQR distributions.
They give centroids and strengths for the GQR and GMR
distributions, and these are compared with our results for
24Mg in Table I. The GMR centroid they obtain is a little lower
than the experimental numbers (but within the errors for the
results from the Ref. [3] data), whereas they report somewhat
more strength than seen in the α data but within the (relatively
large) errors in agreement with the strength obtained in the
6Li data. The GQR strength and centroids are in agreement
with the analysis of the α data reported in this work and only
slightly outside the errors for the 6Li results. The Gogny D1S
interaction used by Pèru, Gouette, and Berger [9] results in
a Knm = 228 MeV [10]. In the hydrodynamic model [11],
EGMR = (h̄2KA/m∗⟨r2⟩)1/2, where KA is the compressibility
of nucleus A. We have estimated the Knm values implied by
the 24Mg GMR energy obtained in this experiment and the 28Si
GMR energy reported in Ref. [12] by comparing them with the

Knm obtained  by comparing GMR energies and RPA
calculations with Gogny interaction. 
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FIG. 4. (Color online) Knm obtained by comparing GMR energies
in 24Mg and 28Si with the calculations of Ref. [9] as described in
the text, and for 40Ca, 90Zr, 116Sn, 144Sm, and 208Pb as reported
in Ref. [13]. The average value reported in Ref. [13] is also shown
along with its uncertainty.
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FIG. 3. (Color online) The multipole strength distributions ob-
tained are shown. The black histogram shows those obtained by
analyzing the data for which the out-of-plane angle was measured.
The gray histogram shows those obtained in the reanalysis of the data
reported in Ref. [3] (in-plane only), and the wide gray histograms
show the distributions reported in Ref. [3]. Error bars represent the
uncertainty from the fitting of the angular distributions as described
in the text and do not include systematic errors.

in the different analyses. The ISGDR distribution has a peak
∼20 times its minimum cross section at lower excitation, but in
240-MeV α scattering in many nuclei [8] including 24Mg [3],
the continuum angular distribution is very similar to that of the
ISGDR, making the extracted strength very sensitive to contin-
uum choices. Much of the ISGDR strength also lies at higher
excitation where the angular distributions are less distinctive.

Pèru, Goutte, and Berger [9] have calculated GMR,
ISGDR, and GQR distributions in 24Mg and 28Si using
the quasi-particle random phase approximation based on
Hartree-Fock-Bogolyubov states calculated with the Gogny
D1S effective force. These are shown compared with
multipole distributions obtained with 6Li scattering and α
scattering in Figs. 19 and 20 of Ref. [4]. The agreements
with the GMR distributions are fairly good, but there are
substantial differences for the ISDGR and GQR distributions.
They give centroids and strengths for the GQR and GMR
distributions, and these are compared with our results for
24Mg in Table I. The GMR centroid they obtain is a little lower
than the experimental numbers (but within the errors for the
results from the Ref. [3] data), whereas they report somewhat
more strength than seen in the α data but within the (relatively
large) errors in agreement with the strength obtained in the
6Li data. The GQR strength and centroids are in agreement
with the analysis of the α data reported in this work and only
slightly outside the errors for the 6Li results. The Gogny D1S
interaction used by Pèru, Gouette, and Berger [9] results in
a Knm = 228 MeV [10]. In the hydrodynamic model [11],
EGMR = (h̄2KA/m∗⟨r2⟩)1/2, where KA is the compressibility
of nucleus A. We have estimated the Knm values implied by
the 24Mg GMR energy obtained in this experiment and the 28Si
GMR energy reported in Ref. [12] by comparing them with the

Knm obtained  by comparing GMR energies and RPA
calculations with Gogny interaction. 
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the text, and for 40Ca, 90Zr, 116Sn, 144Sm, and 208Pb as reported
in Ref. [13]. The average value reported in Ref. [13] is also shown
along with its uncertainty.
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Fig. 1. Response functions for the IS monopole and the Kπ = 0+ quadrupole excitations in
24Mg. The transition strengths are smeared by using Γ = 2 MeV.

quasiparticle basis (α,β, · · · ) obtained in the HFB equations

(

hq − λq h̃q

h̃q −(hq − λq)

)(

ϕq

1,α(r,σ)
ϕq

2,α(r,σ)

)

= Eα

(

ϕq

1,α(r,σ)
ϕq

2,α(r,σ)

)

. (1)

The continuum states are discretized by a box at ρmax = 9.9 fm and zmax =
12 fm. The momentum dependence is explicitly taken into account in the residual
interactions whereas the two-body spin-orbit and the Coulomb interactions are
discarded. The details of the calculation scheme is described in Ref. 3.

3. Results and Discussion

3.1. Giant monopole and quadrupole resonances

In order to clearly see the mixing effect between the giant monopole resonance
(GMR) and the giant quadrupole resonance (GQR), we depict in Fig. 1 the response
functions for the isoscalar (IS) monopole and quadrupole excitations in 24Mg. In the
present calculation, we obtain the prolately deformed ground state for 24Mg. The
deformation parameters for neutrons and protons are 0.40 and 0.41, respectively.

We show in the lower panel of Fig. 1 the transition strengths for the Kπ =
0+ component of the IS quadrupole excitation. At around 15 MeV, we can see a
Kπ = 0+ component of GQR. It is noted here that the total strength of GQR
spreads in higher energy region because the GQR splits into three resonances of
the Kπ = 0+, 1+ and 2+ components, and the resonance peak of the Kπ = 0+

component lowers in energy due to the deformation. In the upper panel of Fig. 1, we
show the transition strengths for the IS monopole excitation. At the same energy
region of 15 MeV, we can see a prominent peak as well as the resonance at around

occurrence of the “lower-energy (~15 MeV)”  
peak due to coupling to the K=0 of GQR

Deformation effect on GMR in light nuclei: universality
KY, Mod. Phys. Lett. A 25 (2010), 1783 
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The isoscalar giant monopole resonance (ISGMR) strength distribution in 24Mg has been determined from 
background-free inelastic scattering of 386-MeV α particles at extreme forward angles, including 0◦ . 
The ISGMR strength distribution has been observed for the first time to have a two-peak structure in a 
light-mass nucleus. This splitting of ISGMR strength is explained well by microscopic theory in terms of 
the prolate deformation of the ground state of 24Mg.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The isoscalar giant monopole resonance (ISGMR) has been in-
vestigated in a wide range of atomic nuclei from 12C to 208Pb 
[1–7] and has been shown to be an effective way to obtain an ex-
perimental value for the nuclear incompressibility [8,9]. However, 
identification of the full E0 energy-weighted sum rule (EWSR) in 
lighter nuclei (A < 60) has not been possible due to fragmenta-
tion of the strength, the nearly complete overlap of the ISGMR 
with the isoscalar giant quadrupole resonance (ISGQR) and other 
multipoles, uncertainties in the extraction of the strength distri-
butions, and the difficulty in distinguishing the multipole strength 
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from other direct processes (quasi-free knock-out process, for ex-
ample). The fragmented ISGMR strength in lighter nuclei further 
renders it nearly impossible to identify effects such as the theoret-
ically predicted splitting of the ISGMR due to ground-state defor-
mation. While the splitting of the isovector giant dipole resonance 
(IVGDR) due to deformation has been documented in a number 
of nuclei [8], a similar effect on the ISGMR strength has been re-
ported so far only in the deformed Sm nuclei [10–13] and in the 
fission decay of 238U [14]; this “ISGMR splitting” is understood in 
terms of the mixing of the ISGMR with the K π = 0+ component 
of the ISGQR [10].

Recent microscopic calculations [15,16] in the deformed
Hartree–Fock–Bogoliubov (HFB) approach and the quasiparticle 
random-phase approximation (QRPA) with a Skyrme and Gogny 
energy-density functional have shown that the ISGMR strength dis-
tribution exhibits a two-peak structure due to deformation even 
in light-mass nuclei. In particular, the calculations indicate that 
the prolate-deformed ground state of 24Mg leads to a two-peak 
ISGMR strength structure because of the aforementioned mix-
ing of the ISGMR with the K π = 0+ component of the ISGQR. 

http://dx.doi.org/10.1016/j.physletb.2015.07.021
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

First observation of the splitting of GMR strengths in a light system
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Deformation splitting in a light nucleus
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data. The widths of the peaks were chosen to best represent
the data. It can be seen that the fluid dynamical calculations
give a fairly good representation of the data. A calculation
for the GQR strength using the same Nishizaki and Ando
prediction is shown superimposed on the GQR data in the
bottom panel and also gives a good representation of the
data.

The isoscalar E1 and E3 distributions obtained in 154Sm
are shown in Fig. 14. As for the other nuclei, the E1 strength
is divided into two components, though in 154Sm the compo-
nents are definitely not Guassian in shape. There is some
disagreement on the origin of the lower component of the E1
strength [27,29–31], but the upper component is expected to
be the compression mode, which is treated in the Nishizaki
and Ando [41] calculations. A calculation using the param-
eters from Nishizaki and Ando, with the strength normalized
to the experimental strength of the upper component, and the
lower component taken from the 144Sm analysis (shifted in
energy with 1/A1/3) is shown superimposed on the data. The
calculation gives a reasonable representation of the high en-
ergy portion of the data. It would appear that the lower com-
ponent of the ISGDR is both shifted down in energy and
itself split into more than one component in 154Sm relative to
144Sm. The distribution of HEOR strength calculated using
the splitting predicted in Nishizaki and Ando calculation is
shown superimposed on the data in the bottom panel of Fig.
13. Except for the dip in the middle of the data, the calcula-
tion gives an excellent representation of the data.

V. CONCLUSIONS

Within errors, all of the isoscalar E0, E1, E2, and 3!" E3
giant resonance strength was located in 116Sn, 144Sm, 154Sm,

FIG. 13. The E0 strength distribution obtained for 154Sm is
shown by the histograms in the top two panels. In the top panel, a
calculation using the parameters of Abgrall et al. [40] is shown by
the dashed line and one using the parameters of Nishizaki and Ando
[41] is shown by the gray line. A two Gaussian fit to the E0 distri-
bution with the parameters in Table VI is shown in the middle
panel. The E2 strength distribution obtained for 154Sm is shown by
the histogram in the bottom panel and a calculation using the pa-
rameters of Nishizaki and Ando [41] is shown by the gray line.

FIG. 14. The E1 (E3) strength distribution obtained for 154Sm is
shown by the histogram in the top (bottom) panel. Calculations
using the parameters of Nishizaki and Ando [41] are shown by the
gray lines. The dashed line is the shifted 144Sm distribution for the
lower component of the ISGDR as described in the text. The gray
line for the E1 distribution includes the contribution illustrated by
the dashed line.
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Nuclear beta decay

Heff =
GFVud

2 ∫ dx [e(x)γμ(1 − γ5)νe(x)Jμ(x) + H . c . ]
GF = 1.166 × 10−5 GeV−2

Vud = 0.9737

A semileptonic process governed by

an effective Hamiltonian for a low-energy ( ) charged current reaction:≪ mW



Nuclear beta decay

Jμ(x) = 𝒱μ(x) − 𝒜μ(x)

Nuclear currents involving not only the nuclear many-body wave functions but 
the form factors and momentum tranfer

𝒱μ = (V0, V) 𝒜μ = (A0, A)vector currents axial-vector currents
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closed-neutron-shell nuclei along the r-process path. Our re-
sults agree fairly well with those of Ref. @12# for the very
proton-poor nuclei ~with N550 and N582) but less well for
larger Z. The trend is due to the closed proton shells at Z
520, 28, 40, and 50, where the particle-particle force has
little effect. Between these magic numbers, and particularly
just below them ~e.g., in 76Fe), the differences can be large.
To demonstrate again that they are due to T50 pairing, we
plot results once more with that component of the force
switched off (V050), a step that brings our results into
agreement with those of Ref. @12# in nearly all nuclei with
N550 or 82.
As discussed in Sec. III C, there are no experimental data

with which to fix V0 near N5126. The lack of closed shells
in this region suggests that half-lives will depend strongly on
V0. Our results with and without T50 pairing, however,
show that this is not the case. Even if we used a much
smaller value of V0, by extrapolating the drop in that param-
eter between N550 and 82, the lifetimes would not change
appreciably. In these heavy systems our results agree well
with those of Ref. @19#.

C. Consequences for nucleosynthesis

The closed-neutron-shell nuclei are instrumental in setting
abundances produced in the r process; new predictions for
their half-lives will have an effect on the results of r-process
simulations. For N550 and 82 our half-lives are usually
shorter than the commonly employed half-lives of Ref. @12#,
and longer for N5126. Replacing those lifetimes with ours
should therefore produce smaller A'80 and 130 abundance
peaks, and a larger A'195 peak.
Without extending our calculations to other nuclei in the

r-process network, however, we cannot draw quantitative
conclusions from a simulation. Accordingly, we carry out
only one simple r-process simulation here, comparing final
abundance distributions obtained from the b decay rates of
Ref. @12# with those obtained from our calculations, leaving

all other ingredients unchanged ~we also change rates at N
584 and 86, by amounts equal to the change in correspond-
ing nuclei with N582!. By specifying an appropriate tem-
perature and density dependence on time, we mock up con-
ditions in the ‘‘neutrino-driven wind’’ from type II
supernovae, the current best guess for the r-process site.
The results appear in Fig. 10. As expected, the A'130

peak shrinks noticeably. The A'195 peak broadens with the
new half-lives because abundances around N5126 are built
up not just at the longest lived ~most stable! nucleus pro-
duced, but at more neutron-rich N5126 nuclei as well. As a
result, more nuclei are populated and the peak widens. By

FIG. 9. Predictions for the half-lives of closed neutron-shell nuclei along the r-process path. Our results appear with
(HFB1QRPA1SkO8) and without (HFB1QRPA1SkO8, V050) the pn particle-particle interaction. Also plotted are the results of Ref.
@12# ~FRDM1QRPA!, Ref. @19# ~ETFSI1QRPA!, and experimental data where available.

FIG. 10. Predicted abundances in a simulation of the r process.
The solid line corresponds to the rates of Ref. @12#, and the dotted
line to the rates obtained here around N582 and 126. All other
nuclear and astrophysical parameters are the same for the two lines.
The diamonds are observed solar-system abundances.
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nuclear and astrophysical parameters are the same for the two lines.
The diamonds are observed solar-system abundances.
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✓ being not included in FRDM
✓ shortens the half-lives
✓ sensitive to the shell structure
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Important role of the spin-triplet pairing revealed by the microscopic cal.
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FIG. 1. (Color online) Two-neutron separation energies for the
neutron-rich zirconium isotopes. The drip line is located where the
separation energy becomes zero. The 122Zr isotope is the last stable
nucleus against two-neutron emission.

Calculations performed with the HFB-2D-THO code used 20
transformed harmonic oscillator shells. Figure 1 shows the
calculated two-neutron separation energies for the zirconium
isotope chain. The two-neutron separation energy is defined as

S2n(Z,N ) = Ebind(Z,N ) − Ebind(Z,N − 2). (4)

Note that in using this equation, all binding energies must be
entered with a positive sign. The position of the two-neutron
drip line is defined by the condition S2n(Z,N ) = 0, and nuclei
with negative two-neutron separation energy are unstable
against the emission of two neutrons. As one can see, both
methods (HFB-2D-THO and HFB-2D-LATTICE) are in excellent
agreement for the two-neutron separation energy for the entire
isotope chain. Particularly, the 122Zr isotope is predicted in
both calculations as the drip-line nucleus. In addition, we
also give a comparison with the latest experimental data,
available only up to the isotope 110Zr [17]. As shown on Fig. 1,
the separation energy values obtained from the experiment are
somewhat larger than the theoretical calculations although the
trend remains the same.

In Fig. 2, we compare the intrinsic proton and neutron
quadrupole moments calculated with the LATTICE code and
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FIG. 2. (Color online) Intrinsic quadrupole moments for protons
and neutrons.
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FIG. 3. (Color online) Mass quadrupole parameter β2 comparison
for neutrons. Calculations by Lalazissis et al. [19], HFB-2D-LATTICE,
and Möller et al. [18] (FRDM) (β2 total is shown).

the THO code. Available experimental data [16] are also given.
Generally, we observe a nearly perfect agreement between the
two codes as well as with the experiment. The deformations
(for neutrons ) in terms of the deformation parameter β2 for
those nuclei, namely, for the 102−112Zr isotopes range from
β2 = 0.42 to β2 = 0.47. Both the basis-spline lattice code and
the HFB-2D-THO code predict the 112Zr isotope to have the
largest ground state deformation. For mass numbers larger
than 112, we observe a transition to spherical ground state
shape. This phenomenon had been also found in calculations
performed by Möller et al. [18] [finite range droplet model
calculations (FRDM)] and in relativistic mean-field calcula-
tions by Lalazissis et al. [19]. We depict this comparison in
Fig. 3 . Experimental deformations for protons are available
for two isotopes, 102Zr and 104Zr [16]. Calculations agree
with the experiment reasonably well and give β2 values
of 0.42, 0.43; while the experiment predicts β102

2 = 0.42,
β104

2 = 0.45.
In Fig. 4, we compare the root-mean-square radii of protons

and neutrons predicted by the LATTICE code and the THO
code. Both codes give nearly identical results for the whole
isotope chain. Only one experimental data point is available,
the proton rms radius of 102Zr [12]. The experiment yields a
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FIG. 4. (Color online) Root-mean-square radii for the chain of
zirconium isotopes.
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β-decay half-lives of r-process nuclei

predicted to be well deformed
by DFT cal.

Systematic measurement of β-decay@RIBF 

neutron-rich Zr isotopes:



KTUYþ GT2 model is shown in Fig. 4(b). It is noted that
the results display very little or even no systematic depen-
dence, and generally provide a better description of the
data across this mass region than the FRDMþ QRPA
model does. Below A ¼ 102, the KTUYþ GT2 calcula-
tion overestimates some of the experimental results by a
factor of about 2; however, it should be noted that the
magnitude of the experimental uncertainties of the half-
life for Kr isotopes is rather large. Figure 4(c) shows test
results of the FRDMþ GT2 model, rather than FRDMþ
QRPA, to extract differences in the treatment of the
!-strength functions. Much smaller deviations, predicted
by the FRDMþ GT2 model, suggest that the GT2 suc-
ceeds in capturing the essence of !-strength functions.
Figure 4(d) shows the difference between QFRDM

! and

QKTUY
! as a function of atomic number. A suppressed

odd-even staggering is clearly evident, but the FRDM
model predicts a Q! value of about 1 MeV less than that
of the KTUY model at A # 110. A small enhancement in
the FRDMþ GT2 predictions, by a factor of 2 or so around
A ¼ 110, may be explained by the underestimation of
Q! values in the FRDM calculation. The data suggest
that one of the main problems associated with !-decay
half-life predictions is related to uncertainties involved
with binding-energy calculations and!-strength functions.

As discussed by Möller et al. [1], the sum of the half-
lives of the r-process nuclei up to the midmass region, i.e.,
around A ¼ 130, determines the rate of r-matter flow at

N ¼ 82. Following this prescription, the relatively short
half-lives of the Zr and Nb isotopes deduced in the present
study suggest a further speeding up of the classical
r process, and shed light on the issue concerning the low
production rates of elements beyond the second r-process
peak. The results presented here also make an impact on
the abundances of nuclei at the second peak, since the peak
position and shape in the solar abundances around
A ¼ 110–140 can be reproduced better by decreasing the
half-life of the r-process nuclei by a factor of 2 to 3 [2].
In summary, the !-decay half-lives of the very neutron-

rich nuclides 97–100Kr, 97–102Rb, 100–105Sr, 103–108Y,
106–110Zr, 109–112Nb, 112–115Mo, and 115–117Tc, all of which
lie close to the astrophysical r-process path, have been
measured (for 18 nuclei) or their uncertainties have been
reduced significantly. The results suggest a systematic
enhancement of the !-decay rates of the Zr and Nb iso-
topes by a factor of 2 or more around A ¼ 110with respect
to the predictions of the FRDMþ QRPA model. The
results also indicate a shorter time scale for matter flow
from the r-process seeds to the heavy nuclei. More satis-
factory predictions of the half-lives from the KTUYþ
GT2 model, which employs larger Q! values, highlights

the importance of measuring the half-lives and masses of
very exotic nuclei, since such knowledge ultimately leads
to a decrease in the uncertainty of predicted nuclear abun-
dances around the second r-process peak.
This experiment was carried out at the RIBF operated by

RIKEN Nishina Center, RIKEN and CNS, University of
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FIG. 3 (color online). Neutron number dependence of !-decay
half-lives for (top) even-Z (a) Kr, (b) Sr, (c) Zr, and (d) Mo, and
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dashed lines are from the KTUYþ GT2.
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Aim of this lecture

to understand the mean-field (MF) theory as an approximation to the 
quantum theory of many-body system

to obtain physical picture characterizing the system from experimental data 
with the help of mean field

to understand the similarity and difference between MF theory and 
Density-Functional theory

to understand physics behind the recent experiments


