Collective motions in nuclei: vibration



Vibrational modes of excitation
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Figure 6-18 Total photoabsorption cross section for '’ Au. The experimental data are from
S. C. Fultz, R. L. Bramblett, J. T. Caldwell, and N. A. Kerr, Phys. Rev. 127, 1273 (1962). The
solid curve is of Breit-Wigner shape with the indicated parameters.



Excitations in the HF approximation

Hyr = Z elafal
Z endid, — ) eblh,
l 1p1h
Hypd'b' | @y) = (¢, — €)d b | D) one-particle-one-hole state
2p2h

dljl dlz;blfbl’; | D) = (g, + &, — & — & )a',j1 d,jzbzbg | ®yE)  two-particle-two-hole state

ct.
Hypd! | ®yp) = d | Pyy) d; | @) is an eigenstate of (A+1)-body system

Hyph | @yp) = — eb | Oyp) b; | @) is an eigenstate of (A-1)-body system



negative-parity 1p1h excitation

ho =41 X A~1° (MeV)
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Figure 6-18 Total photoabsorption cross section for '’ Au. The experimental data are from
S. C. Fultz, R. L. Bramblett, J. T. Caldwell, and N. A. Kerr, Phys. Rev. 127, 1273 (1962). The
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Collective vibrations

coherent superposition of ph excitations due to the residual interaction

Tamm-Dancoff approximation (TDA) H = Hyp + Z v:c'clec:

|2) = 2 CLAib] | Pyp) =T | Dy

d'b'db part of

HTDA — HMF + Z E/IF;F/I CTCTCC ~ CITCZTCZCZ ~ (ij) <C[Zj> ([j;) (
A

Tamm-Dancoff equation (eigenvalue problem)

Z (&, — €1)0ppOnp + hhp]cﬂh — Exlc/lh



Collective vibrations

coherent superposition of ph excitations due to the residual interaction

RPA: Random Phase Approximation to include the ground-state correlations
H|2) = E;|4)

4y =T70) [,10) =0

ph™P~}h

TDA: Ti= ) Chdbf
ph

RPA: Fz = Z [X;fhd;bg — ¥ thbhdp]

backward-going amplitude

d'b'db,d d"b b", ddbb parts of

c'ccc ~a'a'aa ~ (dT) (dT) ( d) ( d)
b b b") \b’




RPA Hamiltonian — #% = £, + AE;: + ) Qrir,
A

T A JTILT A . A AT A
[f = Z (XA dib — Y bd)] =: Z XA AT = Y4 A
ph ph

|H, F:{] = QAFT, [H, 1] = -l

like harmonic oscillator

RPA equation: (A B) X _o (1 O )G
B* A* Y/1 A 0O —1 Y/l

Aphp’h’ — <(I)HF| [Aph9 [H9 A]j’h’]] ‘ (I){F> — (Sp o gh)épp’éhh’ T ‘_}ph’hp”
Bphp’h’ - = <(DHF| [Aph’ [H’ Ap’h’]] (DHF> — vpp’hh’

[A h,AT, ,] — [bhd ,dT,bT,] — 5 ’5}1}2’ — 5 /bT,bh + 5hh/dT,d
P Pk P o 7 " deviation from the boson

quasi-boson approx. (@Pgpal[A,. A]j,h,] | Dgpa) & (Ppp ! [A,, Alj,h,] | Pyp) = 8, O

normalization (A1) = 6, = (Prpa | [T T 1 @gpp) & ( Py | [T, T Py = Z XX = Yo o)

ph



Extension to the superfluid systems

. . . . _ A A
superposition of two-quasiparticle excitations F:{ — Z [Xﬂyd;fdj — Yﬂydydﬂ]

H =H—- AN ol
(. T1=QI, [H,[]=-Q,

like harmonic oscillator

$
(e ) () =26 5) ()

A,m/,,u’v’ — <(DHFB | [ava/p [H ,9 Cl;,dj,]] | (DHFB>

B,m/,,u’y’ - = <(DHFB ‘ [aya,u’ [H,’ CZU/CZM/]] | (DHFB>

Quasiparticle RPA equation:



Transition matrix elements

one-body operator f = Z Ficle = Z F2'al + FQa,a, + -
] UV

matrix elements (0| I:“M) = (0] I:“IATIL |0) = (0] [F, f:{] 10) ~ (Pygpg | [F, fj{] | PyEp)

quasi-boson approx.

(01 F[2) = (0| FT}0) ~ (@ypp | FT7} | Prypp) @]

the ground-state correlation cannot be considered by replacing | 0) with | ®ypp)

collectivity: strong transition strength w.r.t. the single particle-hole ex.

Low-energy states: sensitive to the details of the shell structure around the Fermi level

High-energy state: corresponding to the classical picture of surface vibration
"Giant Resonances”



Some examples

P

TDA  |4) = Z Coudyb | Pyp) =T | Oyp)
ph
o — A A
TDA eaq. Z [(€, — €4)0,, O + V] Cp’h’ — Eﬂcph
p'h

model space consisting of three configurations €, — &, = €,V =

1d?)/2 1d?:/2




TDA for a simple case

unperturbed = mean field

excitation energy

e 0 O 1 1 1
H=10 ¢ 0)+gl1 1 1
0 0 € 1 1 1 €
TDA g<0
diagonalization
A=c¢€,e,¢+3
> 5 €+ 38 € excitation energy
0
when the interaction is attractive g¢ < 0 (repulsive g > 0) 87
=P low-energy state (high energy state) -

excitation energy



TDA for a simple case

what is the structure of the collective state? A=c¢€ -+ 3g
c+g & 8 . /1 /1
g €+tg g |-—1]=(€+3g9 -—| 1

g g €+ 2 \5 | \/5 1

in-phase contribution of three ph excitations

=coherent superposition
1 (1 A
the other states: ~2 1], 0
Vo \ 1 V2 \_1

incoherent




TDA for a more realistic case

separable interaction:

= AD,,D*

Vph'hp DR

QQinteraction: D, = (ph| i’zYzﬂ [0) = Oy

TDA equation (E, —¢,+¢&,)C), = 1D, Z D%, Con

1 B ‘Dph‘z
/1 oh El/_gph’
CY = N O N2 Z | Dyl



TDA for a more realistic case

| D, |7
I B % E,—¢,

high-energy

. collective state
repulsive

A>0

s AN

. 3
VAN

A <0

low-energy

collective state



RPA with a separable interaction

(e ) () =26 5) ()

Aphp’h’ = <(I)HF‘ [Aph9 [HaAT/h/]] ‘ (I)HF> — (8p o 8h)5pp’5hh’ T ‘_}ph’hp” vph/hp’ T AD hD /h/

By = = APy | [App: [H, Ay ] T Pyp) = Vppin pp’hh’ = AD hD W




RPA with a separable interaction

repulsive
A >0

attractive
A <0




Some features of RPA with 4 < 0 RPA dispersion

L . 1 ) 2Ep
(D the low-energy state can have an imaginary solution i Z [ Dy Q2 — &2
ph & p

degenerated unperturbed states: ¢,, = €

E2, =€ +2e1 ) |D,, I’
ph

€

Acrit = — >
zzph‘Dph‘

crit —

TDA dispersion

1 Z ‘ D ph ‘2
€ _— =

TDA _ A E —
E_ " A = 5 ph v Cph

2
ET™A02) ) =0 Ext=e+4) |Dy,

coll

(@ the low-energy state has an energy lower than in TDA




Some features of RPA

@ larger transition strengths than in TDA

degenerate case

—1
de th €
|<v\D\0>\2=[122\%2(92’: )2] g | L|D|0)*=— Y D,
ph v ph

2
8ph Ecoll

[(vID|0)|>= ) |D,I> forTDA
ph

stronger collectivity than TDA thanks to the
ground-state correlation

P

— A A
[M= ) [X\dib - Y!bd)]



Sum rule
k-th moment of transition strengths  m,(F) = Z (ha)l-)k\ (0] ﬁ\ i) \2

m,
mean-energy of excited state E, = \/

k = 1 : energy-weighted sum rule (EWSR)

| | A h*
my(F) = 5<[F, [H, F]]) = 5<[F, [T, F11)(1 + k) = %Jdl’\ V) | pr)(1 + K)
constant when £ Z v,
model independént
k = —1: dielectric theorem
(F) = L o E[R(N)] _ 1 (D) | F| (D)) | p(A)) : HF(B) state with —AF
B P YE 0 20 . |

curvature of the total energy



Nuclear matter properties from the sum rule

A
m,(F) = Z (hw))*| (0] F|i) 2, F= Z r? Isoscalar monopole
] l
H— H+ F my = L (D | e~ He'" | @)
mean energy 2 dn? ~ |
E — \/ ml m, = 2_h2A<r2> m . = 1 82<Ifl> _ l 62<ﬁ>
m_ Y m T 2 o |, 2\ aEy
1
h? 0°E = S XF
=4/4—(") 2 o -
m 0(r?)? susceptibility in response to £
e 0*(E/IA
=4/4A (r?)? (E74)
m(r?) (1)
ZZ

2 — —1/3 2
\/KA 7 K,=K,+ KA +Ka*+ KCA4/3 |
m(r?) Blaizot (1980)



Stability of the mean-field solution

Solutions of the (Q)RPA : when X, Y, € is a solution, then Y*, X*, — Qis also a solution

if the HF(B) is stable against any "deformation®, all the €2 are real

if the HF(B) is unstable against some "deformation", 2 is imaginary Nakada 2016, 2017

*

——————————————————————————
any configurations (such as deformation) some configurations

Ex.: spherical solution of HF(B) is unstable against the quadrupole deformation

mp deformed state is energetically favored



PQ-representation of the (Q)RPA eaq.
(Q)RPA eq. [H.T1=hQI", [H.I)]=-hQl,

same form in the HO potential msPp coordinate and momentum

(I'; + F:D

1 [MAQ,
P, = — | P DY Q, =
/ i\/ 2 =1 / \2Migzﬂ

|, P, ] =0, [Q), @/] =0 (PuppllQ; P Pypp) = 9,

| | i
(QRPA eq.inthe PQrep. [H %] =iho,M,Q;,, [H,Q;]= - ﬁ@z
]

1 M
H’=H—/1N=const+2 @/21 | ’152/21@/21
> 2M, 2



PQ-representation of the (Q)RPA eq.

ur“uy uv v ur v
A B\( P\ . o [0
(B* A*) (_Pﬂ*) - thﬂM’l (Q/l*)
(A B) 0"\ n 1 [p
B* A*)\ —o* ) i M, \p*

P
normalization (Q*" Q%) o) = ihs,

— A A* . A e
@X—ZP a'a’ + P*aa @ﬂ—ZQﬂyaZaj+Q a,a
UL UL

The (Q)RPA defines the generalized coordinates and momenta on the HF(B) equilibrium.



Symmetries and the (Q)RPA

The HF(B) solutions breaks the symmetries

translational: locality
rotational: deformation

particle number: superfluidity

while the many-body Hamiltonian possesses the sym. : |[H', P] = O, [Hy;g, P] # 0

h
QRPAeq.PQrep.  [H'P,] = ihw, M0, [H, G, = —~—2,

M
I hoy, =0 *

(H'. Plyos = 0 the zero-energy solution the (Q)RPA eq.
» IRPA =

the broken sym. in the MFA is restored in the RPA




Symmetries and the (Q)RPA

H = | 1 2 1 2 M, 2 /A2 :
RpA — const Y, Py + Z 37 P A > 2703 zero-energy solution
0 A ,
70 [Hgpa> Pol =0
: 1
translational:  [Hjp,, R] = P, [Hpp, P1 = 0, [R.P] =1 My,=A
IAM
: 1
rotational: [Hiypar Q] = ?Jx, [Hipas J 1 =0, [Q,J,] =i M,= 7
l
Thouless—Valatin moment of inertia
1
global U(1): [Hgpp, ©1 = —=N, [Hgps, N1 =0, [O,N] =i My= A

/A



DFT for dynamics and excitations: TDDFT

Ht)=T+VEt)+W

= [ et ( 2h;v2)¢<w>+ [ dit @, 0b@) + [ [ dedydt @8 @w i vd)d@

A(ty, to) = /tl dt (U (t)|ihd, — FI(£)| ¥ (t))

5A A o)
scu(n)] — [0~ HIT(®) =0 <Gl A solution of TD Sch. eq.

E. Runge and E. K. U. Gross, PRL52(1984)997

Theorem 1: T (t)) = |P[p, Tol(t)) e  p(r,t) < v(r,t) < ¥(r,1)

Action density functional A[p] = /ttl dt(®[p, Uol(t)|shdy — H(t)|¥[p, Tol(t))

Theorem 2: 5,;2?1;) —0 =g the exactdensity p(r,t)



Practical method for TDDFT: the Time Dependent Kohn-Sham equation

Reference system: without interactions

) N
h2
qiat¢i(ra t) = {—%Vz + vs[p] (T,t)} ¢i(r,1t) == the exact density P(r:t) =) [¢i(r,t)|?
=1

_

Action density functional for the reference system

Adlpl = Bilpl — | at [ drodlp](r,t)p(r, t)
" /t / ) theorem2  54.1p]  oB.[p) _
Blp] = / dt(¥[p](t)]id, — T|%[p)(t)) i o) opr ) =0

Interacting system

Action density functional

Alp] = Blp] — /to dt/drv(r,t)p(r,t) Theorem 2 5A[p] - 5B.|p] o) 5 Aogs[p] .,
_ 5 . | op(rst)  dp(r,t) " p(r,t)
= Bulpl - [ dt [ dro(r.)p(r.t) + {Ble] — Bulp]}
= Bg[p] — /t 1 dt/drv(r,t)p(r,t) — Aerr[p] p(’l“, t)

the exact density of the int. system

Blp] = /t " dH(B]p, o] (1) ]i8, — T — W|T[p, To] (1))



Linear-response TDDFT for vibrational modes: RPA (“for t<0 R

ho(r)@i(r) = €:¢i(r)
v(r,t) = { 0 for t<0 perturbing field oscillates at a frequency w ho(r) = h[po](r)
? Vext (’T’, t) for t > 0 Vext (fr, t) = Vext (r)e—iwt —+ v:xt ('r)ei“’t Po ('r) — Z |¢z(r)|2

TDKS eq. for t>0
10:i (1, t) = {h[p](r;t) + Vext (7, t) }2hi(r, t)
p(r,t) = Z |¢z’(r7t)|2

transition density also oscillates at a frequency w
p(r,t) = po(r) + dp(r,t)

h(p](r,t) = h? V2 4 0 Acs ) op(r,t) = ; @; (r)0v;(r,t) + pi ()] (r,t)
2m op | |
Oscillation around the ground state: op(r,t) = dp(r)e "t 4+ §p* (r)e*?
Yi(r,t) = (@i(r) + dp;(r, t))e "< §upi(r,t) = fi(r)e— b 4 g;(r)eit
Linearized TDKS eq.
i0:091(r1) = (ho(r)—e)ws(r )+ ( [arat°L 2I0D 5p(07,1) + v (r.) ) 04(r) Xi = [ drey, () £i(r)

Yo = / dr e, (r)gi(r)

RPA eaq.

oh oh
wXmi =(€m — €;)Xmi + Z//d"’d"“'¢:n("°)¢; ("“’)%Cbi("“)d?n("“')an + Z//drdr'cb;(r)qb:(r')%qb,,;(’l“)qu (7")Yn;
nj nj

Sh Sh
~wYmi =(€m — €)Xmi + Y //drdr'¢;(r)¢;(r’)%cm(r)qbn(r’)Ynj + // drdr’¢;(r)¢2(r’)5¢i(r)¢j(r’)an
nj nj




Vibrational modes of excitation



Rich variety of collective vibrations

GR is strongly excited by a one-body operator, and exhausts a sum-rule value

F = Z 2 [dI’VLYL(f')l//T(I’GTXG‘ {;} | o")(T] {;} | )y (ro't’)

c,00 T,7T

space spin Isospin



Collective modes of excitation in deformed nuclel

nuclear DFT for Quasiparticle-RPA in deformed nuclei

Skyrme EDF

Matrix-QRPA
K. Yoshida et al., PRC78(2008)064316
C. Losa et al., PRC81(2010)064307

J. Terasaki et al., PRC82(2010)034326

LR-TDDFT
S. Ebata et al., PRC82(2010)034306

G. Scamps et al., PRC89(2014)034314

FAM-QRPA
M. Stoitsov et al., PRC84(2011)041305

M. Kortelainen et al., PRC92(2015)051302R
K. Washiyama et al., PRC96(2017)041304R
Gogny EDF
S. Péru et al., PRC77(2008)044313

Relativistic EDF

D. P. Arteaga et al., PRC79(2009)034311
T. Nikié et al., PRC88(2013)044327

Sis(E) [e2fm?*/MeV]

pairing and deformation taken into account

QRPA and LR-TDDFT(BCS)

Scamps et al.

Giant Quadrupole Resonance (GQR)
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: : : : KY, T. Nakatsukasa, PRC83(2011)021304R
Shape evolution seen in Giant Dipole Resonance
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: : : : KY, T. Nakatsukasa, PRC83(2011)021304R
Shape evolution seen in Giant Dipole Resonance
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Deformation effect in Giant Monopole Resonance?

F = Jd?rzl/ﬂ(?’)l//(?) volume change =~ <@ incompressibility of nuclear matter

J.-P. Blaizot,
Phys. Rep. 64(1980)171

deformation splitting”?

U. Garg, et al., PRL45(1980)1670
D. H. Youngblood, et al., PRC60(1999)067302

03 m—m—— —_— -
154Sm _

E0 EWSR/MeV

o
o
I
I

no angle dependence as in GDR

Fraction E0 EWSR/MeV
o

S 10 15 20 25

Ex(MeV) @Texas A&M Univ.



KY, T. Nakatsukasa, PRC88(2013)034309
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GMR in the Sm isotopes

Yoshida—Nakatsukasa ('13)
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GMRinthe Sm iSOtOpes KY, T. Nakatsukasa, PRC88(2013)034309

Ratio of EWS
higher/lower

5 =031 1.9
5 =0.29 3.2

larger strengths in the lower peak
in a strongly-deformed nucleus

Strength (fm4/MeV)

stronger coupling between GMR and GQR
as deformation increases

splitting energy

8 10 12 14 16 18 20 22 ratio of strengths
Excitation energy (MeV)



Coupling of GMR and GQR
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Deformation splitting of the GQR

Strength (fm*/MeV)
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Coupling at the static level KY, PRC104(2021)044309
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Isovector (|V)-G MR in deformed nuclei KY, T. Nakatsukasa, PRC88(2013)034309
F = Z Jdrr l//T(I”T)<T‘T3‘T>l//(}"T’)

(x102) |
emergence of

deformation “splitting”
AE ~ 10 MeV @>*Sm
~ 2 X AE(ISGMR)

due to the coupling to
the K = 0 of IV-GQR

—l
o

Strength (fm4/MeV)

development of deformation




Deformation effect on GMR in light nuclei: universality
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Deformation splitting in a light nucleus

Physics Letters B 748 (2015) 343-346

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Splitting of ISGMR strength in the light-mass nucleus *Mg due
to ground-state deformation

Y.K. Gupta®!, U. Garg?, ].T. Matta?, D. Patel?, T. Peach?, ]. Hoffman ®2, K. Yoshida "¢,
M. Itoh &3, M. Fujiwara ¢, K. Hara¢, H. Hashimoto ¢, K. Nakanishi ¢, M. Yosoi ¢,

H. Sakaguchi®, S. Terashima®, S. Kishi®¢, T. Murakami ¢, M. Uchida®*, Y. Yasuda®¢,

H. Akimune !, T. Kawabata®°, M.N. Harakeh"

First observation of the splitting of GMR strengths in a light system

universal feature in deformed nuclei

background-free high-resolution experiment @RCNP
parameter-free nuclear DFT calculation
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GMR |nsg|heforaed neutron-rich nuclei <Y, PRC82(2010)034324
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1500 - mond vole 90Zr 7 100 7 108 . 110 112Zr o ey
1200 -
900 -
600 -

300

1000 - - - - - IV strengths in low energy

monopole ¢ ' ' . .
750 - 0 o) _ " W 0 excitation of neutrons

500

deformation splitting
in IVGMR

250

Strength (fm*/MeV)

-

1000 - - - - -

quadrupole
o 1o M 0 (m) (n (0)

500 -~ .

250

| | |"T T 1\1( | ;...‘I" T | |=1' |‘I'T —
0 10 20 30 40 500 10 20 30 40 500 '"10 20 30 40 500 "10 20 30 40 50010 20 30 40 50
E (MeV)



" _ - 3 A T - -
Isoscalar GDR and high-energy octupole resonance F=) Jd’”” Ny row(ro)
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IV dipole responses: charge-exchange channel
pu=—1:(p,n)type =2 J drrrY, (D' (F) (e 5, | (Fr')
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Anti-analog PDR and GDR

transition density
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1 pronounced IV character

around the surface
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not a simply IV mode
IS/IV mixing

spatially extended structure
weakly-bound neutrons



Cross-shell — 171w, excitation: lowest-lying dipole mode

protons are deeply bound
should be distinguished from the anti-analog of PDR
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Deformation effects in IV excitations for 7,

F = Z drrY, (D' (Fo){t | vy | ) (Fr')

KY,

RC102(2020)
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Nuclear beta decay

A semileptonic process governed by

an effective Hamiltonian for a low-energy ( << my,) charged current reaction:

G,V

H. . = \F/E ud de lé(x)y”(l — ys)ye(x)Jﬂ(x) +H.c. ]
G.=1.166 X 107> GeV 2
V., =0.9737

u



Nuclear beta decay ]

_ € F
transition matrix element: Ve Ve
1 = O Vud dxy,-(x)y"(1 —ys) (x)(F\J (x)| 1)
fi — \/5 We 4 }/5 l/jy |\ P 7
/

Nuclear currents involving not only the nuclear many-body wave functions but
the form factors and momentum tranfer

JH(x) = 7H(x) — d*(x)

vector currents  Z7* = (VY V) axial-vector currents  o/* = (A%, A)
(GV,)” (E ) :
decayrate: TI=—-—"“ J dE pE (E.—E.)° 3 Z' =
y 71_2 ” epe e( 0 e) JKK2Ji+1 <fH JL Hl>

multlpole operator



One-body charged-current operators: Impulse Approx.

Gamovy—TeIIer type A(r) = i S(r — r-)gAO'-T-i momentum transfer:
spatial component = JIoR T q =p;— P,
00 gA(q2 =0) =g,
(11Dt 1) = ignts) | [ 001+ o 1) = 0) =
. leptons wfs
nuclear transion density: p7Ar) = (/| Z Jdﬂ,ﬁ(i’ — )t [Y,(F) @ 6l i)
j=1

usually J/ = 1,L = Ois only considered

A "GT"
Fermi type VO(I’) — Z 5(,, . rj)gVTji
j=1

time component

o0

U1 Y Entee ) 10) = signtc) | dr o,

O b e

A
p/r) = (f1] Z [dﬂ,ﬁ(r — rj)?,iyj(?)\ | 7)
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Pioneering microscopic work for 3-decay based on DFT

J. Engel et al., PRC60(1999)014302 Hadronic current
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Charge Number Z



Important role of the spin-triplet pairing revealed by the microscopic cal.

J. Engel et al., PRC60(1999)014302 . k k k b
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courtesy of S. Nishimura (RIKEN)

Decay Properties Surveyed EURICA

+ BRIKEN (2019 ~ 2023)
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Systematic measurement of 3-decay@RIBF

S. Nishimura et al.

B-decay half-lives of r-process nuclei
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Short half-lives in the Zr region

KY, PTEP(2013)113D02
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Cross-shell — 172w, excitation: impact on B-decay rate
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Cross-shell — 172w, excitation: impact on B-decay rate
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Aim of this lecture

to understand the mean-field (MF) theory as an approximation to the
guantum theory of many-body system

to understand the similarity and difference between MF theory and
Density-Functional theory

to obtain physical picture characterizing the system from experimental data
with the help of mean field

to understand physics behind the recent experiments



