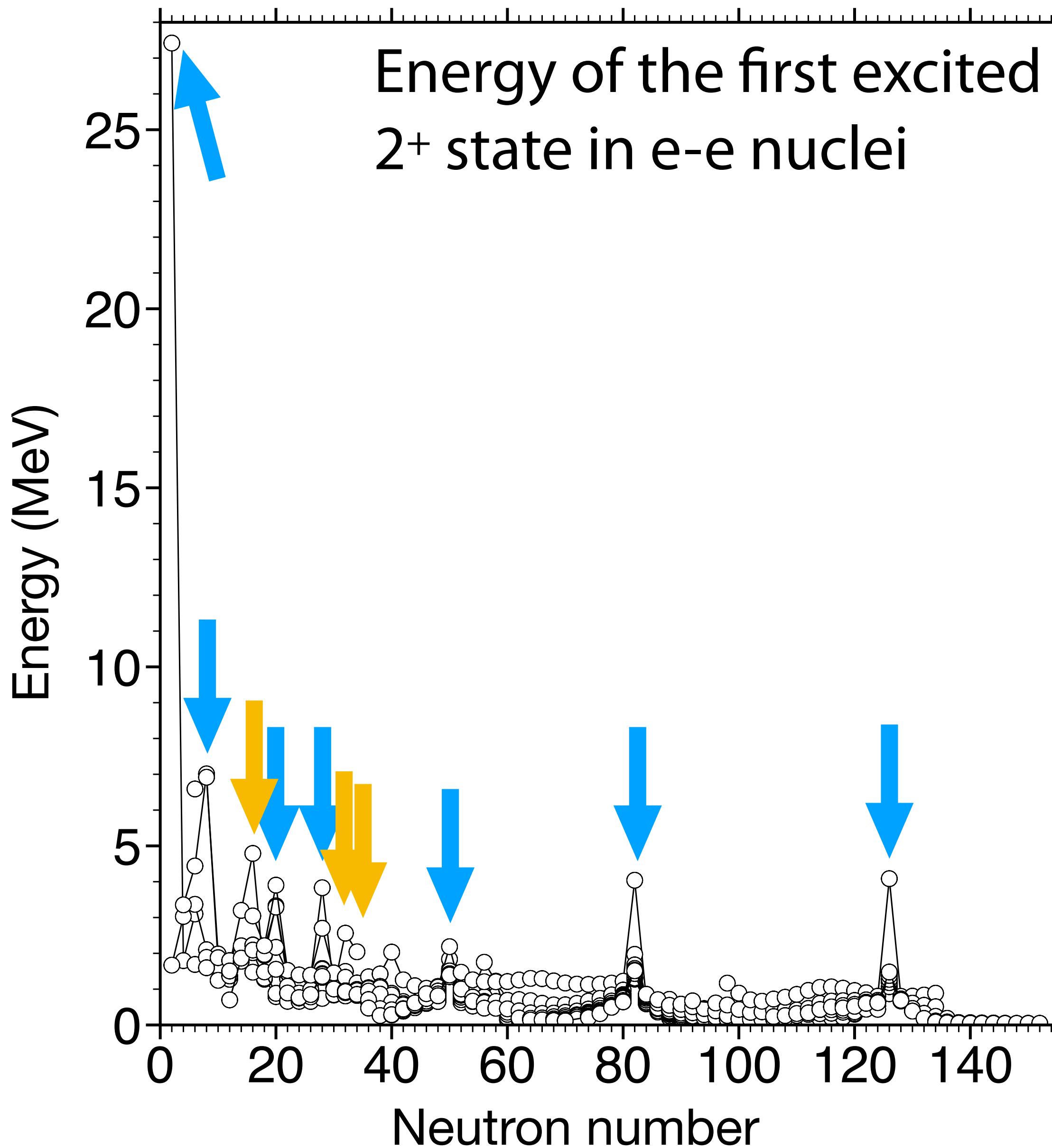


Mean-field theory for open-shell nuclei

—deformation—

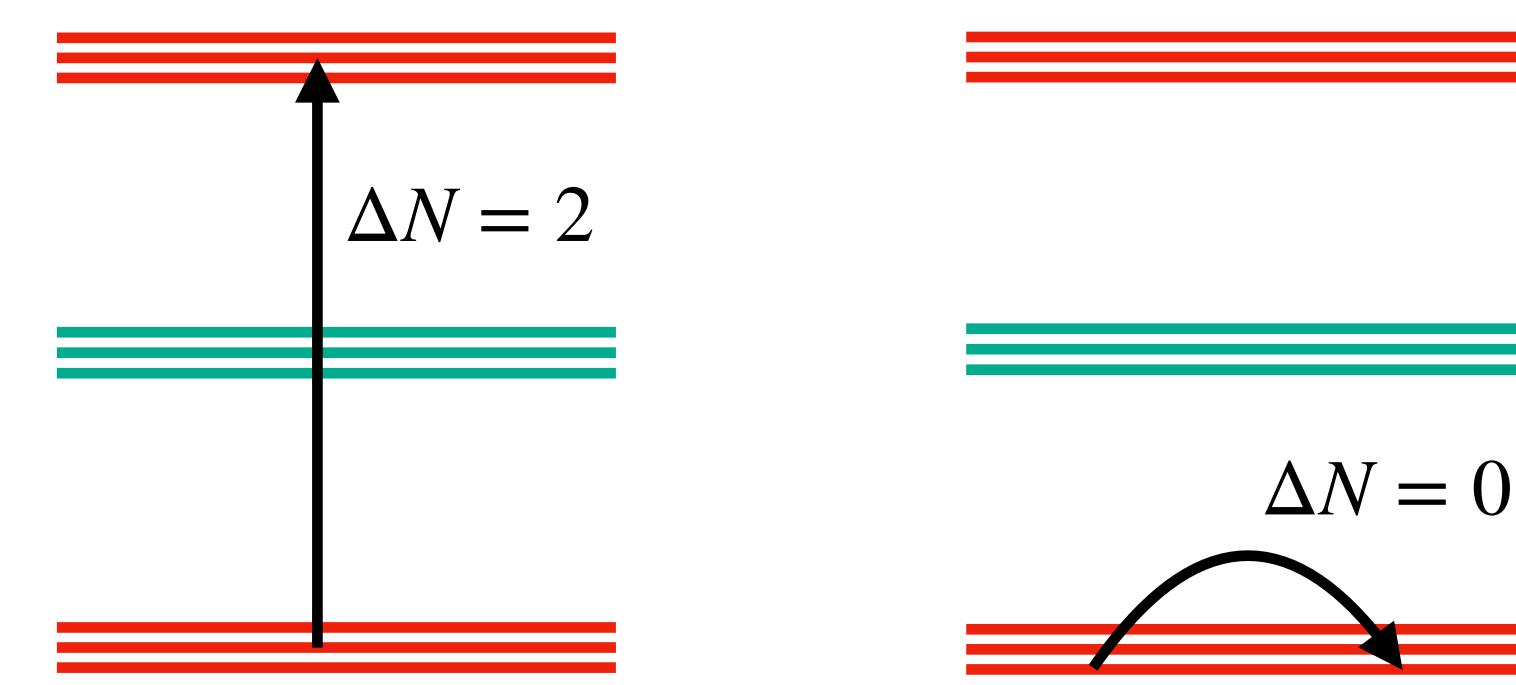
Quadrupole (2⁺) state energy: magic number



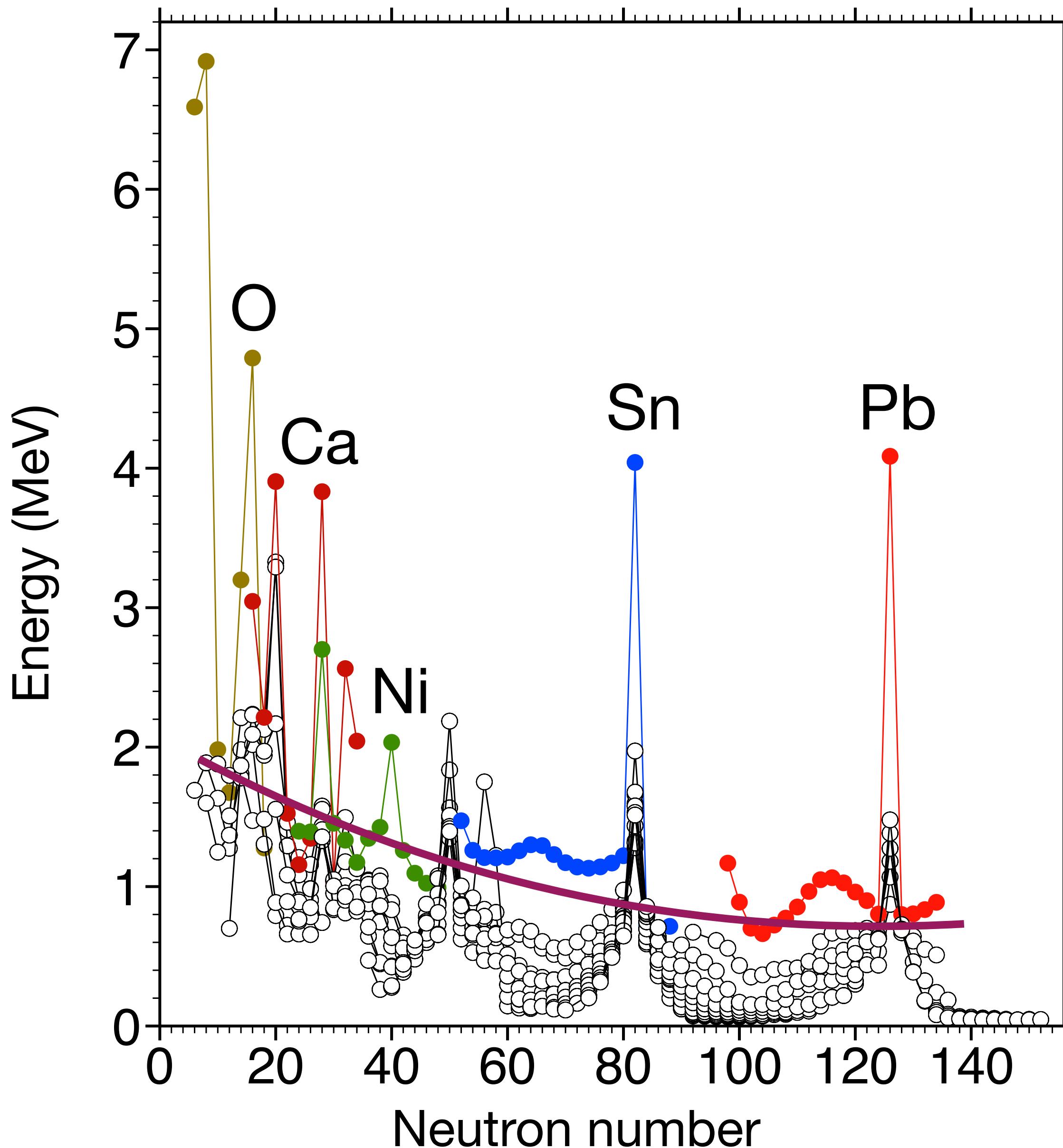
Canonical magic numbers
2, 8, 20, 28, (40), 50, 82, 126

New magic numbers in neutron-rich nuclei
16, 32, 34,...

magic nuclei are hard to excite



Quadrupole (2⁺) state energy: pairing



Singly-closed ($Z=\text{magic \#}$) nuclei have
an energy gap

The ground 0⁺ state is lowered by the **pairing**.

two neutrons above the magic # in a single orbital

j The total spin I can be 0, 2, 4, ..., $2j-1$.

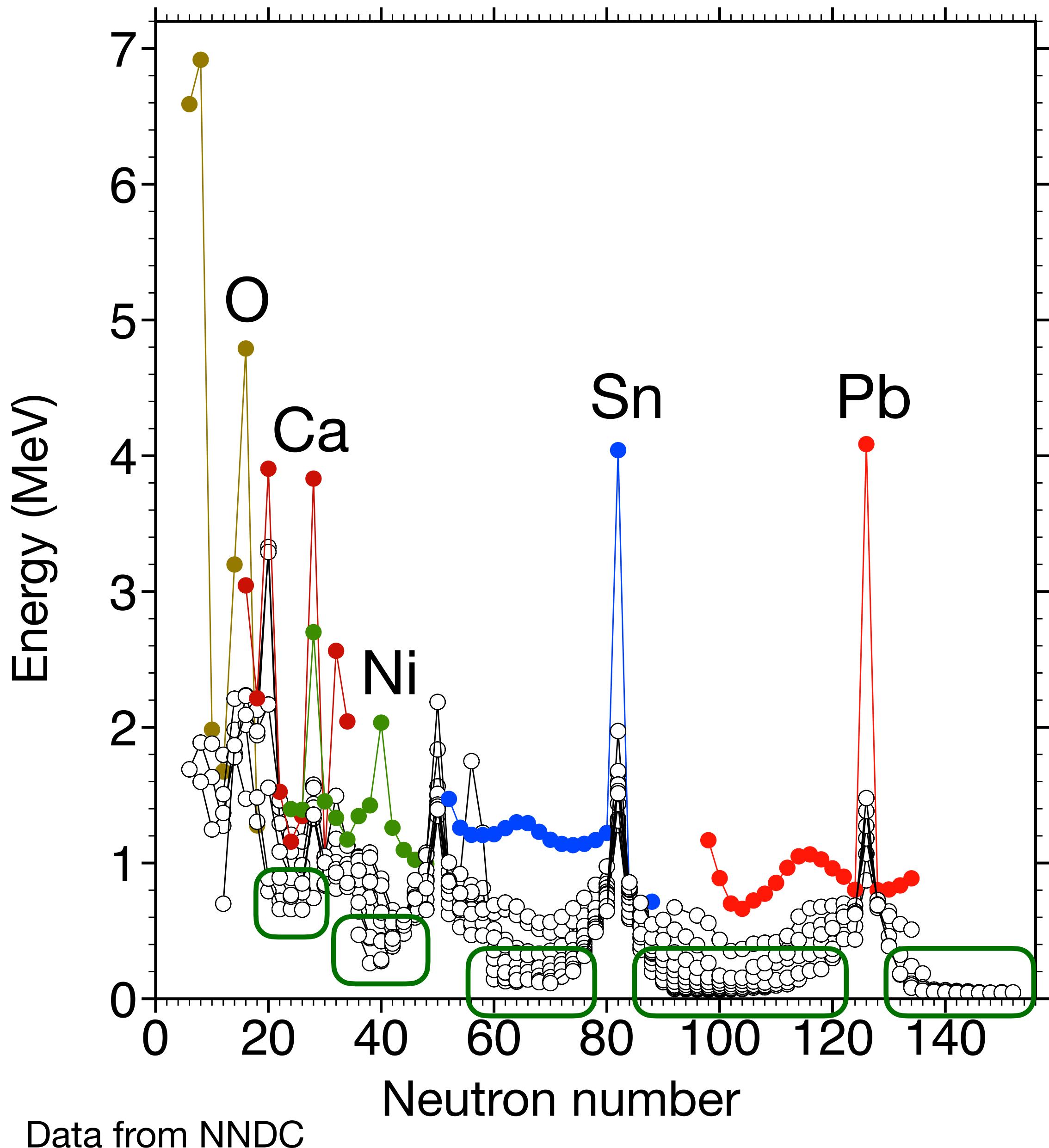
All the states are degenerated.

residual interaction

$$v(1, 2) = -\kappa \delta(r_1 - r_2)$$

$I=8$
 $I=6$
 $I=4$
 $I=2$
 $I=0$

Quadrupole (2⁺) state energy: zero mode

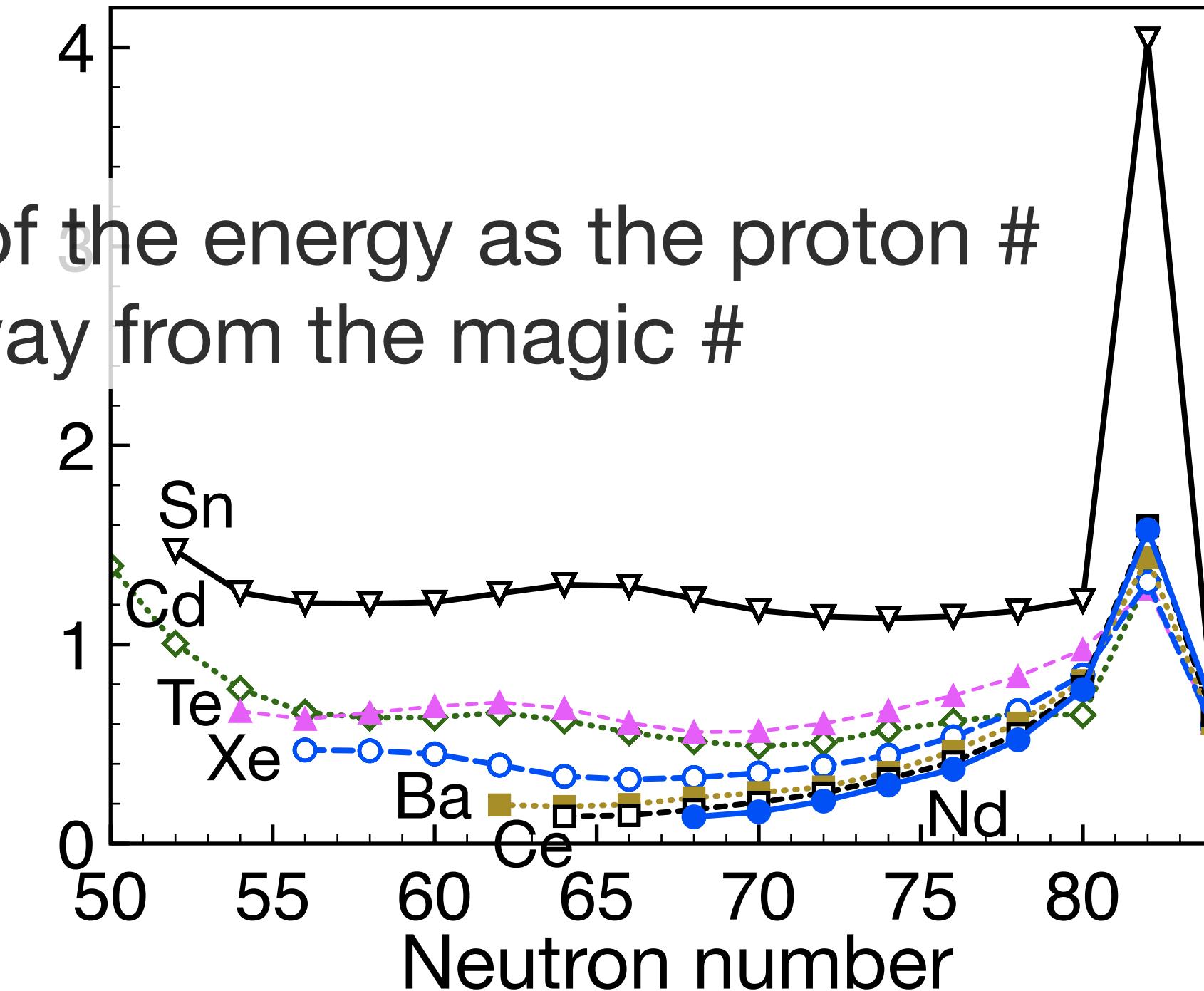


The singly-closed ($Z=\text{magic \#}$) nuclei have
an energy gap

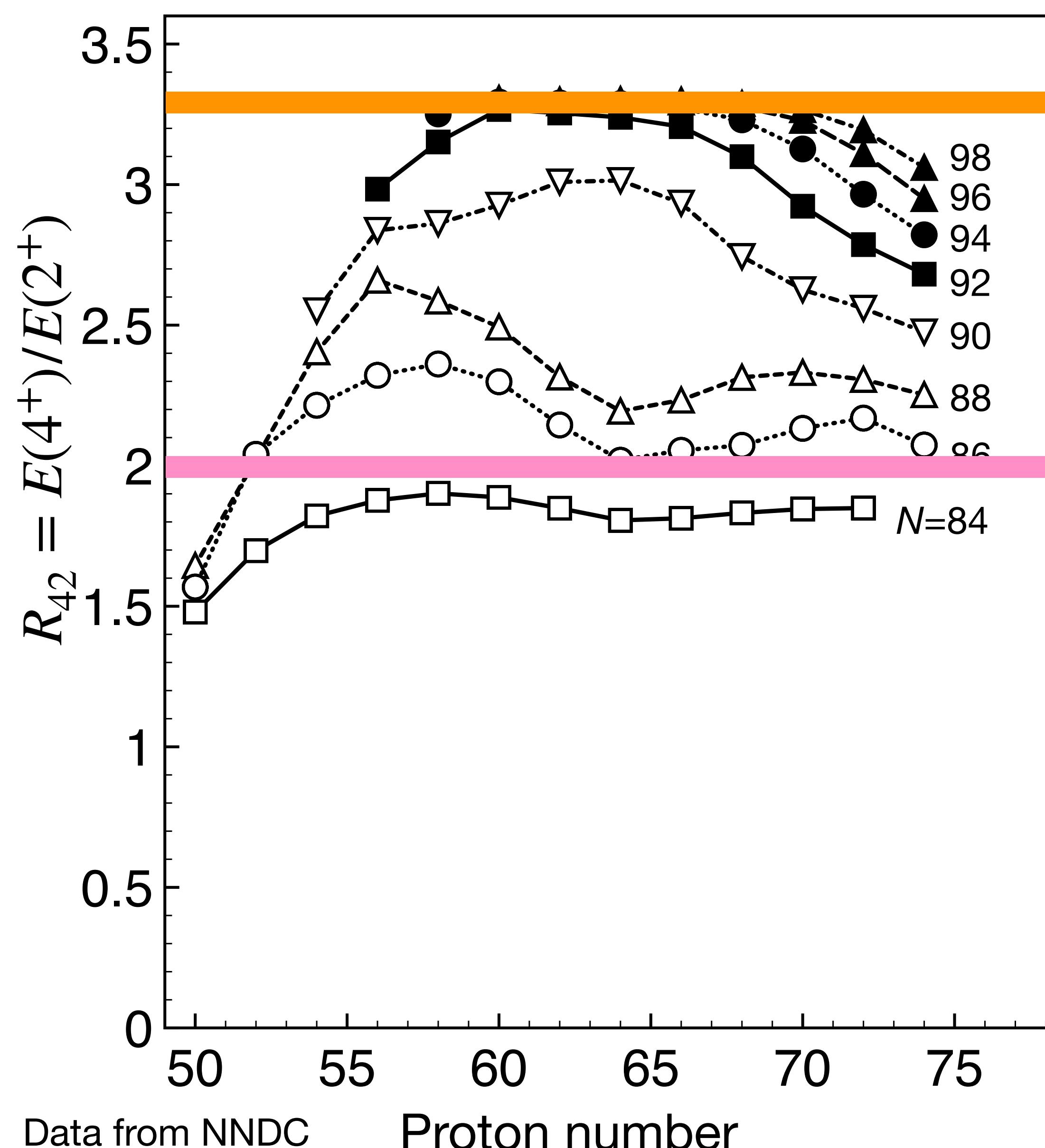
The ground 0⁺ state is lowered by the **pairing**.

“zero-energy” mode in mid-shell nuclei

Lowering of the energy as the proton #
moving away from the magic #



Excitation energies of 2^+ and 4^+ states



occurrence of collective excitations

Rotation

$$\hat{H} = \frac{\hat{I}^2}{2\mathcal{J}}$$

breaking of the rotational symmetry

$$E(I) = \frac{I(I+1)}{2\mathcal{J}}$$

$$R_{42} = \frac{4 \times 5}{2 \times 3} = 3.33 \dots$$

quadrupole deformation

Vibration

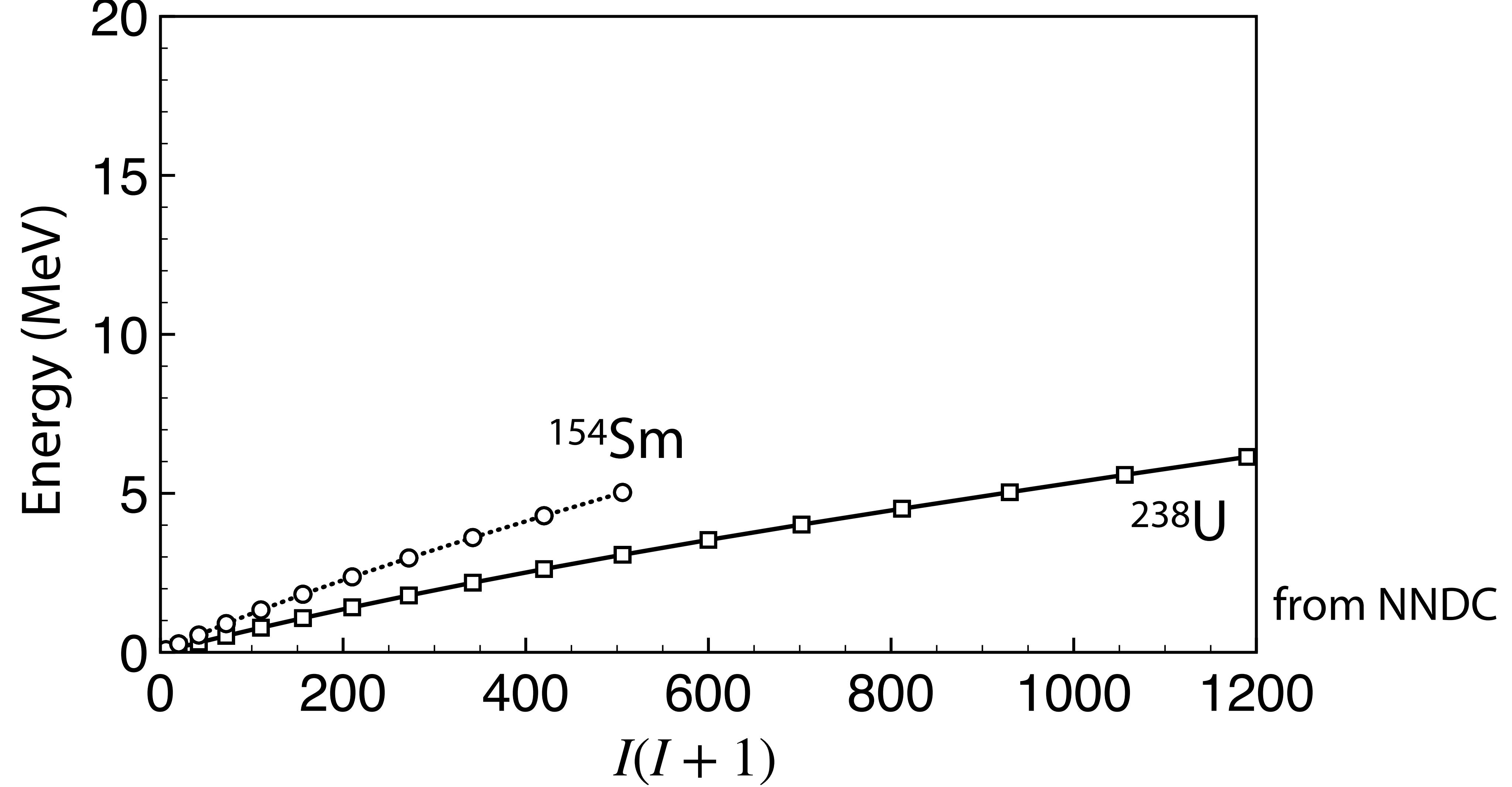
$$\hat{H} = \omega \hat{\Gamma}^\dagger \hat{\Gamma}$$

$$E(I) = \frac{I}{2}\omega$$

$$R_{42} = \frac{4}{2} = 2$$

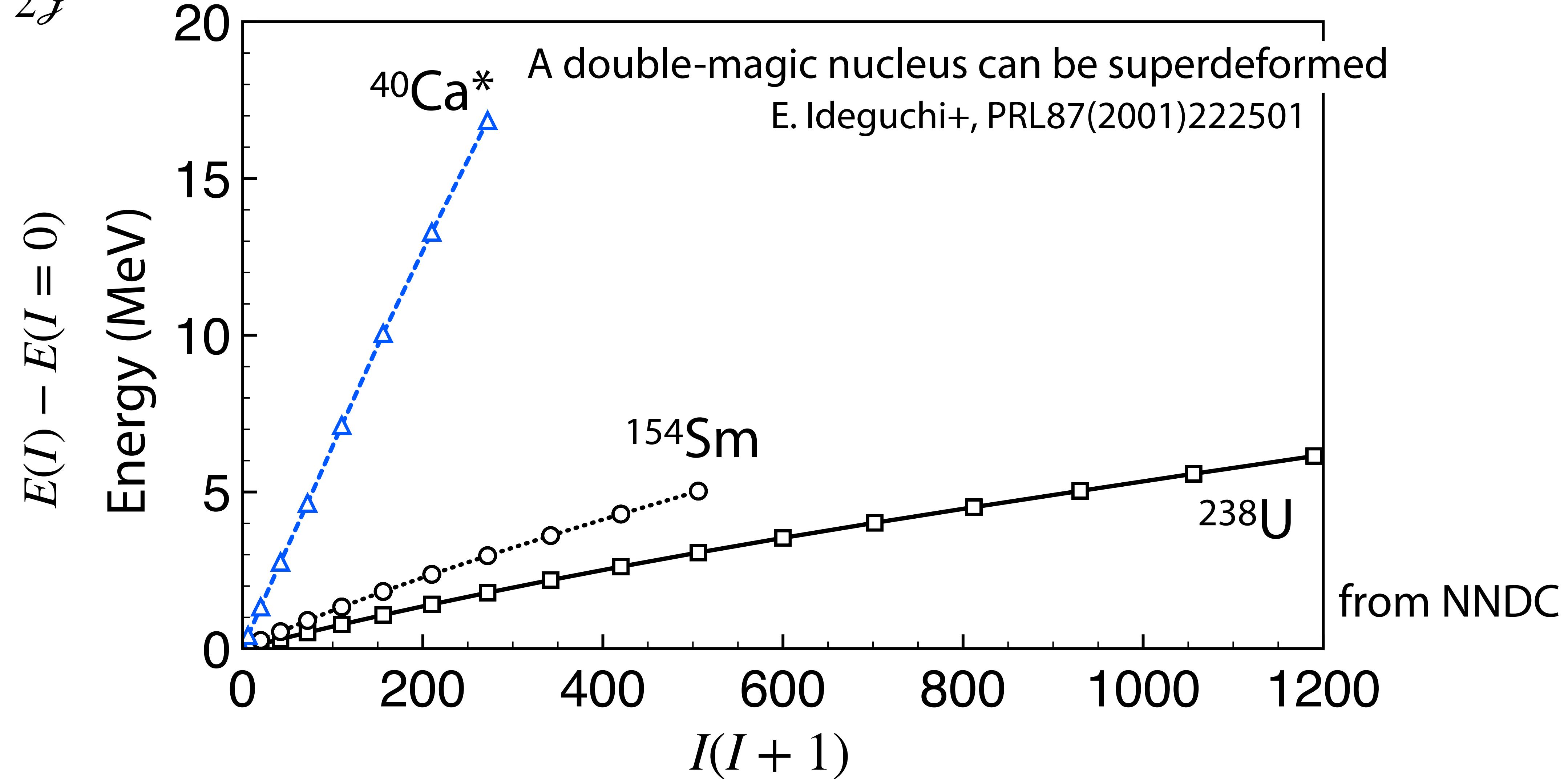
Emergence of the rotational band

$$E = \frac{I(I+1)}{2\mathcal{J}}$$

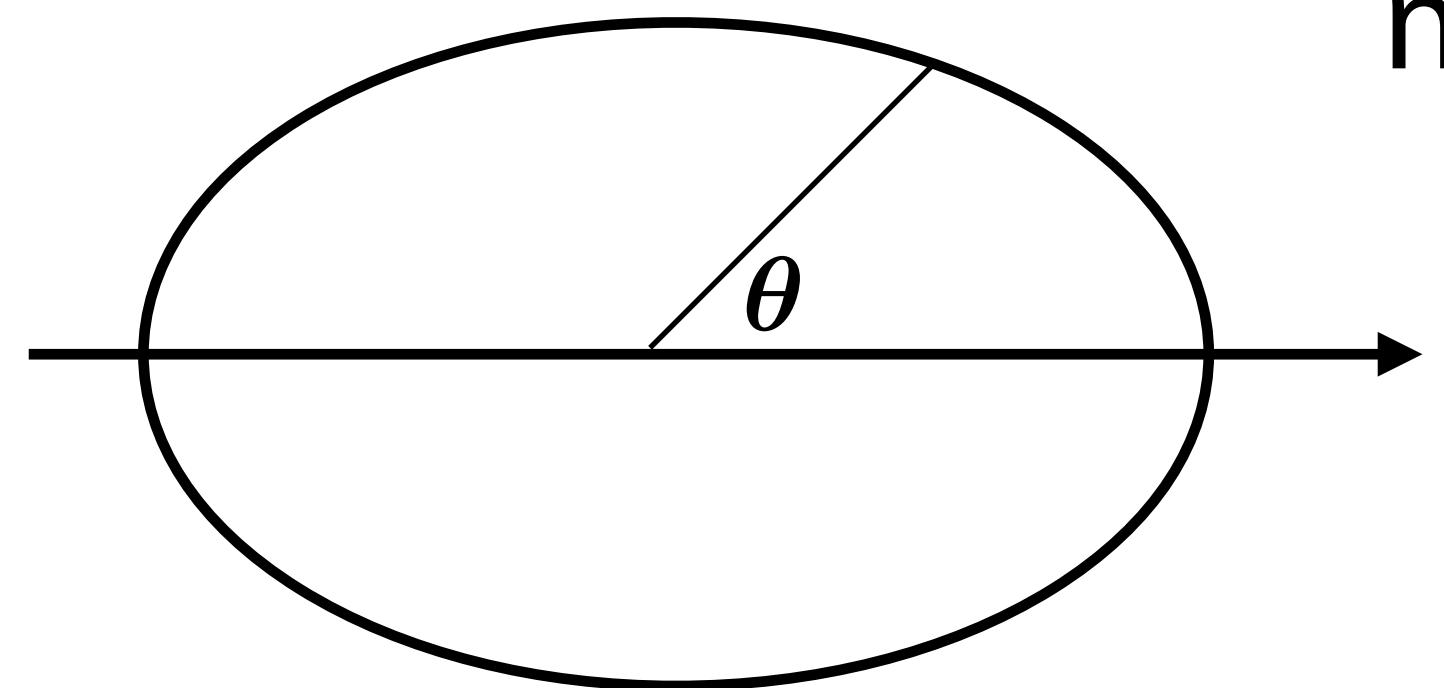


Emergence of the rotational band

$$E = \frac{I(I+1)}{2\mathcal{J}}$$



Some nuclei are deformed!



nuclear “surface”: classical picture

$$R(\theta, \phi) = \bar{R}_0 \left(1 + \sum_{\lambda\mu} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\theta\phi) \right) \quad \alpha_{2\mu} \neq 0$$

How to define the surface/shape of a quantal object?

$$\langle J = 0 | Y_{2\mu} | J = 0 \rangle = 0$$

one possible definition:

the nuclear shape = the shape of the mean field = that of the density

Symmetry and its breaking

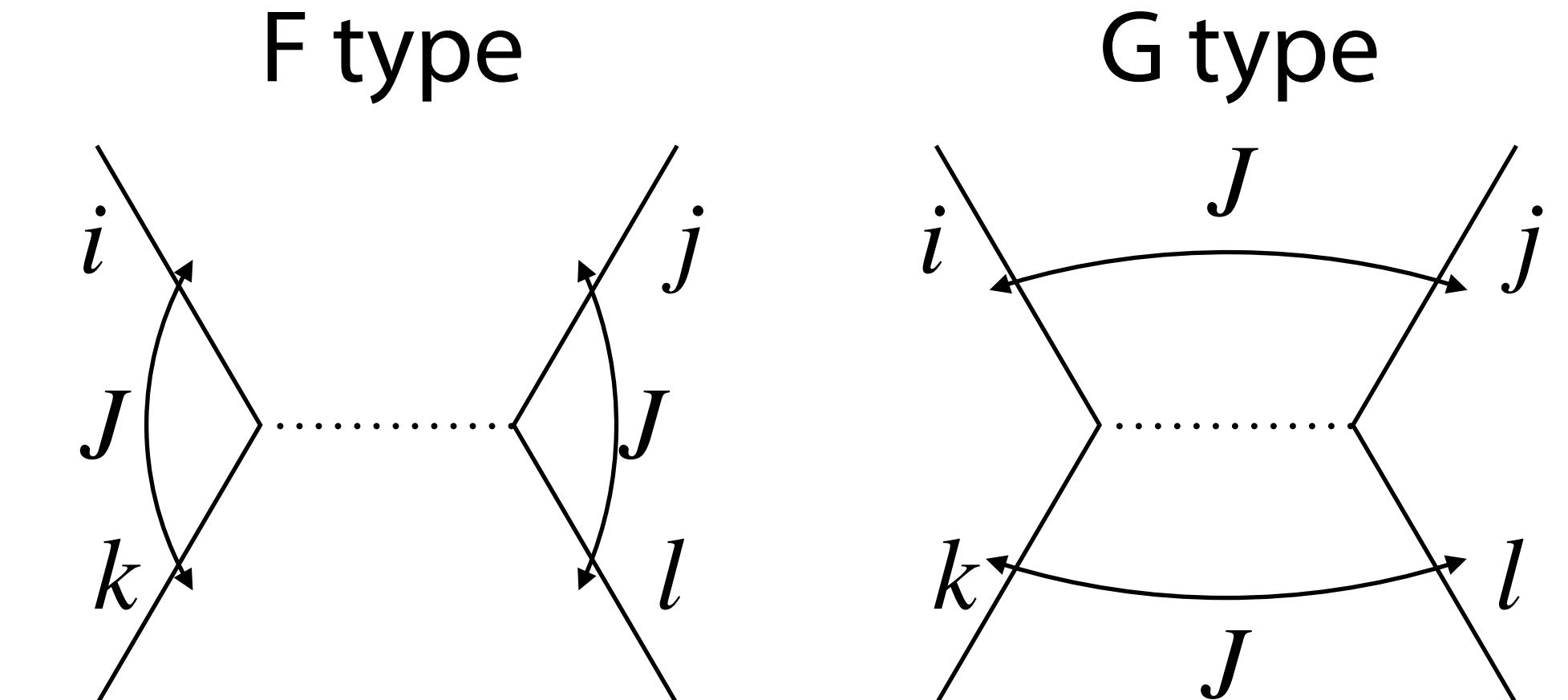
$[H, J] = 0$ The Hamiltonian is rotationally invariant: J is a good quantum number
The Hamiltonian is thus block diagonal w.r.t J .

$$H^{J=0} = H_{\text{MF}}^{J=0} + H_{\text{res}}^{J=0}$$

$$H_{\text{MF}}^{J=0} = \sum_{\alpha} \varepsilon_{\alpha} [a_{\alpha}^{\dagger} a_{\alpha}]_0 \quad \begin{array}{l} \text{s.p. orbital in} \\ \text{the spherical MF} \end{array}$$

$$H_{\text{res}}^{J=0,F} = \frac{1}{2} \sum_{ijkl,J} v_{ijkl}^F(J) : [[c_i^{\dagger} c_k]_J [c_j^{\dagger} c_l]_J]_0 :$$

$$H_{\text{res}}^{J=0,G} = \sum_{ijkl,J} v_{ijkl}^G(J) : [[c_i^{\dagger} c_j^{\dagger}]_J [c_l c_k]_J]_0 :$$



angular-momentum coupling: $[A_a B_b]_{JM} = \sum_{m_a m_b} (j_a m_a j_b m_b | JM) A_{a m_a} B_{b m_b}$

Symmetry breaking

$$H_{\text{MF}} = \sum_{\alpha} \varepsilon_{\alpha} [a_{\alpha}^{\dagger} a_{\alpha}]_0 + \sum_{\substack{J=0 \\ ij, J}} \Gamma_{ij}(JM) [c_i^{\dagger} c_j]_{JM} \\ + \sum_{ij, J} \left(\Delta_{ij}(JM) [c_i^{\dagger} c_j^{\dagger}]_{JM} + \Delta_{ij}^*(JM) [c_b c_a]_{JM} \right)$$

HF field

$$\Gamma_{ij}(JM) := \sum_{kl} v_{ikjl}^F(J) \langle \Phi | [c_k^{\dagger} c_l]_{JM} | \Phi \rangle$$

pair field

$$\Delta_{ij}(JM) := \sum_{kl} v_{ijkl}^G(J) \langle \Phi | [c_l c_k]_{JM} | \Phi \rangle$$

breaking of the particle number

appearance of the fields with $J > 0$

the rotational symmetry is broken

Symmetry breaking of the mean fields

$|\phi\rangle$:Slater det.

density matrix: $\rho_{ij} = \langle \phi | c_j^\dagger c_i | \phi \rangle$

U_s : Unitary trans.

$[H, U_s] = 0$ the symmetry the Hamiltonian has

$$|\bar{\phi}\rangle = U_s |\phi\rangle, \quad U_s |0\rangle = |0\rangle$$

trans. of c^\dagger, c

$$U_s c_k^\dagger U_s^\dagger = \sum_l U_{s lk} c_l^\dagger$$

$$(U_s^\dagger c_k^\dagger U_s = \sum_l U_{s kl}^* c_l^\dagger)$$

$$U_s c_k U_s^\dagger = \sum_l U_{s lk}^* c_l$$

$$(U_s^\dagger c_k U_s = \sum_l U_{s kl} c_l)$$

Symmetry breaking of the mean fields

density matrix for the transformed SD:

$$\bar{\rho}_{ij} = \langle \bar{\phi} | c_j^\dagger c_i | \bar{\phi} \rangle = \underbrace{\langle \phi | U_s^\dagger c_j^\dagger}_{=1} \underbrace{(U_s U_s^\dagger) c_i U_s}_{=1} | \phi \rangle =: \langle \phi | c_{\bar{j}}^\dagger c_{\bar{i}} | \phi \rangle$$

$$c_{\bar{j}}^\dagger := \underbrace{U_s^\dagger c_j^\dagger U_s}_{=1} = \sum_k U_{sjk}^* c_k^\dagger, \quad c_{\bar{i}} := \underbrace{U_s^\dagger c_i U_s}_{=1} = \sum_l U_{sil} c_l$$

$$= \sum_{kl} U_{sjk}^* U_{sil} \rho_{lk} = (U_s \rho U_s^\dagger)_{ij}$$

$$\rho \rightarrow \bar{\rho} = U_s \rho U_s^\dagger$$

Symmetry breaking of the mean fields

$$\rho \rightarrow \bar{\rho} = U_s \rho U_s^\dagger$$

the energy is unchanged

$$[H, U_s] = 0$$

$$E[\rho] = \langle \phi | H | \phi \rangle$$

$$E[\bar{\rho}] = \langle \bar{\phi} | H | \bar{\phi} \rangle = \langle \phi | U_s^\dagger H U_s | \phi \rangle = E[\rho]$$

variation of $\delta\rho, \delta\bar{\rho} := U_s \delta\rho U_s^\dagger$

$$E[\rho + \delta\rho] = E[\bar{\rho} + \delta\bar{\rho}]$$

$$\sum_{ij} \frac{\delta E}{\delta \rho_{ji}} \delta \rho_{ij} = \sum_{ij} \frac{\delta E}{\delta \rho_{ji}} \bigg|_{\rho=\bar{\rho}} \delta \bar{\rho}_{ij}$$

$$h := \frac{\delta E}{\delta \rho}$$

→ $\text{tr} h[\rho] \delta \rho = \text{tr} h[\bar{\rho}] \delta \bar{\rho} = \text{tr} U_s^\dagger h[\bar{\rho}] U_s \delta \rho$

→ $h[\bar{\rho}] = U_s h[\rho] U_s^\dagger$

Symmetry breaking of the mean fields $h[\bar{\rho}] = U_s h[\rho] U_s^\dagger$

self-consistent symmetry

ρ is invariant under the trans. $U_s : \bar{\rho} = \rho$

$h[\bar{\rho}] = h[\rho]$ commutes with U_s

the solution of HF (mean field and density) holds the symmetry the Hamiltonian has

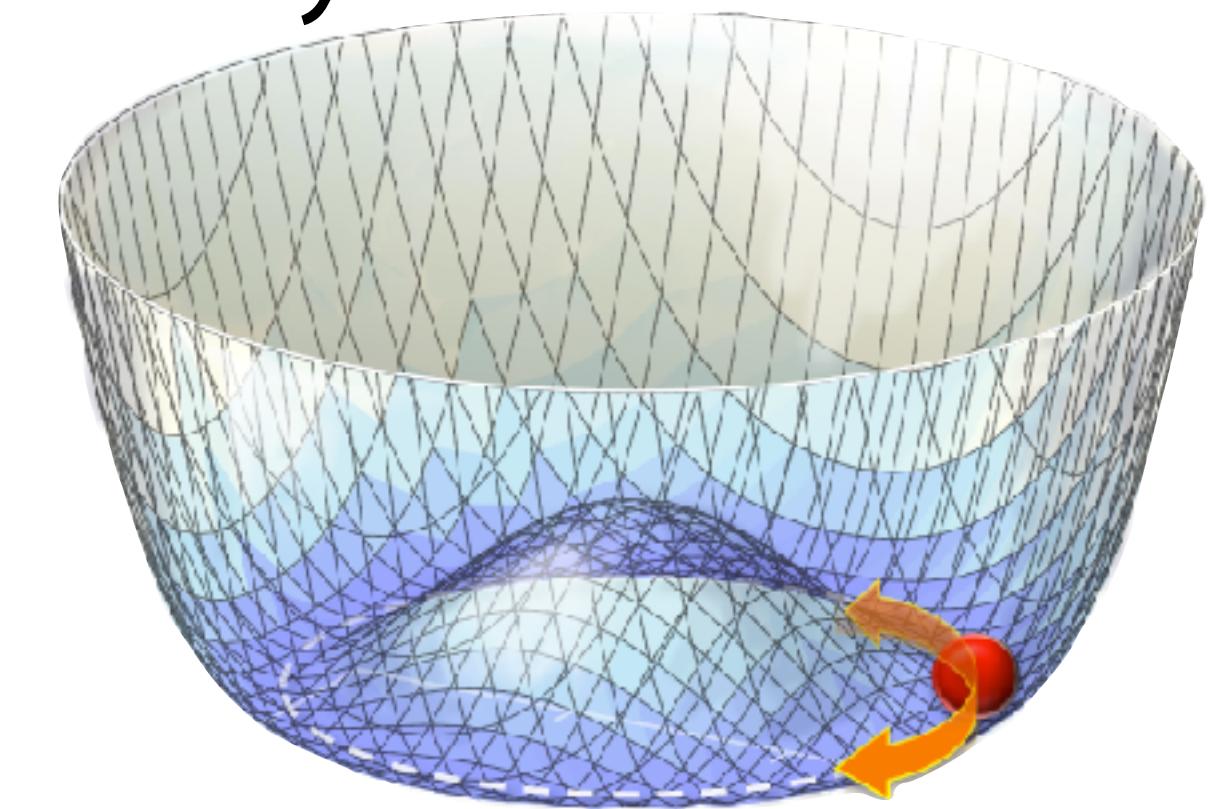
broken symmetry

ρ is NOT invariant under the trans. $U_s : \bar{\rho} \neq \rho$

$[h[\rho], \rho] = 0 \rightarrow [h[\bar{\rho}], \bar{\rho}] = 0 \quad \text{since} \quad [h[\bar{\rho}], \bar{\rho}] = U_s [h[\rho], \rho] U_s^\dagger = 0$

degenerate solutions

U_s is a continuous sym., infinite numbers of degenerate solutions



Symmetry breaking of the mean fields: the case of HFB

Kasuya–Yoshida, PTEP(2021)

$$|\Phi\rangle \rightarrow |\bar{\Phi}\rangle = U_s |\Phi\rangle$$

pair tensor: $\bar{\kappa}_{ij} = \langle \bar{\Phi} | c_j c_i | \bar{\Phi} \rangle = \langle \Phi | U_s^\dagger c_j (U_s U_s^\dagger) c_i U_s | \Phi \rangle = \sum_{kl} U_{sjl} \kappa_{kl} U_{sik} = (U_s \kappa U_s^T)_{ij}$

then, the generalized density matrix and the HFB Hamiltonian are transformed as

$$\bar{\mathcal{R}} = \begin{pmatrix} U_s & 0 \\ 0 & U_s^* \end{pmatrix} \begin{pmatrix} \rho & \kappa \\ -\kappa^* & 1 - \rho^* \end{pmatrix} \begin{pmatrix} U_s^\dagger & 0 \\ 0 & U_s^T \end{pmatrix} =: \mathcal{U}_s \mathcal{R} \mathcal{U}_s^\dagger$$

$$\mathcal{H}[\bar{\mathcal{R}}] = \mathcal{U}_s \mathcal{H} \mathcal{U}_s^\dagger$$

similar to the case of HF

(note) the case of the anti-unitary U_s ex. time-reversal operation

$$\mathcal{R} \rightarrow (\mathcal{U}_s \mathcal{R} \mathcal{U}_s^\dagger)^*, \quad \mathcal{H} \rightarrow (\mathcal{U}_s \mathcal{H} \mathcal{U}_s^\dagger)^*$$

Symmetry breaking of the mean fields

pairing

$$\langle P^\dagger \rangle \neq 0$$

particle-number sym.

$$e^{A^\dagger} |0\rangle$$

Cooper-pair condensation

$$|\langle \Psi_0^{N+2} | P^\dagger | \Psi_0^N \rangle|^2$$

strong transition
“rotation”

deformation

order para.

$$\langle Q_{\lambda\mu} \rangle \neq 0$$

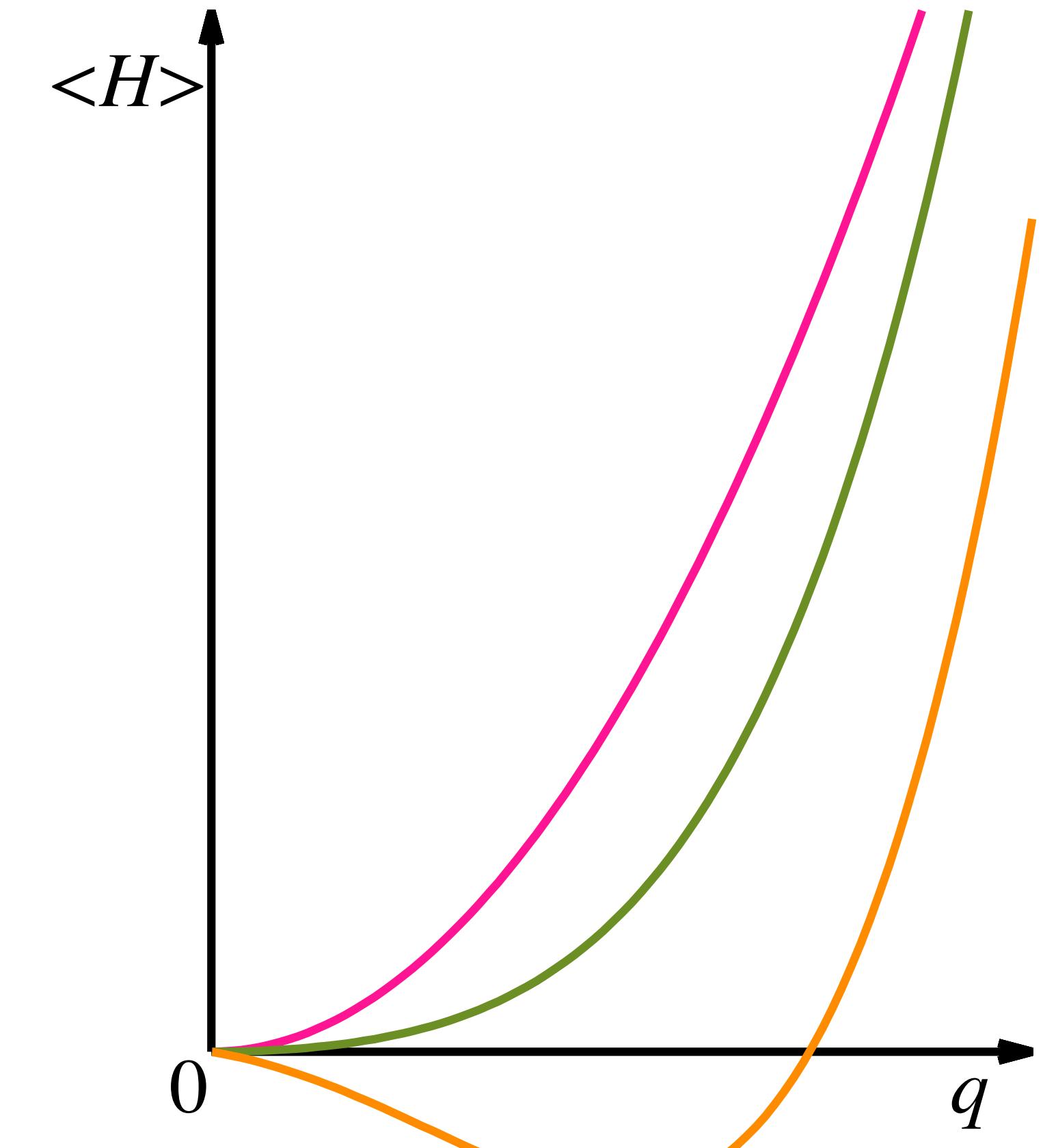
breaking

vacuum

rotational sym.

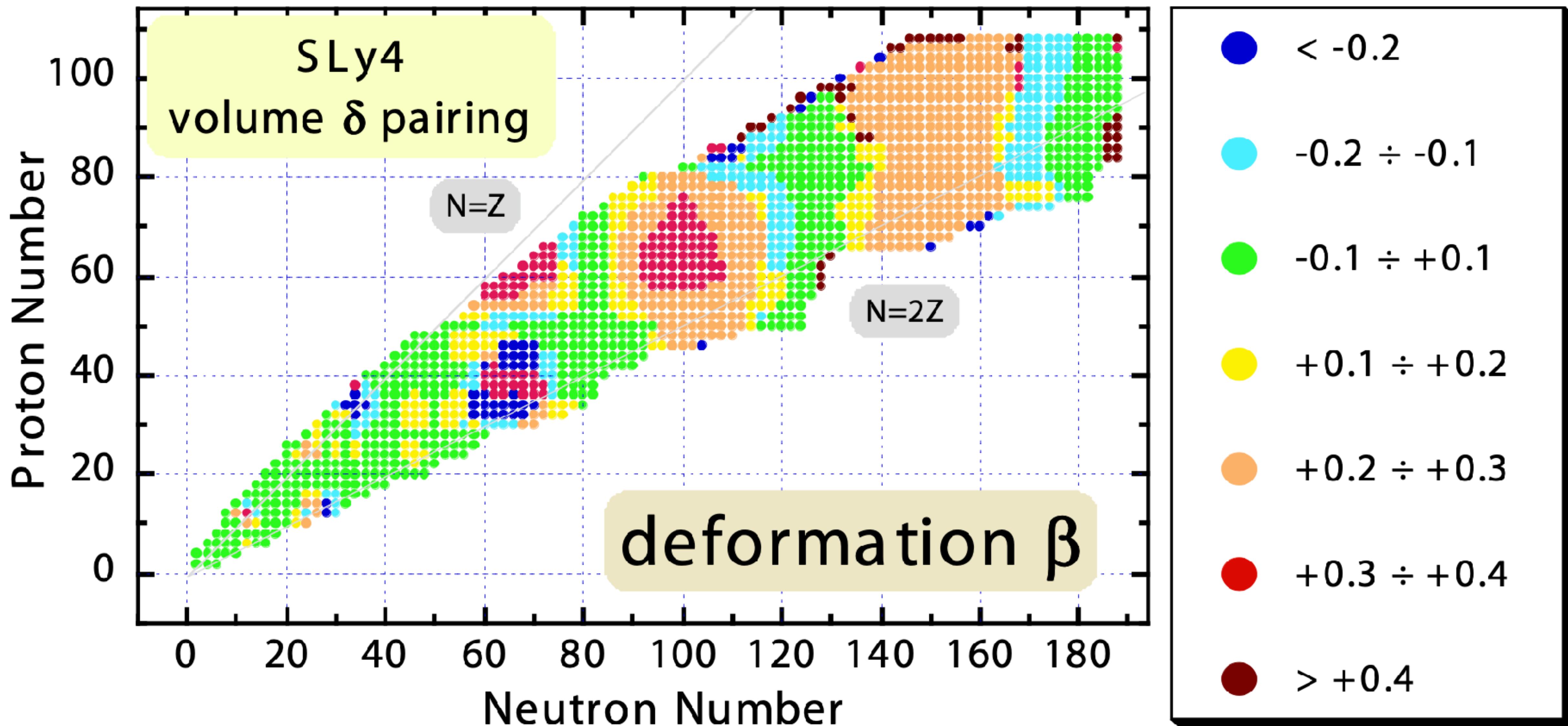
$$e^{\Gamma^\dagger} |0\rangle$$

Vib.-phonon condensation



Predicted deformation by the HFB cal.

Stoitsov+, 2003



Phenomenological mean fields for deformed nuclei

✓ anisotropic oscillator potential

$$h_{\text{HO}} = \frac{1}{2m} \mathbf{p}^2 + \frac{m}{2} \sum_i \omega_i^2 x_i^2$$

$$= \sum_i \hbar \omega_i (\bar{p}_i^2 + \bar{x}_i^2) = \sum_i \hbar \omega_i (n_i + \frac{1}{2})$$

stretched coordinates

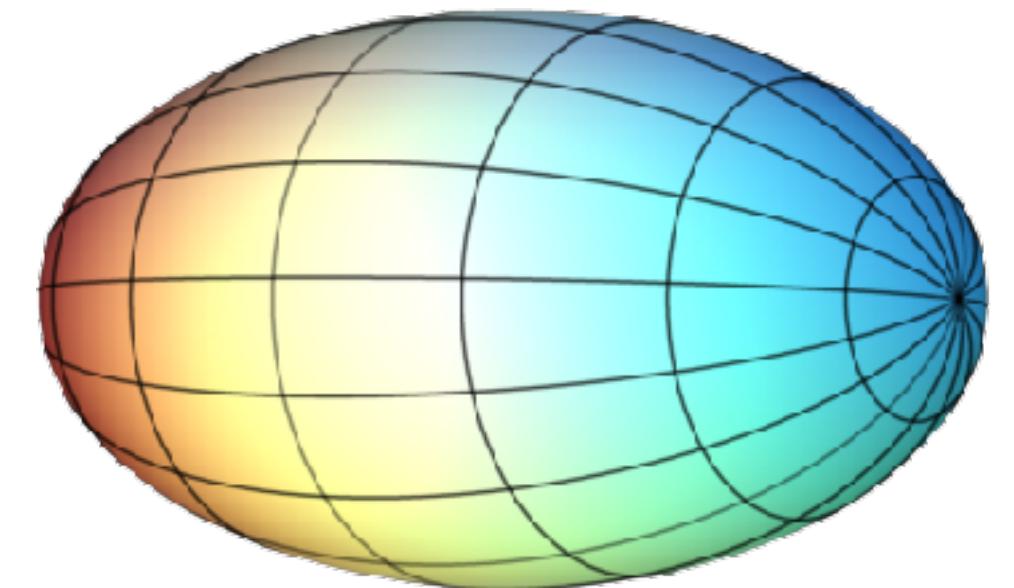
$$\bar{p}_i = \sqrt{\frac{1}{m\hbar\omega_i}} p_i, \quad \bar{x}_i = \sqrt{\frac{m\omega_i}{\hbar}} x_i$$

$$C_i^\dagger = \frac{1}{\sqrt{2}} (\bar{x}_i - i\bar{p}_i), \quad n_i = C_i^\dagger C_i$$

the shape of the potential: equipotential surface

$$\sum_i \omega_i^2 x_i^2 = \text{const} \quad \leftrightarrow \quad \frac{x^2}{R_x^2} + \frac{y^2}{R_y^2} + \frac{z^2}{R_z^2} = \text{const}$$

spheroid



under the volume conservation

$$\omega_x \omega_y \omega_z = \omega_0^3 \leftrightarrow R_x R_y R_z = R_0^3$$

$$\frac{R_i}{R_0} = \frac{\omega_0}{\omega_i} \quad \begin{array}{l} \omega_1, \omega_2, \omega_3 \\ \text{or} \\ \omega_x, \omega_y, \omega_z \end{array}$$

Axially-symmetric case

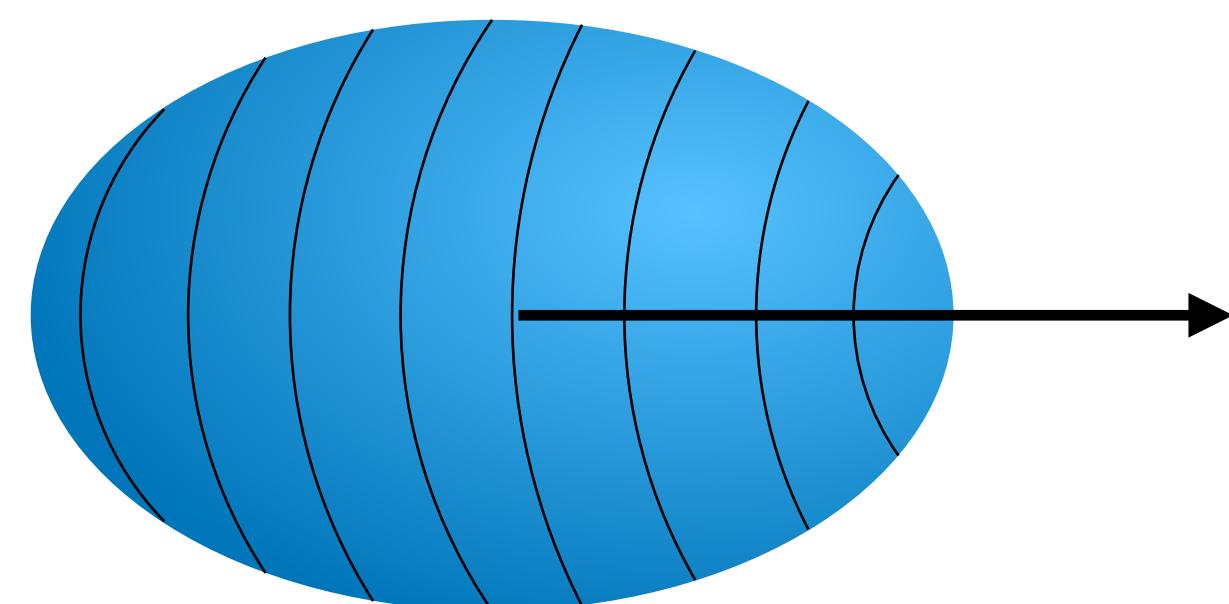
$$\omega_1 = \omega_2 =: \omega_{\perp}$$

$$\omega_{\perp} = \omega_0 \left(1 + \frac{1}{3} \epsilon_2\right)$$

$$\omega_3 = \omega_0 \left(1 - \frac{2}{3} \epsilon_2\right)$$

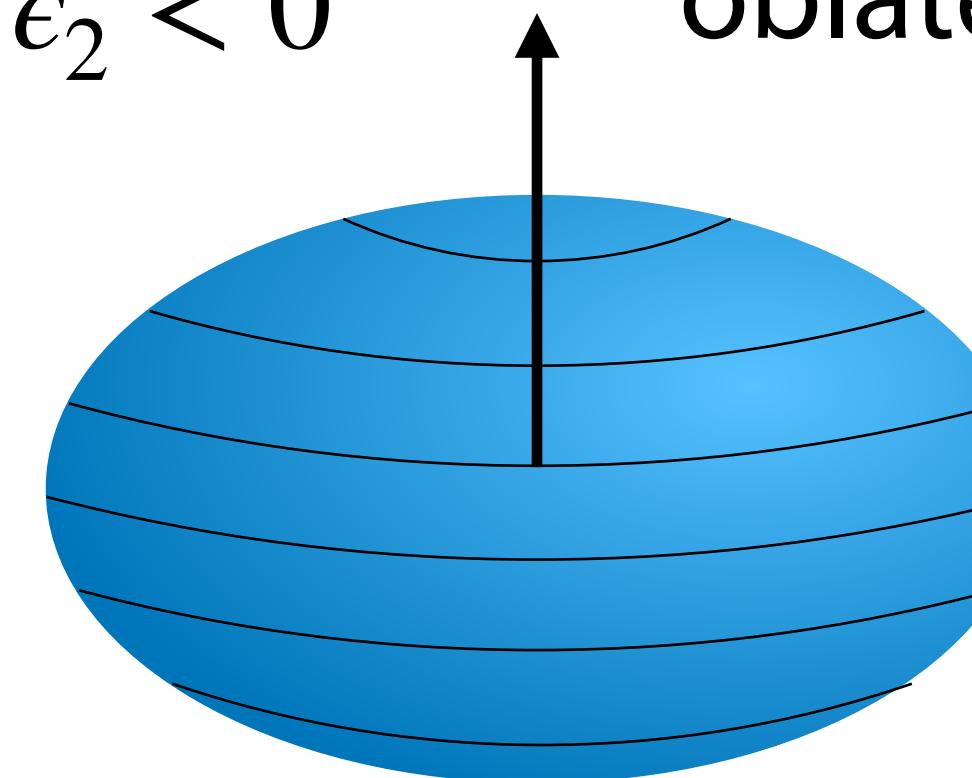
$$\epsilon_2 > 0$$

prolate



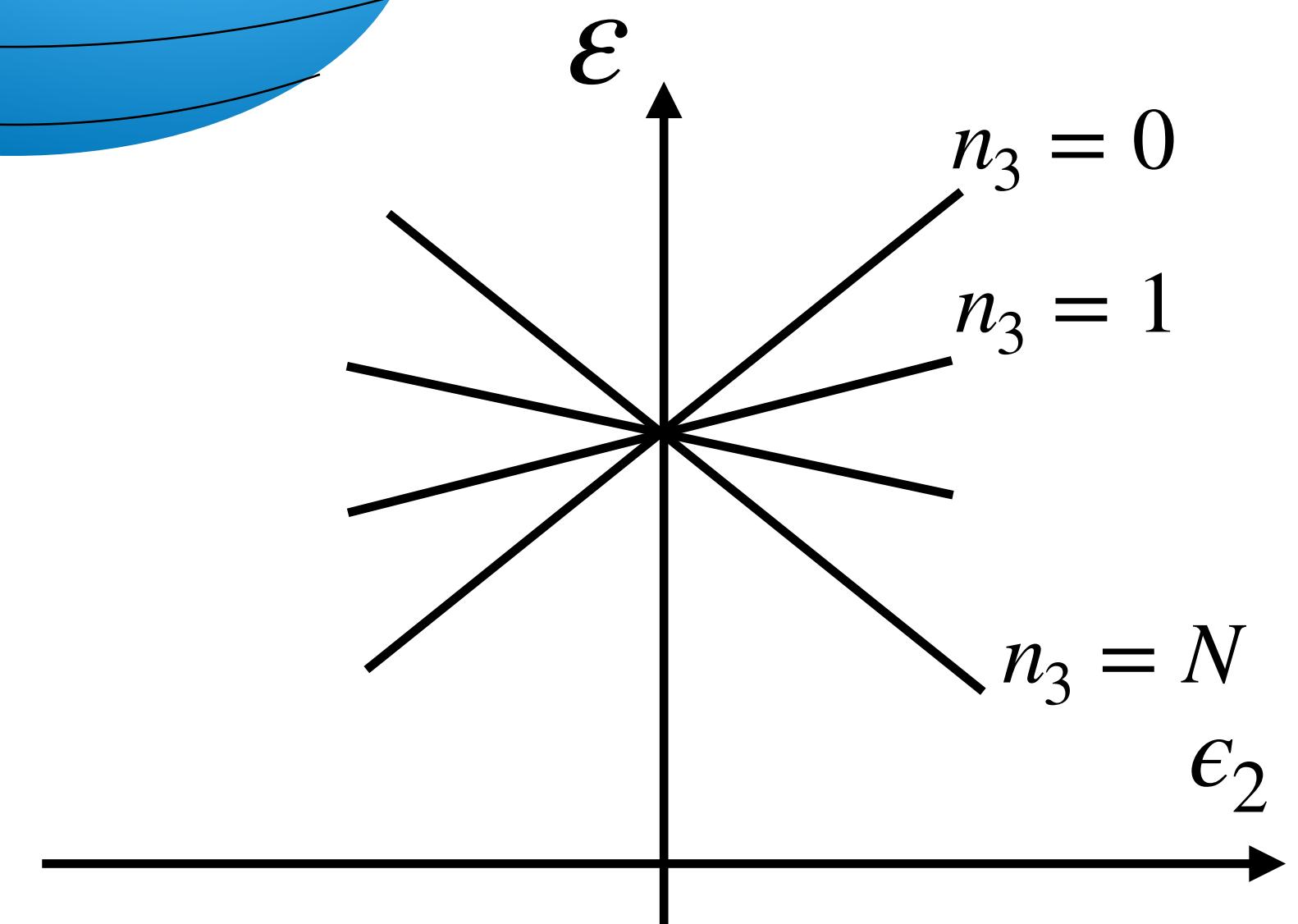
$$\epsilon_2 < 0$$

oblate



$$\epsilon_{\text{HO}} = \sum_i \hbar \omega_i \left(n_i + \frac{1}{2}\right) = \hbar \omega_0 \left[\left(N + \frac{3}{2}\right) + \frac{1}{3} (N - 3n_3) \epsilon_2 \right]$$

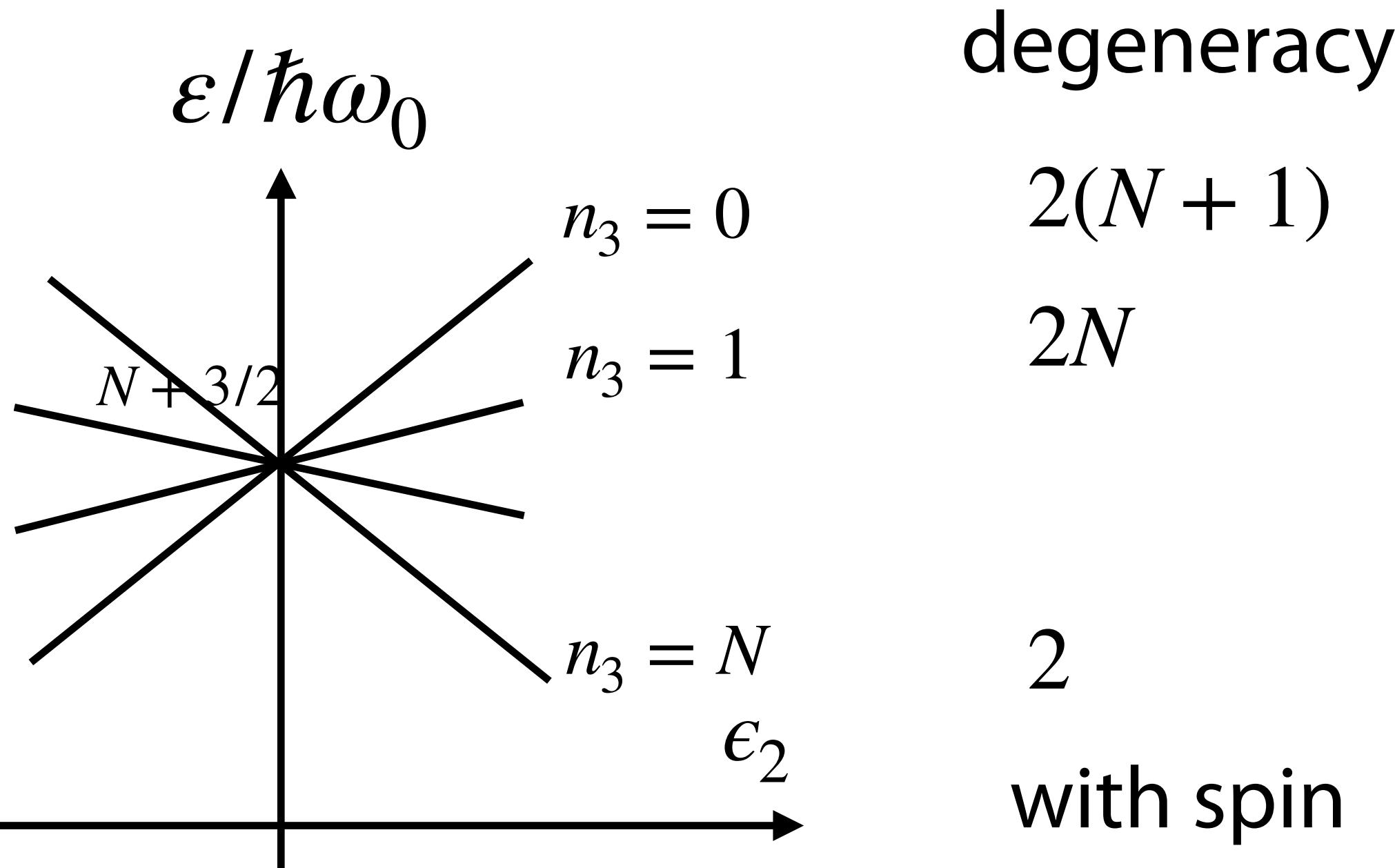
$$N := n_1 + n_2 + n_3$$



Axially-symmetric case

$$\varepsilon_{\text{HO}} = \sum_i \hbar\omega_i (n_i + \frac{1}{2}) = \hbar\omega_0 \left[(N + \frac{3}{2}) + \frac{1}{3}(N - 3n_3)\epsilon_2 \right]$$

$$N := n_1 + n_2 + n_3 = 2n + \ell \quad \text{in the spherical coordinate}$$



ex.)

$$N = 0$$

$$[n_1, n_2, n_3]$$

$$[n, \ell, \ell_z]$$

$$N = 1$$

$$\begin{bmatrix} [1,0,0] \\ [0,1,0] \\ [0,0,1] \end{bmatrix}$$

$$\begin{bmatrix} [0,1,-1] \\ [0,1,0] \\ [0,1,1] \end{bmatrix}$$

$$2 \sum_{i=0}^N (i+1) = (N+1)(N+2)$$

Axially-symmetric case

$$\varepsilon_{\text{HO}} = \sum_i \hbar\omega_i (n_i + \frac{1}{2}) = \hbar\omega_0 \left[(N + \frac{3}{2}) + \frac{1}{3}(N - 3n_3)\epsilon_2 \right]$$

principal quantum #: $N = n_1 + n_2 + n_3 = n_+ + n_- + n_3, \quad \Lambda := l_3 = n_+ - n_-$

ex.)

$$[n_1, n_2, n_3] \leftrightarrow [N, n_3, \Lambda]$$

$$\omega_1 = \omega_2 = 2\omega_3$$

$$[n_1, n_2, n_3]$$

$$[N, n_3, |\Lambda|]$$

$$[0,0,0]$$

$$[0,0,0]$$

$$N = 0$$

$$[0,0,1]$$

$$[1,1,0]$$

$$N = 1$$

$$[1,0,0] \quad [0,1,0] \quad \textcolor{red}{[0,0,2]}$$

$$[1,0,1] \quad \textcolor{red}{[2,2,0]}$$

$$N = 1 \text{ and } 2 \quad \text{intruder}$$

$$[1,0,1] \quad [0,1,1] \quad \textcolor{red}{[0,0,3]}$$

$$[1,1,1] \quad \textcolor{red}{[3,3,0]}$$

$$N = 2 \text{ and } 3$$

= different parity
octupole correlation

spherical: $\epsilon_2 = 0$

degeneracy w.r.t N

$$(N + 1)(N + 2)$$

spherical magic numbers

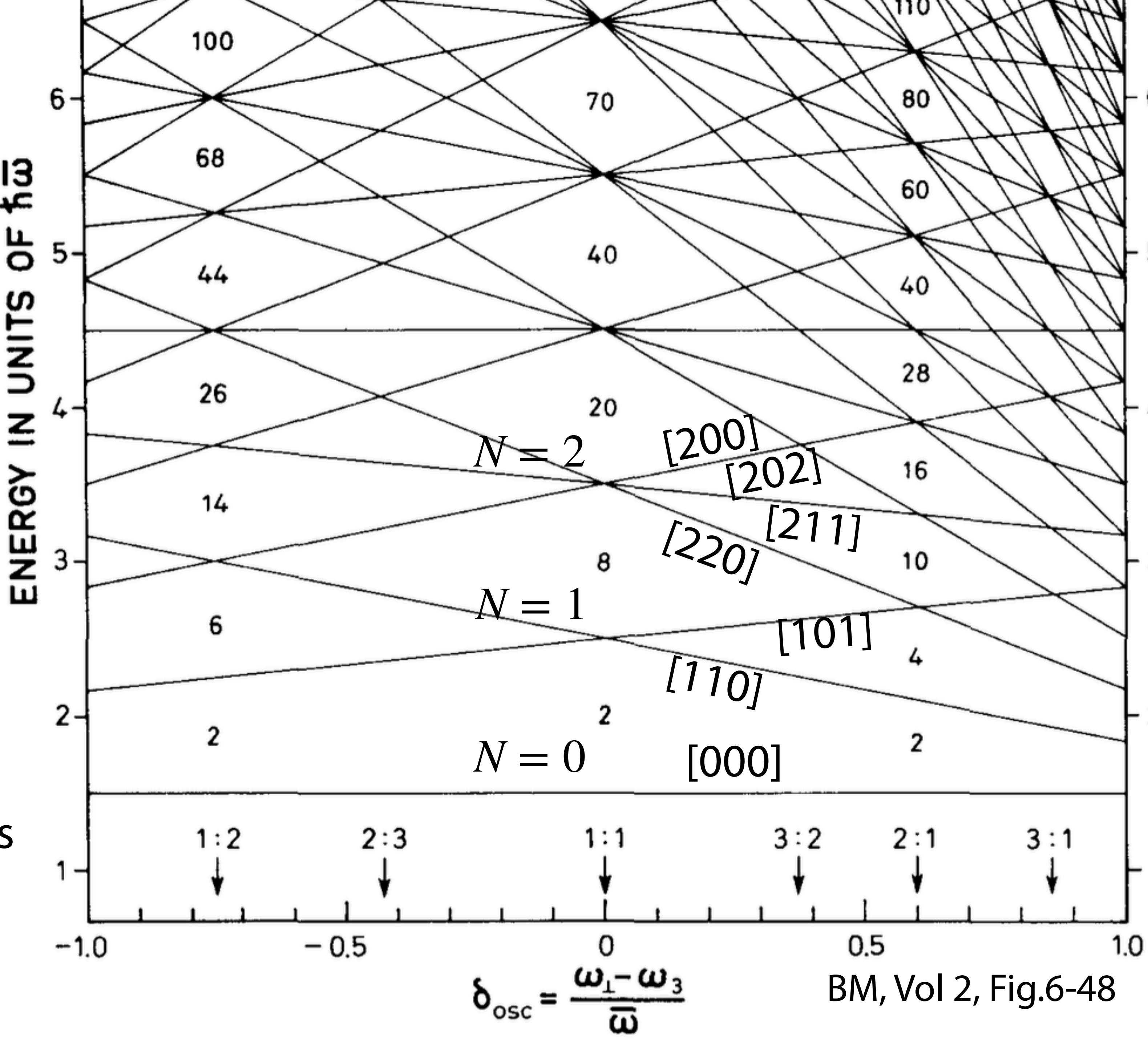
superdeformation (SD)

$$\omega_{\perp}/\omega_z = 2$$

$$\epsilon_2 = 0.6$$

a new type of degeneracy appears

SD magic numbers



Nilsson model

$$h = h_{\text{HO}} + h_{ls+ll}$$

$$h_{\text{HO}} = \frac{1}{2m} \mathbf{p}^2 + \frac{m}{2} \sum_i \omega_i^2 x_i^2$$

$$= \sum_i \hbar \omega_i (\bar{p}_i^2 + \bar{x}_i^2) = \sum_i \hbar \omega_i (n_i + \frac{1}{2})$$

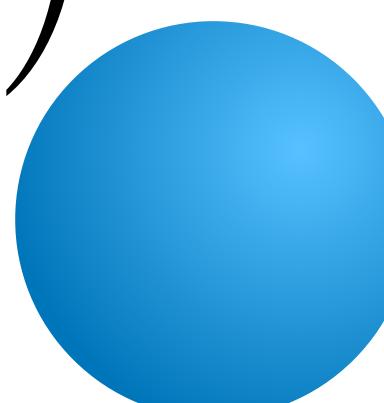
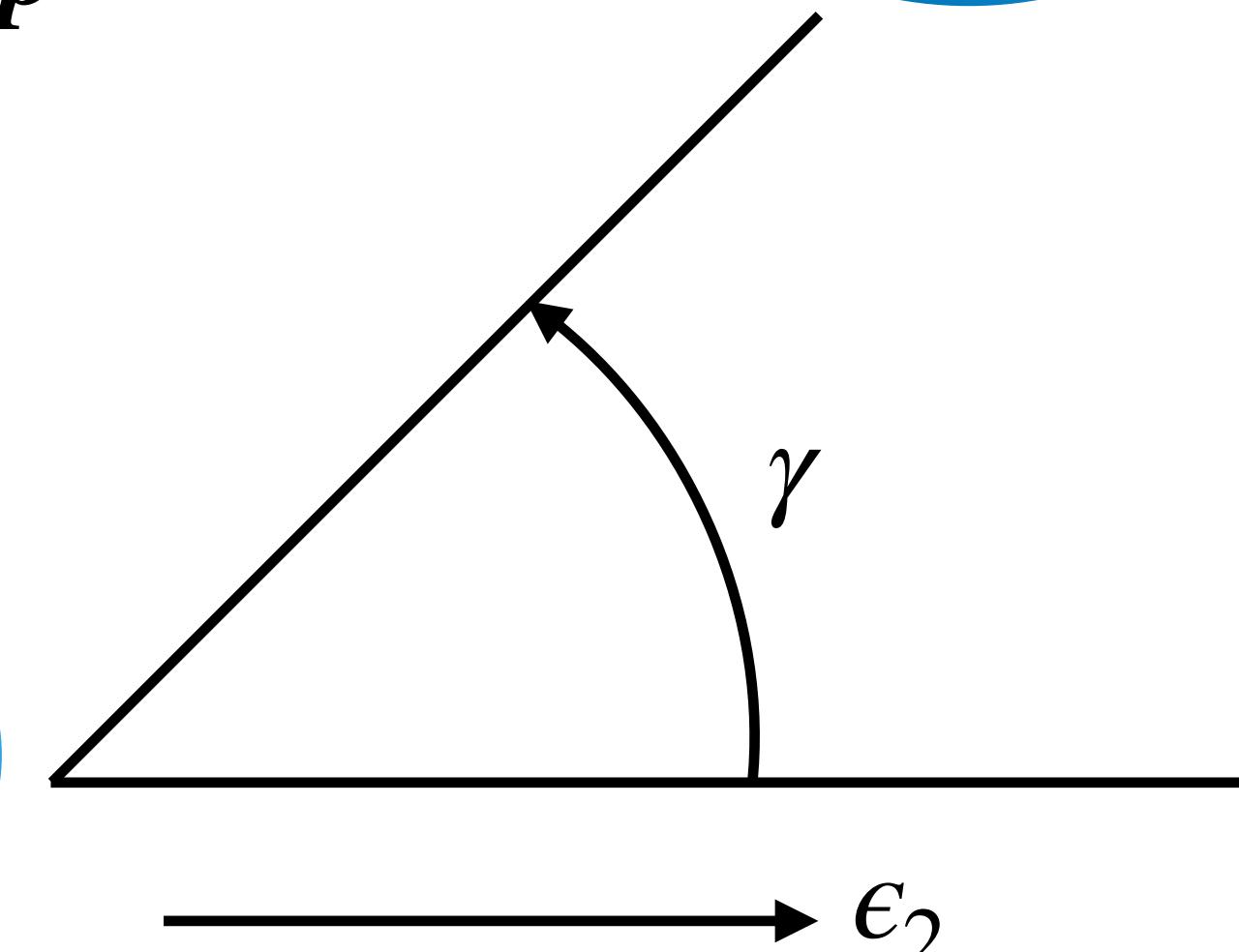
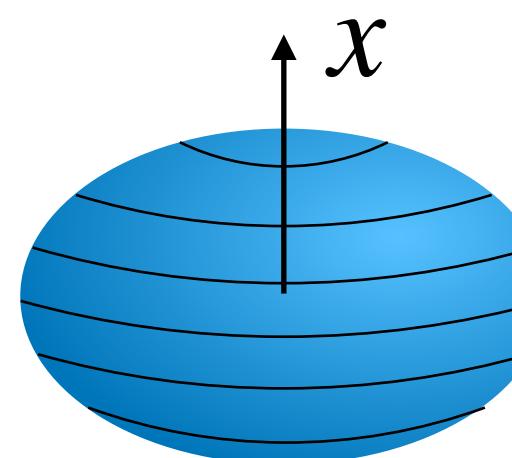
$$h_{ls+ll} = \nu_{ls} \mathbf{l}_t \cdot \mathbf{s} + \nu_{ll} (\mathbf{l}_t^2 - \langle \mathbf{l}_t^2 \rangle)$$

$$\mathbf{l}_t := \bar{\mathbf{x}} \times \bar{\mathbf{p}}$$

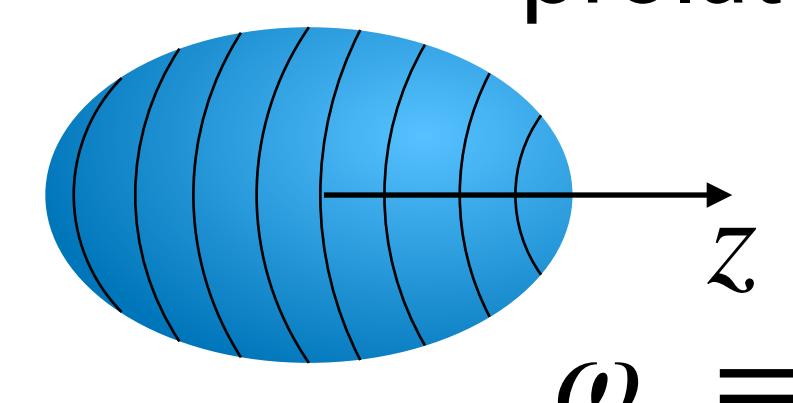
not necessarily axial symmetric

$$\omega_i = \bar{\omega}_0 \left(1 - \frac{2}{3} \epsilon_2 \cos(\gamma + \frac{2\pi}{3} i) \right)$$

spherical



$\omega_y = \omega_z < \omega_x$
oblate



$\omega_x = \omega_y > \omega_z$
prolate

Asymptotic quantum numbers

$$h_{\text{Nil}} = h_{\text{HO}} + h_{ls+ll}$$

h_{ls+ll} is not diagonal in the HO basis

treated as perturbations at large deformations

good quantum # in an axially and reflection sym. potential: $\Omega(=j_z=m), \pi$ (parity)

asymptotic quantum #: $|Nn_3\Lambda\Omega^\pi\rangle$

principal quantum # : $N = n_1 + n_2 + n_3 = n_+ + n_- + n_3$

$$\Lambda := l_3 = n_+ - n_-, \quad \Omega = \Lambda + \Sigma$$

$$|\Omega^\pi, k\rangle = \sum_{Nlj} C(Nljk) |Nlj\Omega^\pi\rangle = \sum_{Nn_3\Lambda} C'(Nn_3\Lambda k) |Nn_3\Lambda\Omega^\pi\rangle$$

Examples of the Nilsson diagram

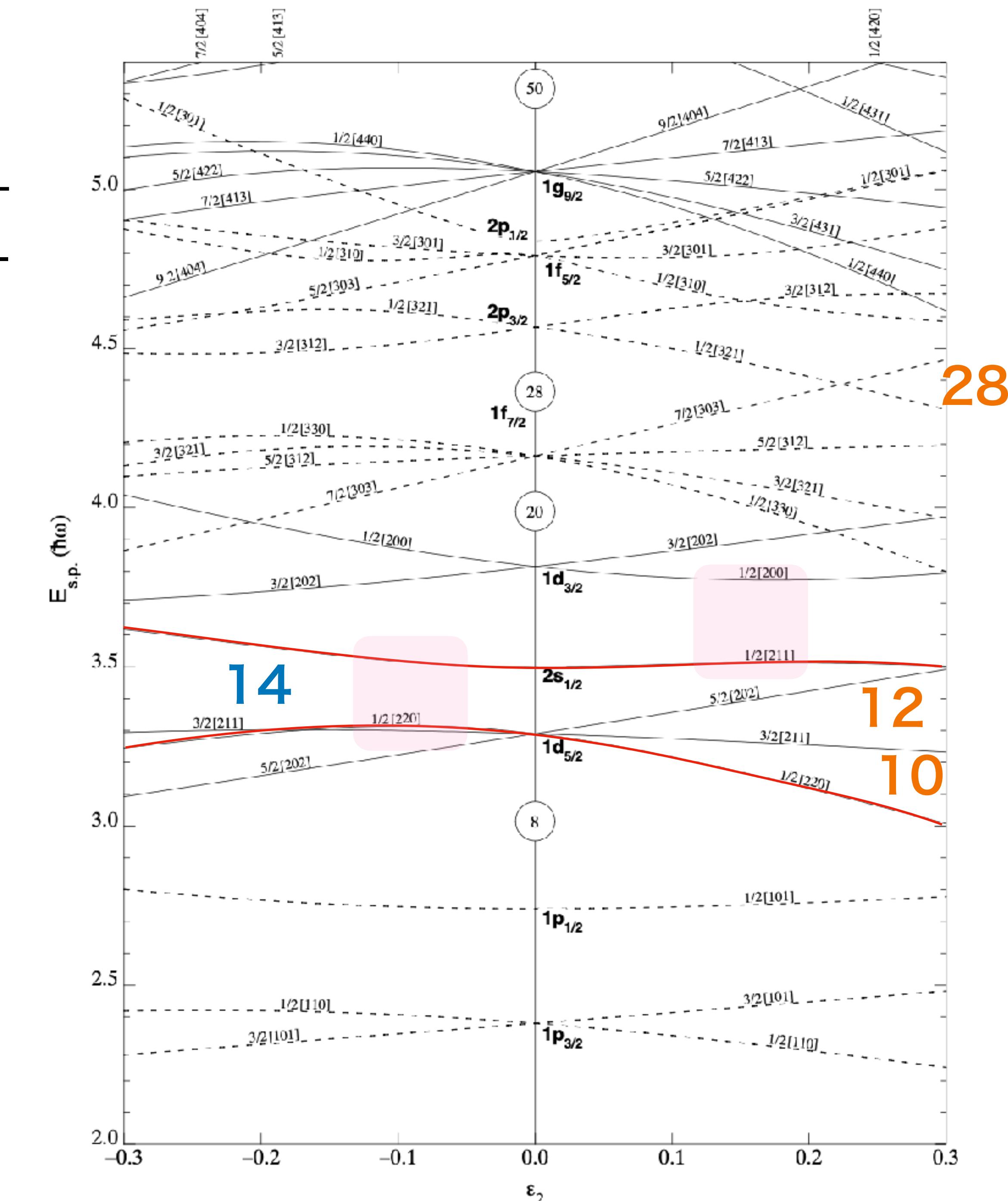
relatively simple
in light nuclei

— $\pi = +$
..... $\pi = -$

two-fold degenerated (time-reversal sym.)
 $\pm \Omega$

avoided crossing
for the orbitals with same Ω^π

deformed magic numbers
10, 12, **28** (prolate)
14 (oblate)



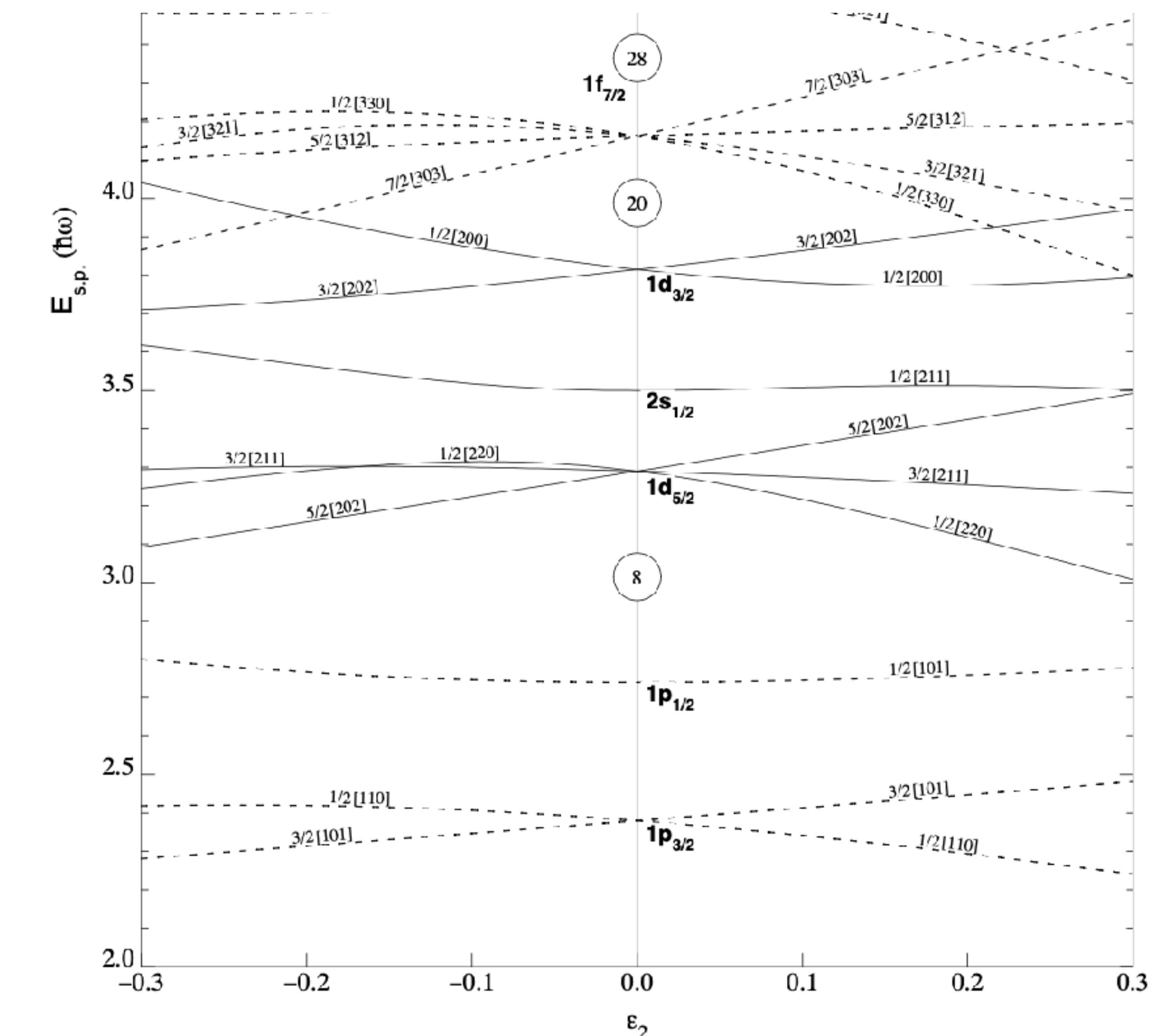
Collective motions in nuclei: rotation

An application of the Nilsson diagram

odd nuclei:

$$|\Phi_{\text{odd}}\rangle = a_i^\dagger |\Phi_{\text{HFB}}\rangle$$

measured		
nuclide	J^π	
$^{17}\text{O}_9$	$5/2^+$	$\nu 1d_{5/2}$
$^{15}\text{O}_7$	$1/2^-$	$\nu 1p_{1/2}$
$^{19}\text{Ne}_9$	$1/2^+$	$\nu 1d_{5/2}$ $\nu [220]1/2$



Rotational spectra

$$H_{\text{rot}} = \frac{\mathbf{R}^2}{2J}$$

\mathbf{R} : collective spin (angular momentum) of the core

→ $E_I = \frac{I(I+1)}{2J}$

strong coupling: deformation alignment

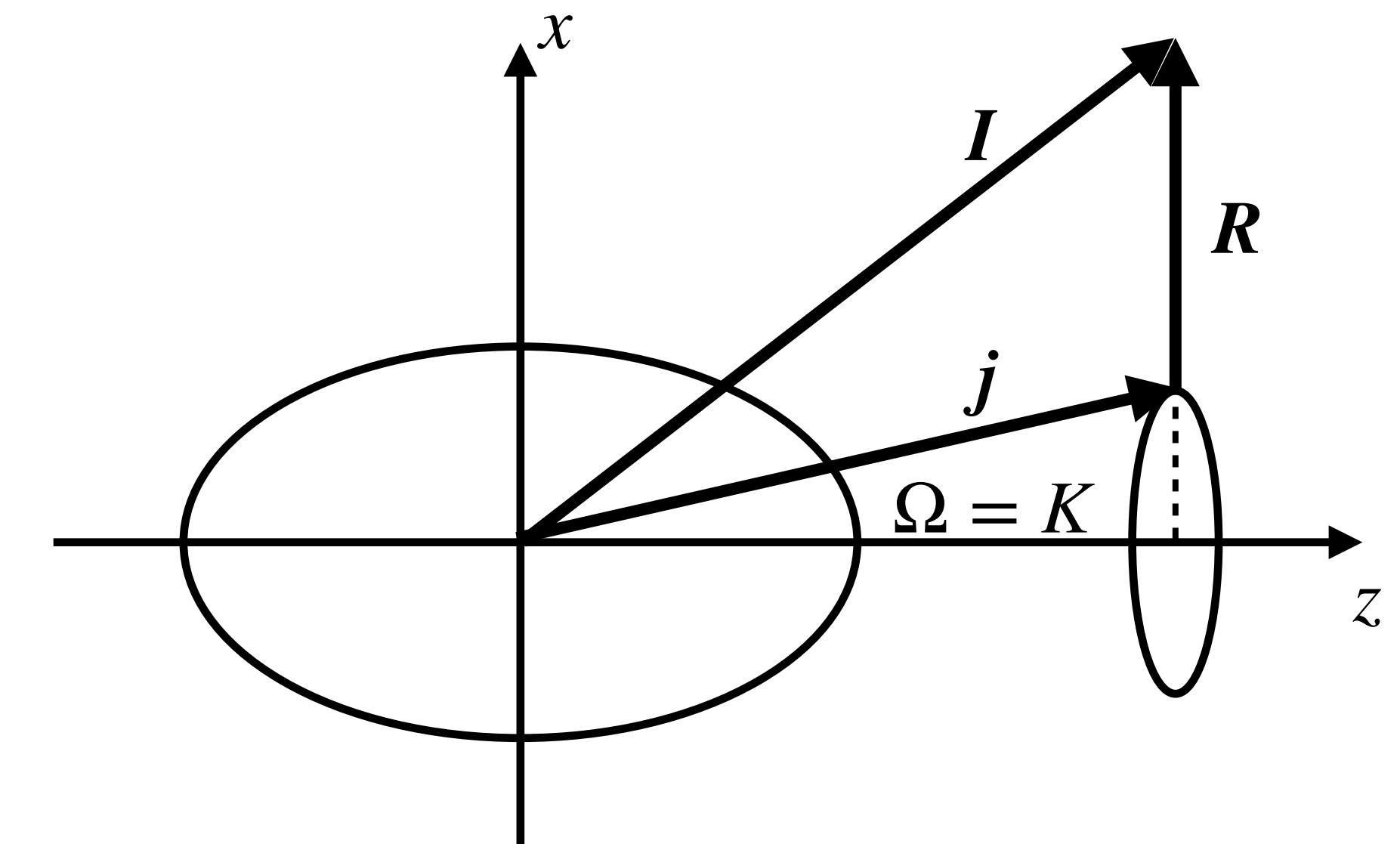
rotation along the perpendicular axis, 3-axis being the symmetry axis

$$H_{\text{rot}} = \frac{\mathbf{R}^2}{2J} = \frac{1}{2J}[(I_1 - j_1)^2 + (I_2 - j_2)^2]$$

$$= \frac{1}{2J}[I^2 - I_3^2 + (j_1^2 + j_2^2) - (I_+j_- + I_-j_+)]$$

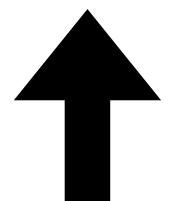
recoil Coriolis and centrifugal forces

treated in first order perturbation theory



Rotational spectra in the strong coupling

$$H = H_{\text{sp}} + H_{\text{rot}}$$



HF(B)

single-(quasi)particle: ϕ_ν, e_ν

$$H_{\text{rot}} = \frac{1}{2\mathcal{J}}[I^2 - I_3^2 - \underline{(I_+j_- + I_-j_+)}]$$

selection rules for j_\pm are $\Delta\Omega = \pm 1$

$$E_{IK} = |e_\nu - \lambda| + \frac{1}{2\mathcal{J}}[I(I+1) - K^2] \quad K \neq \frac{1}{2}$$

for the case of $K = \frac{1}{2}$ bands

$$E_{IK} = |e_\nu - \lambda| + \frac{1}{2\mathcal{J}}[I(I+1) - K^2 + \underline{a(-1)^{I+1/2}(I+1/2)}]$$

decoupling parameter

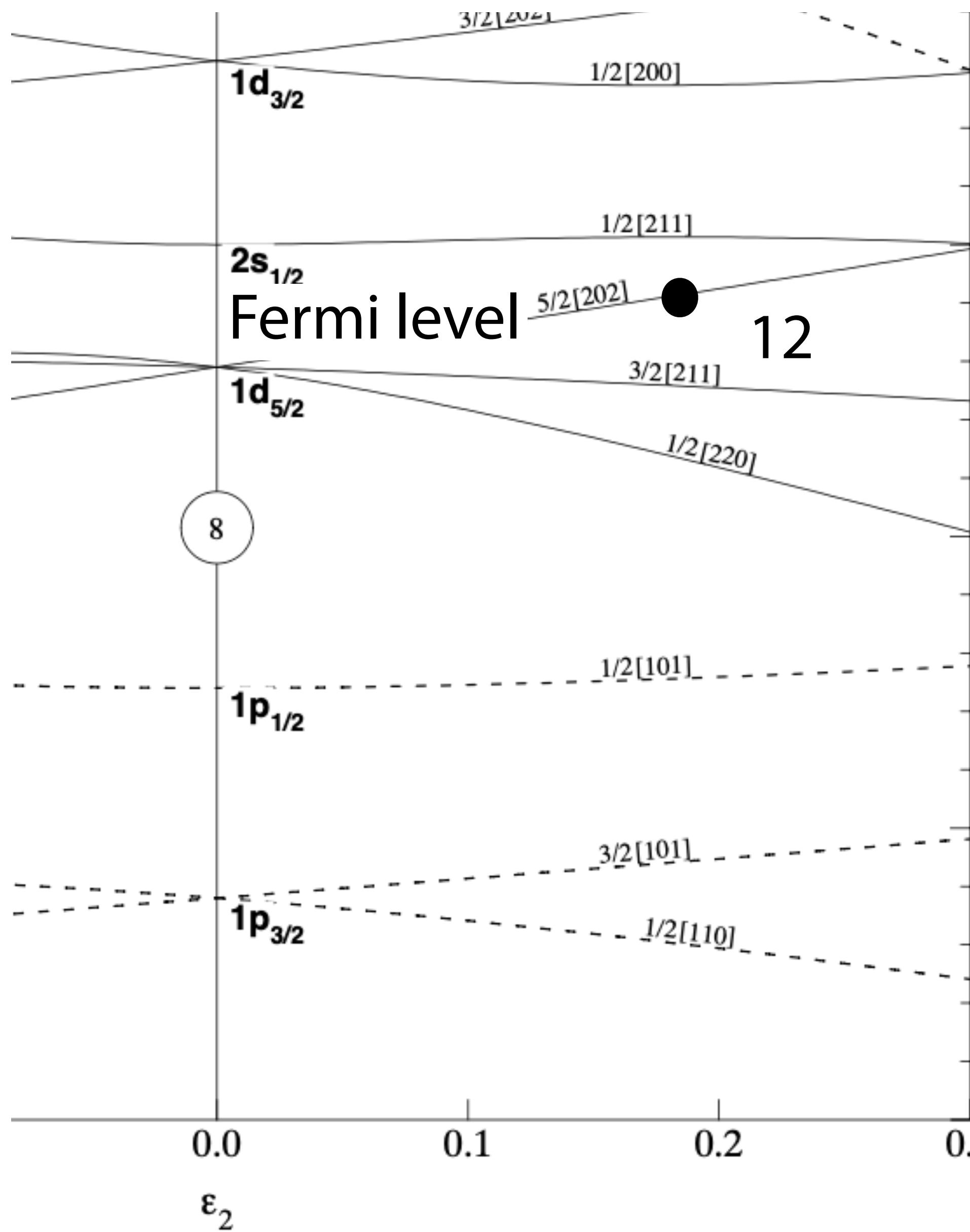
$$a = -\langle \phi_\nu | j_+ | \phi_{\bar{\nu}} \rangle$$

$$\Omega = 1/2 \quad \Omega = -1/2$$

assuming
axial symmetry
reflection symmetry

$$E_{\text{rot}} = AI(I+1) + A_1(-1)^{I+1/2}(I+1/2)\delta_{K,1/2}$$

BM, Vol 2, Fig.5-15

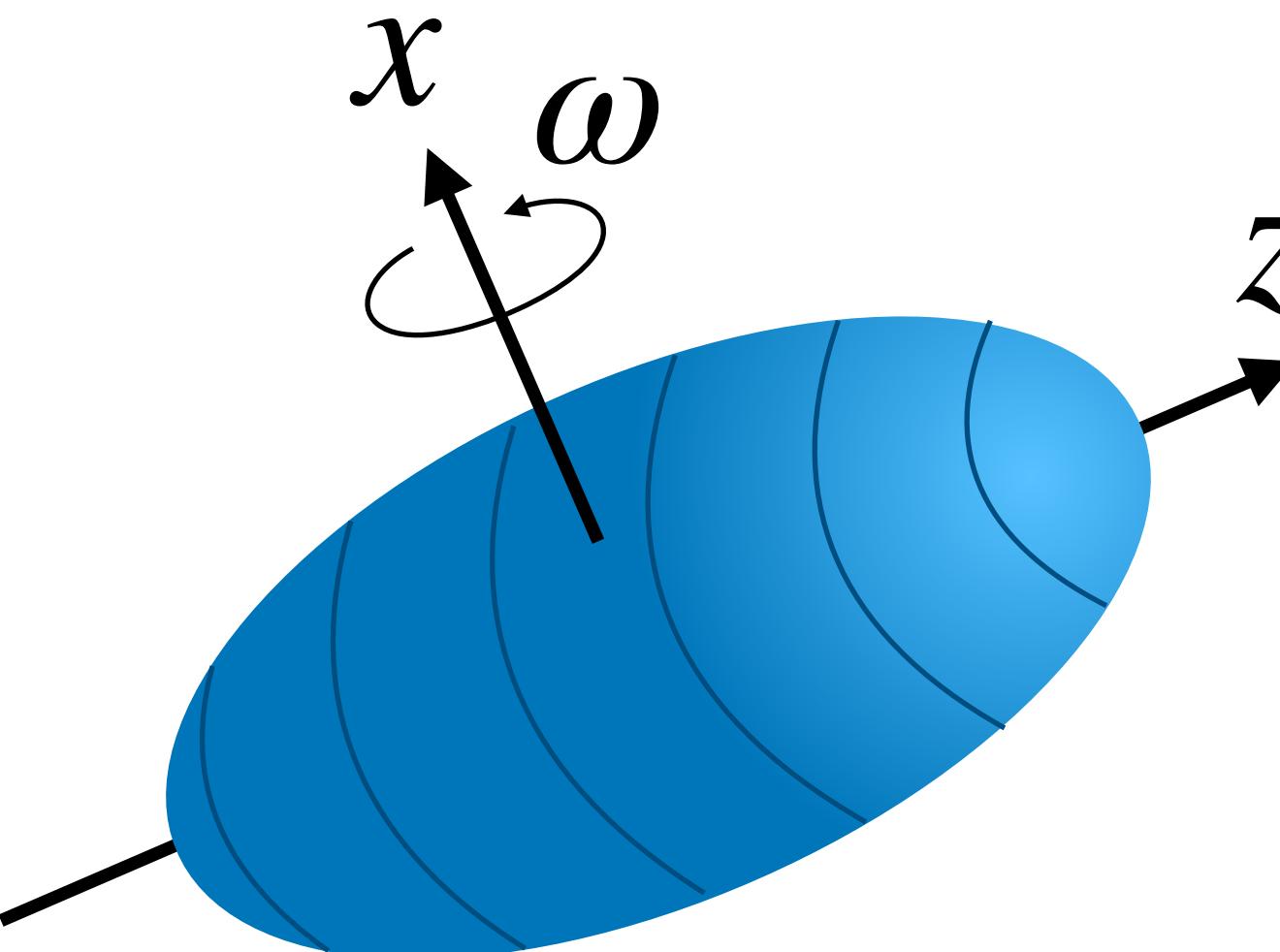


<u>5.74</u> $\frac{11}{2}$	<u>5.005</u> $\frac{7}{2}$	<u>4.277</u> $\frac{1}{2}$
<u>5.45</u> $\frac{11}{2}$	<u>4.704</u> $\frac{9}{2}$	<u>3.970</u> $\frac{7}{2}$
	<u>3.905</u> $\frac{5}{2}$	<u>4.057</u> $\frac{9}{2}$
	<u>3.405</u> $\frac{9}{2}$	<u>3.414</u> $\frac{3}{2}$
	<u>2.738</u> $\frac{7}{2}$	<u>2.801</u> $\frac{3}{2}$
		<u>2.562</u> $\frac{1}{2}$
	<u>1.960</u> $\frac{5}{2}$	<u>Kπ = 1/2 +</u> <u>[200 1/2]</u> <u>A = 0.150</u>
	<u>1.614</u> $\frac{7}{2}$	<u>A₁ = -0.071</u>
		<u>0.975</u> $\frac{3}{2}$
		<u>0.585</u> $\frac{1}{2}$
	<u>0</u> $\frac{5}{2}$	<u>Kπ = 1/2 +</u> <u>[211 1/2]</u> <u>A = 0.163</u>
		<u>A₁ = -0.033</u>
		²⁵₁₂Mg₁₃

The cranking model

simultaneous description of s.p. and rotational motions

the rotation is treated **classically** within the **quantum mechanics**



$$x_1 = x$$

$$x_2 = y \cos \omega t + z \sin \omega t$$

$$x_3 = -y \sin \omega t + z \cos \omega t$$

uniform rotation along
the x-axis

the time-dependent wave functions in the two systems must satisfy

$$\psi^\omega(x_1, x_2, x_3, t) = \psi(x, y, z, t)$$

up to the phase

$$\left(\frac{\partial \psi}{\partial t} \right)_{x,y,z} = \left(\frac{\partial \psi^\omega}{\partial t} \right)_{x_1, x_2, x_3} + \frac{\partial \psi^\omega}{\partial x_2} \frac{\partial x_2}{\partial t} + \frac{\partial \psi^\omega}{\partial x_3} \frac{\partial x_3}{\partial t} \quad \frac{\partial x_2}{\partial t} = \omega x_3, \quad \frac{\partial x_3}{\partial t} = -\omega x_2$$

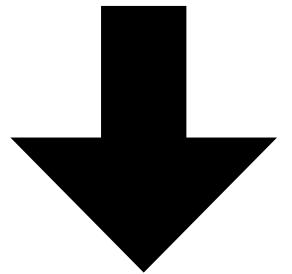
$$\rightarrow \frac{\partial \psi(x, y, z, t)}{\partial t} = \left(\frac{\partial}{\partial t} - i\omega \ell_1 \right) \psi^\omega(x_1, x_2, x_3, t)$$

The cranking model

$$\frac{\partial \psi(x, y, z, t)}{\partial t} = \left(\frac{\partial}{\partial t} - i\omega \ell_1 \right) \psi^\omega(x_1, x_2, x_3, t)$$

→ time-dependent Sch. eq.

$$i\partial_t \psi(x, y, z, t) = h\psi(x, y, z, t)$$



$$i\partial_t \psi^\omega(x_1, x_2, x_3, t) = \underline{(h - \omega \ell_1)} \psi^\omega(x_1, x_2, x_3, t)$$

the cranking Hamiltonian (Routhian): $\hat{H}' = \hat{H} - \omega \hat{J}_1$

↔ $\delta \langle \psi | \hat{H} | \psi \rangle = 0$ under the constraint $\langle \psi | \hat{J}_1 | \psi \rangle = J_1$

ω : a Lagrange multiplier

note:

$$\ell_1 = -i \left(x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2} \right)$$

$$= -i \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) = \ell_x$$

Variational principle in a rotating frame

transformation of the frame $|\phi(\theta, I)\rangle = e^{-i\theta\hat{J}_x} |\phi_{\text{intr}}(I)\rangle$

time-dependent variational principle: $\delta\langle\phi(\theta, I) | i\partial_t - \hat{H} | \phi(\theta, I)\rangle = 0$

$$\delta\langle\phi_{\text{intr}}(I) | \hat{H} - i \left(\frac{1}{i} \frac{\partial \mathcal{H}}{\partial I} \hat{J}_x - \frac{\partial \mathcal{H}}{\partial \theta} \frac{\partial}{\partial I} \right) | \phi_{\text{intr}}(I)\rangle = 0$$

note:

$$\frac{\partial}{\partial t} = \dot{\theta} \frac{\partial}{\partial \theta} + \dot{I} \frac{\partial}{\partial I}$$

$$i \frac{\partial}{\partial \theta} |\phi_{\text{intr}}(I)\rangle = \hat{J}_x |\phi_{\text{intr}}(I)\rangle$$

→ $\delta\langle\phi_{\text{intr}}(I) | \hat{H} - \omega_{\text{rot}} \hat{J}_x | \phi_{\text{intr}}(I)\rangle = 0$

Hamilton's eq.: $\dot{\theta} = \frac{\partial \mathcal{H}}{\partial I} = \omega_{\text{rot}}$

$$\dot{I} = - \frac{\partial \mathcal{H}}{\partial \theta} = 0$$

$$\mathcal{H}(I) := \langle\phi(\theta, I) | \hat{H} | \phi(\theta, I)\rangle = \langle\phi_{\text{intr}}(I) | \hat{H} | \phi_{\text{intr}}(I)\rangle$$

$$[\hat{H}, \hat{J}_x] = 0$$

Mean field in a rotating frame

$$H' = H - \omega J_x$$

→ $h'|\mu\rangle = \varepsilon'_\mu|\mu\rangle \quad \varepsilon'_\mu(\omega_{\text{rot}}) \quad \text{single-particle Routhian}$

when the reflection symmetry is conserved

x-signature: $R_x = e^{-i\pi J_x}$

$$R_x|\mu\rangle = r|\mu\rangle \quad r = \pm i$$
$$r = e^{-i\pi\alpha}, \alpha = \pm 1/2$$

x-signature is a good quantum number

when the reflection symmetry is broken

x-simplex: πR_x

$$(x_1, x_2, x_3) \rightarrow (-x_1, x_2, x_3)$$

x-simplex is a good quantum number

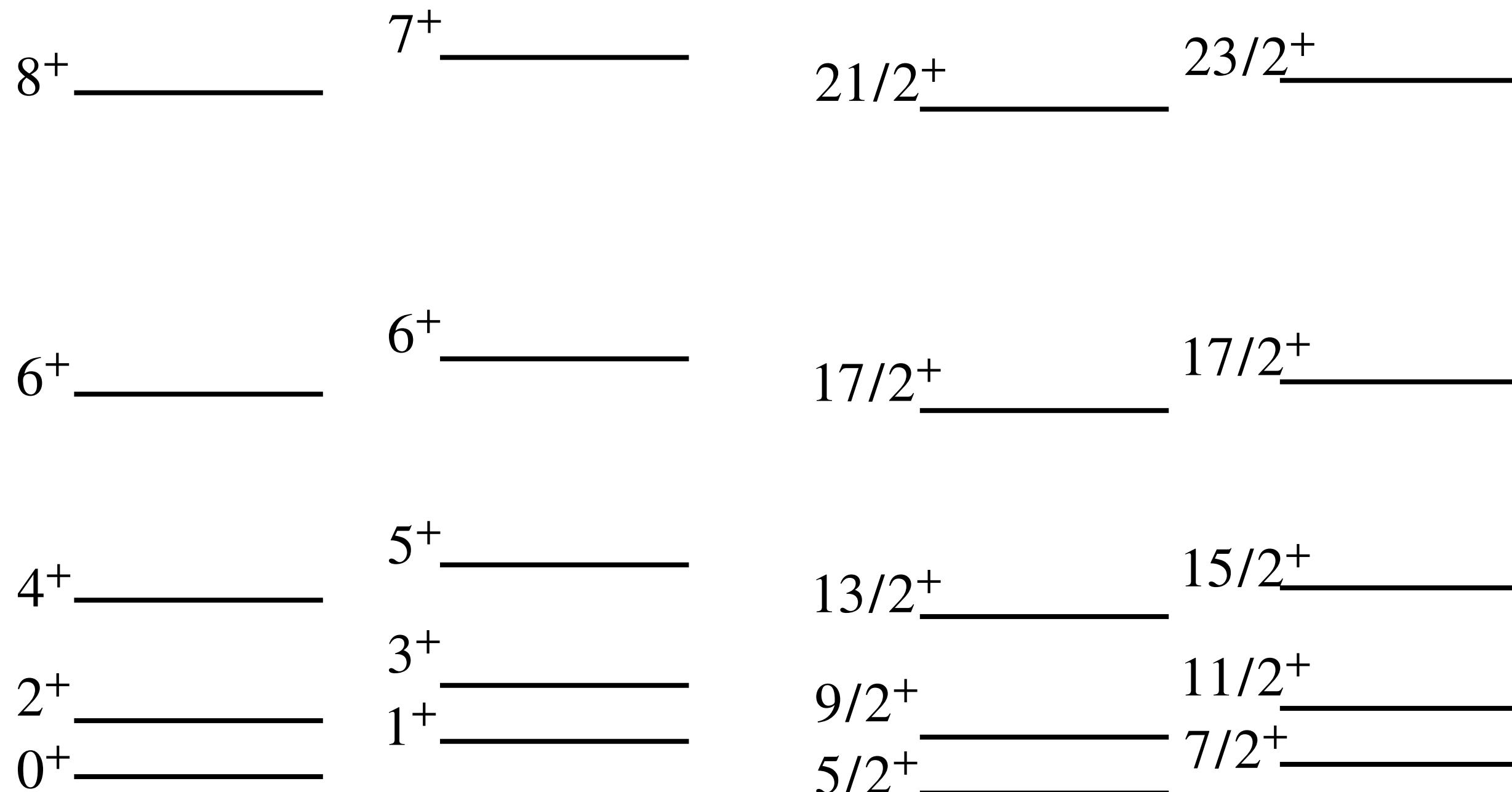
* the axial symmetry can be (is usually) broken due to the Coriolis force

Signature quantum number

$$\hat{R}_x(\pi) = \exp(-i\pi\hat{J}_x)$$

$$\hat{R}_x^2(\pi)\Psi = r^2\Psi = (-1)^A\Psi$$

A rotation of 2π leaves the wavefunction unchanged, except for a phase factor



signature exponent quantum number:

$$r = e^{-i\pi\alpha}$$

$$r = \pm 1 \text{ (even } A\text{), } \alpha = 0, 1$$

$$r = \pm i \text{ (odd } A\text{), } \alpha = \pm 1/2$$

$$\alpha = 0$$

$$\alpha = 1$$

$$\alpha = 1/2 \quad \alpha = -1/2$$

Correspondences to the experimental data

rotational frequency

$$\dot{\theta} = \frac{\partial \mathcal{H}}{\partial I} = \omega_{\text{rot}} \quad \rightarrow \quad \omega_{\text{rot}}(I) \simeq \frac{dE}{dI} \approx \frac{1}{2}[E_{\text{rot}}(I+1) - E_{\text{rot}}(I-1)] = E_{\gamma}/2$$

moments of inertia

$$\mathcal{J}^{(1)} = \frac{J}{\omega_{\text{rot}}} \approx \frac{2(I+1/2)}{E(I+1) - E(I-1)} = \frac{2I+1}{E_{\gamma}}$$

note:

$$J^2 = I(I+1)$$

$$I^2 + I - J^2 = 0$$

$$\mathcal{J}^{(2)} = \frac{dJ}{d\omega_{\text{rot}}} \approx \frac{4}{\Delta E_{\gamma}}$$

$$\begin{aligned} I &= \frac{1}{2}(-1 + \sqrt{4J^2 + 1}) \\ &\simeq \frac{1}{2}(-1 + 2J) \end{aligned}$$

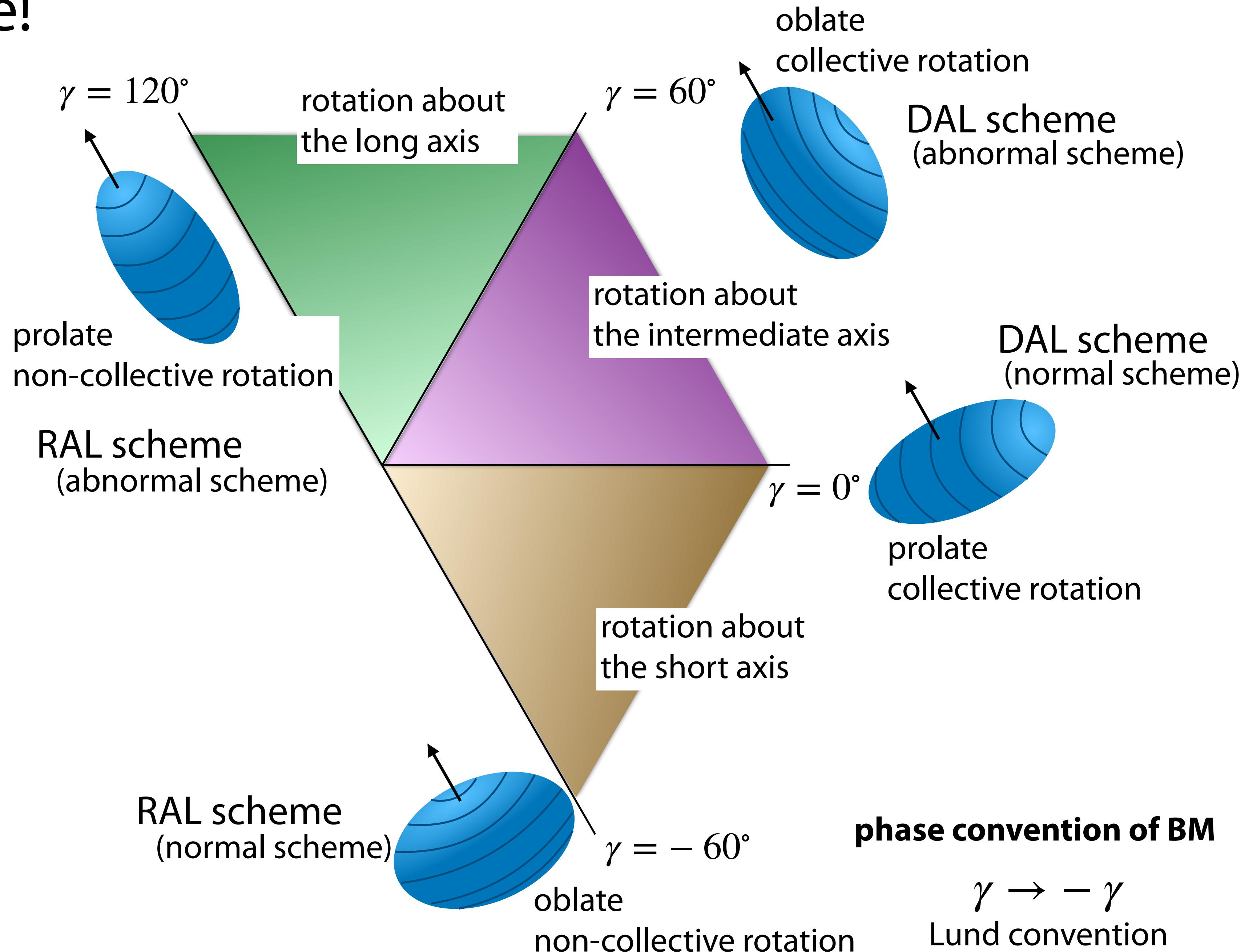
Triaxiality plays a role!

symmetry axis
and type of deformation

rotation axis

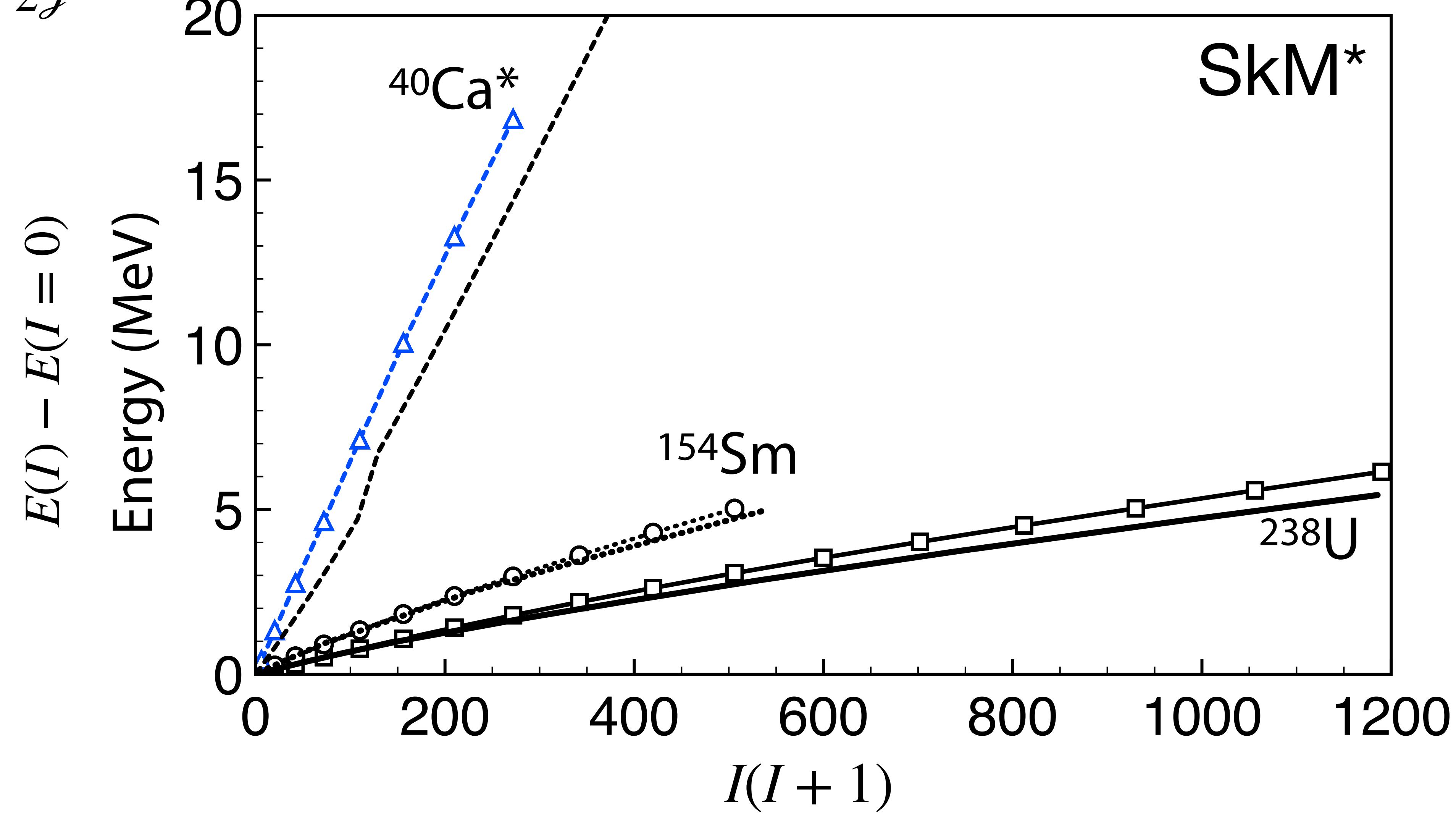
- collective rotation
deformation aligned

- non-collective rotation
rotation aligned



DFT for the rotational band

$$E = \frac{I(I+1)}{2\mathcal{J}}$$



Large-scale DFT calculation

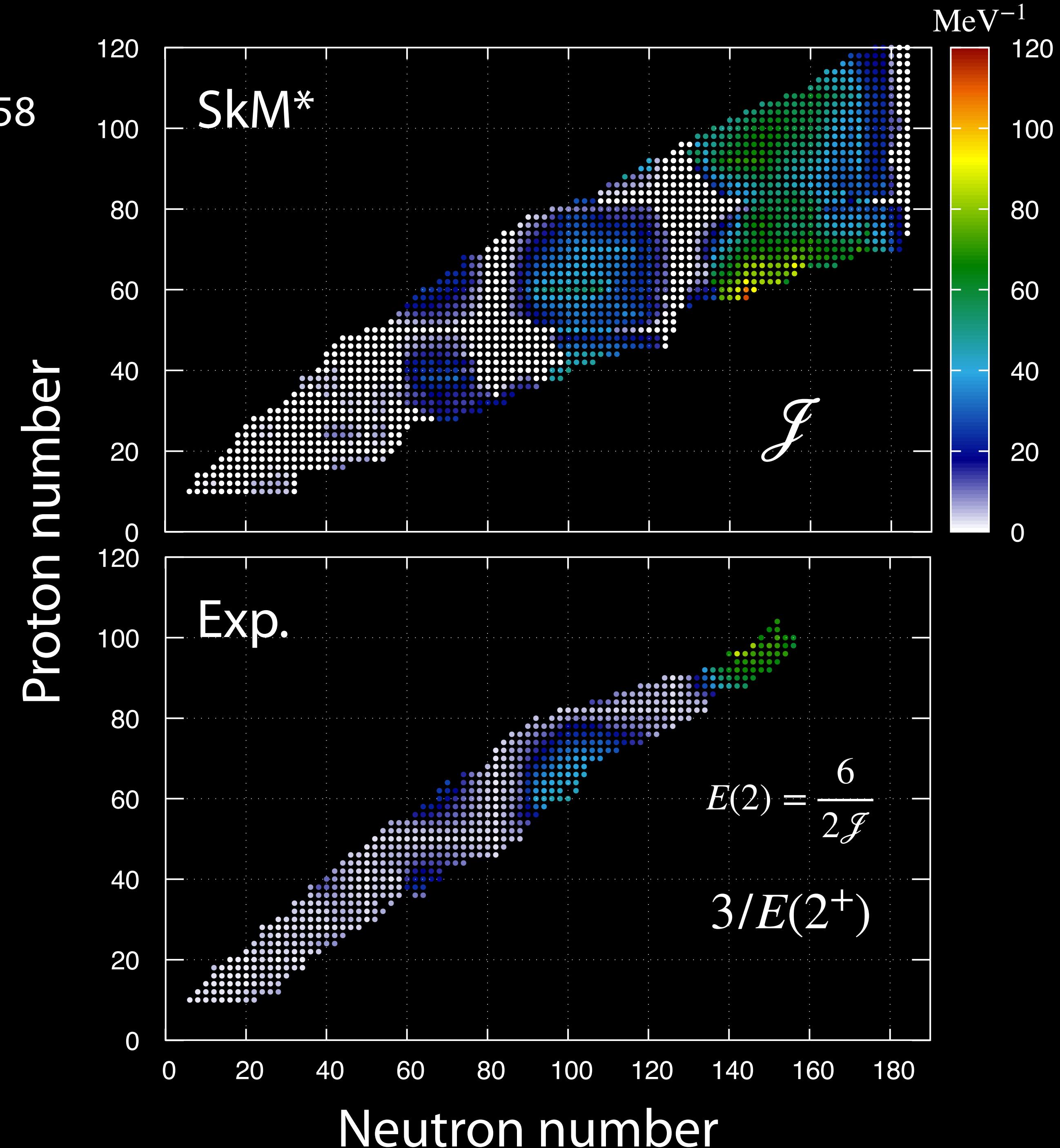
KY, PLB834(2022)137458

low $E(2^+)$ or high $1/E(2^+)$

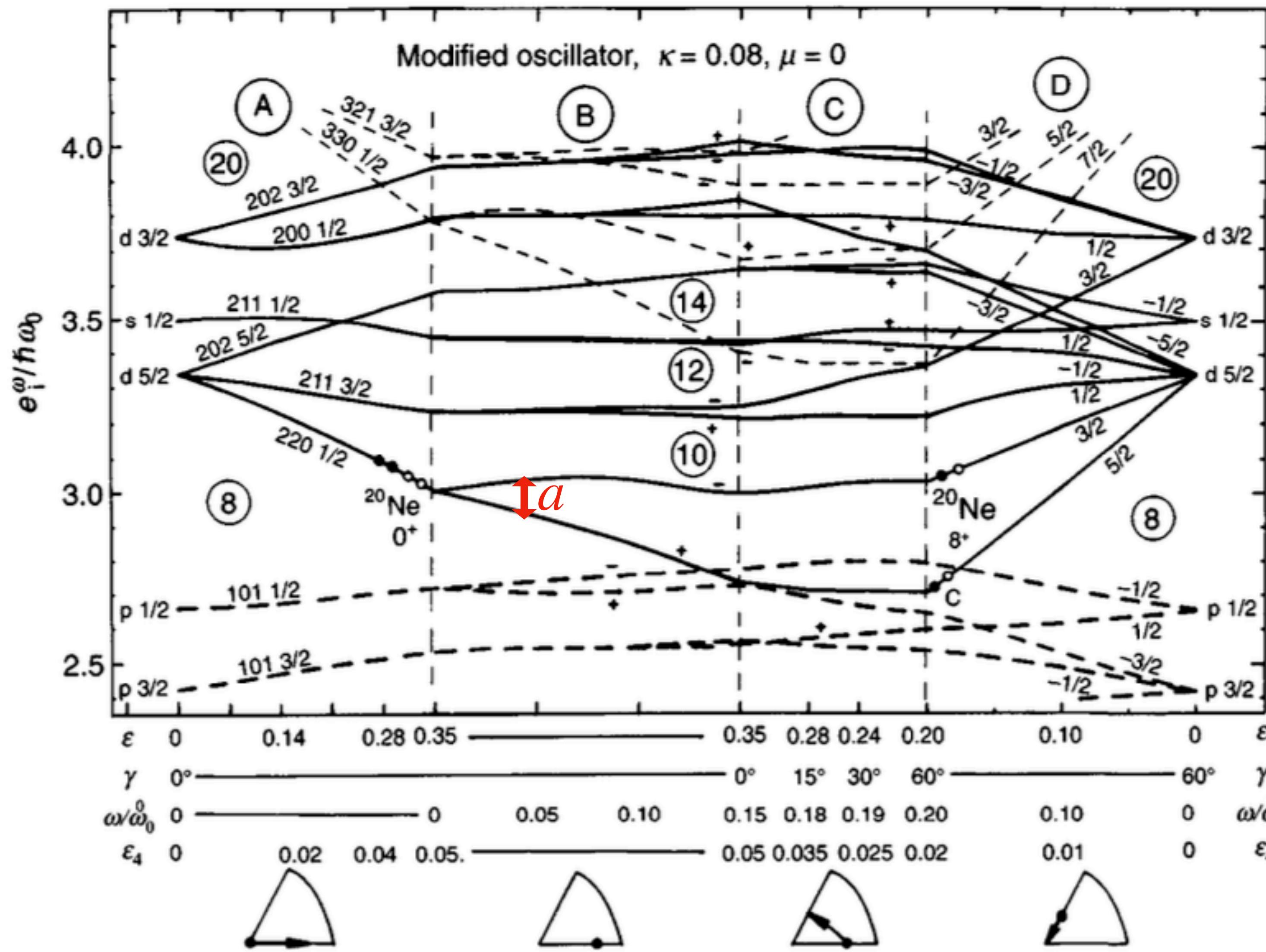
an indicator of quadrupole deformation

a pattern of deformation

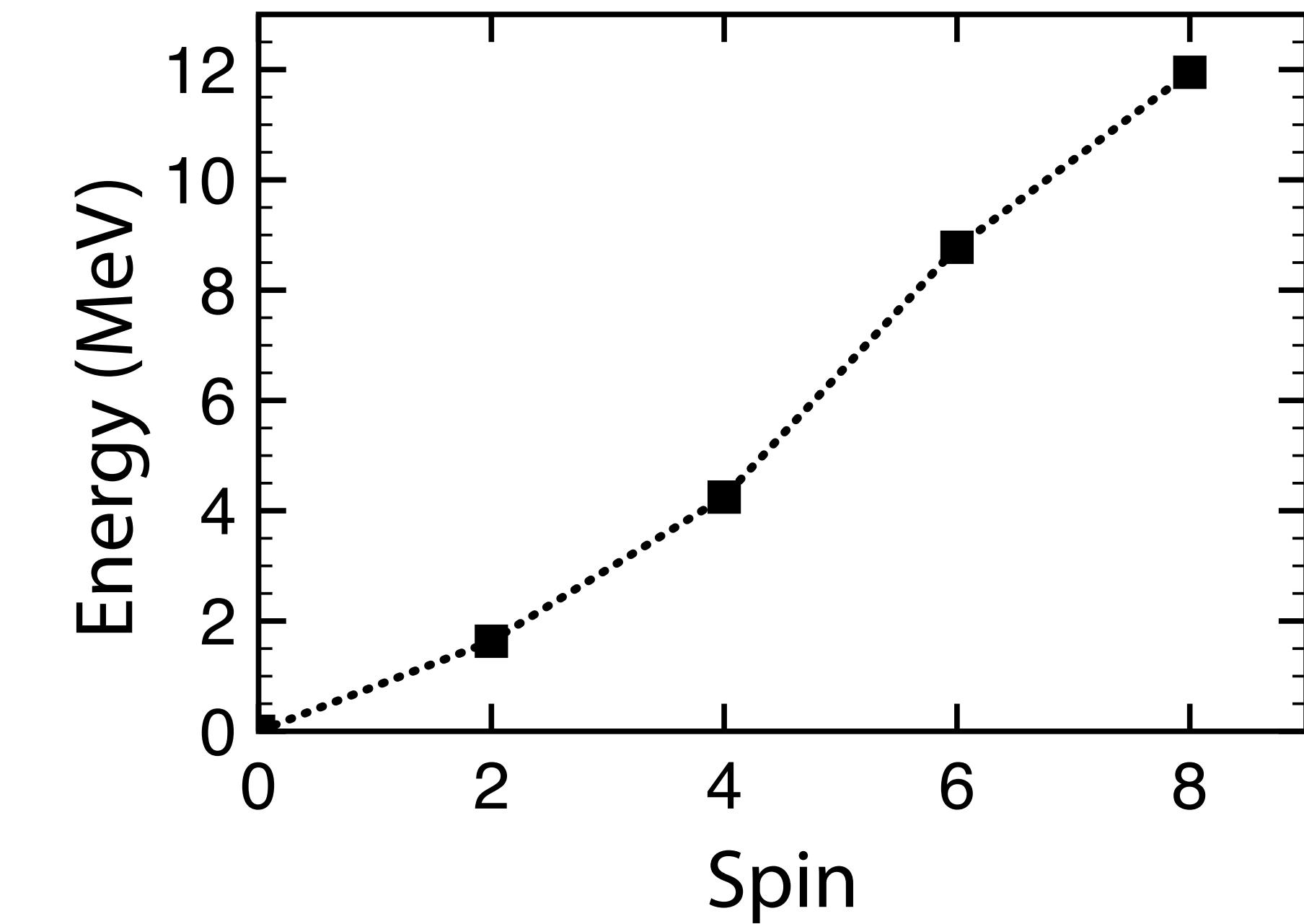
magic numbers



Example (1): the ground band of ^{20}Ne



Exp. data for 20Ne (NNDC)



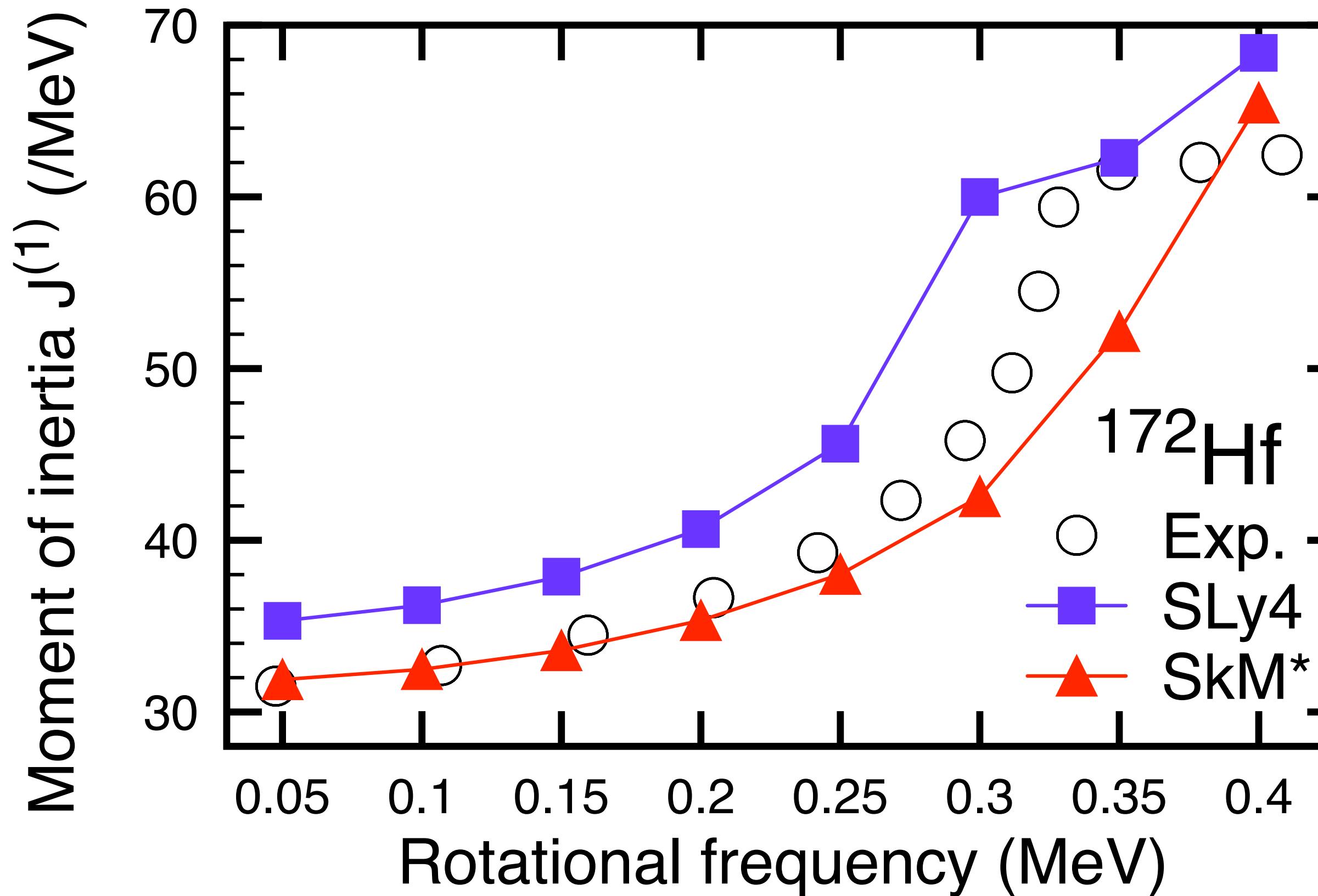
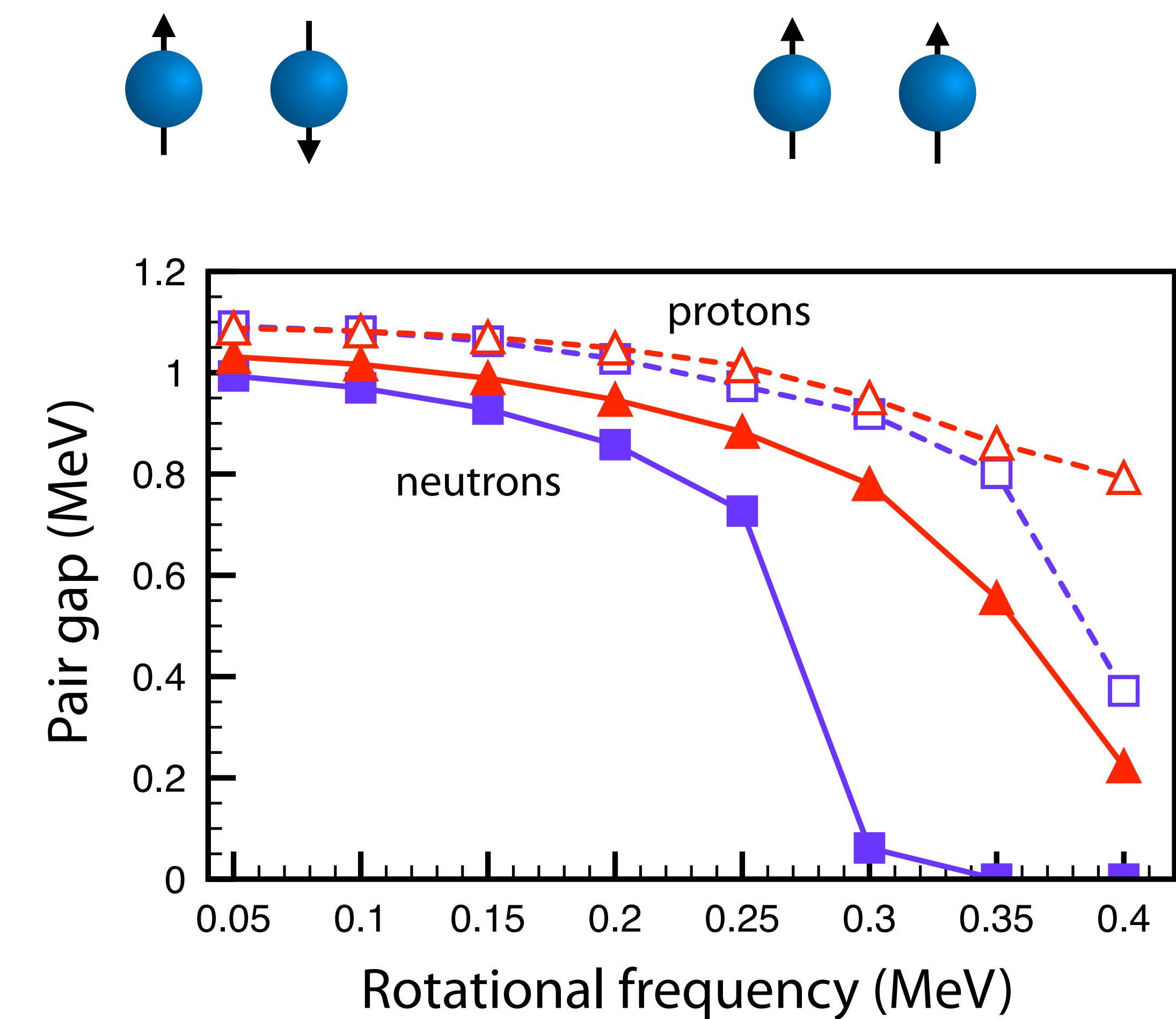
alignments:

$$\langle \mu | \hat{j}_x | \mu \rangle = - \frac{d\varepsilon'_\mu}{d\omega_{\text{rot}}}$$

Nilsson–Ragnarsson: Fig. 12.4

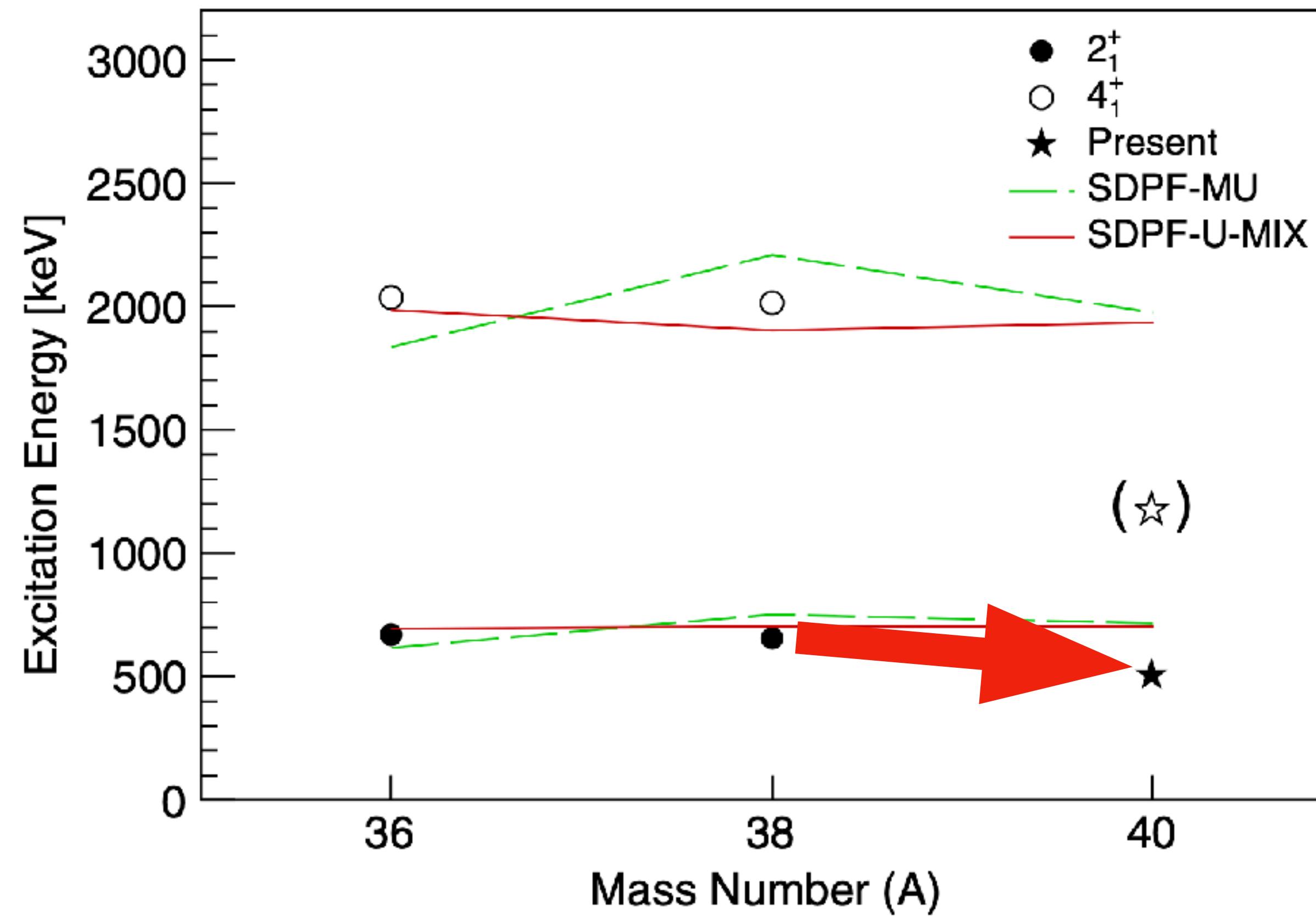
Example (2): the ground band of ^{172}Hf

KY, PRC105(2022)024313



Example (3): neutron-rich Mg isotopes

Crawford+, PRL122(2019)052501

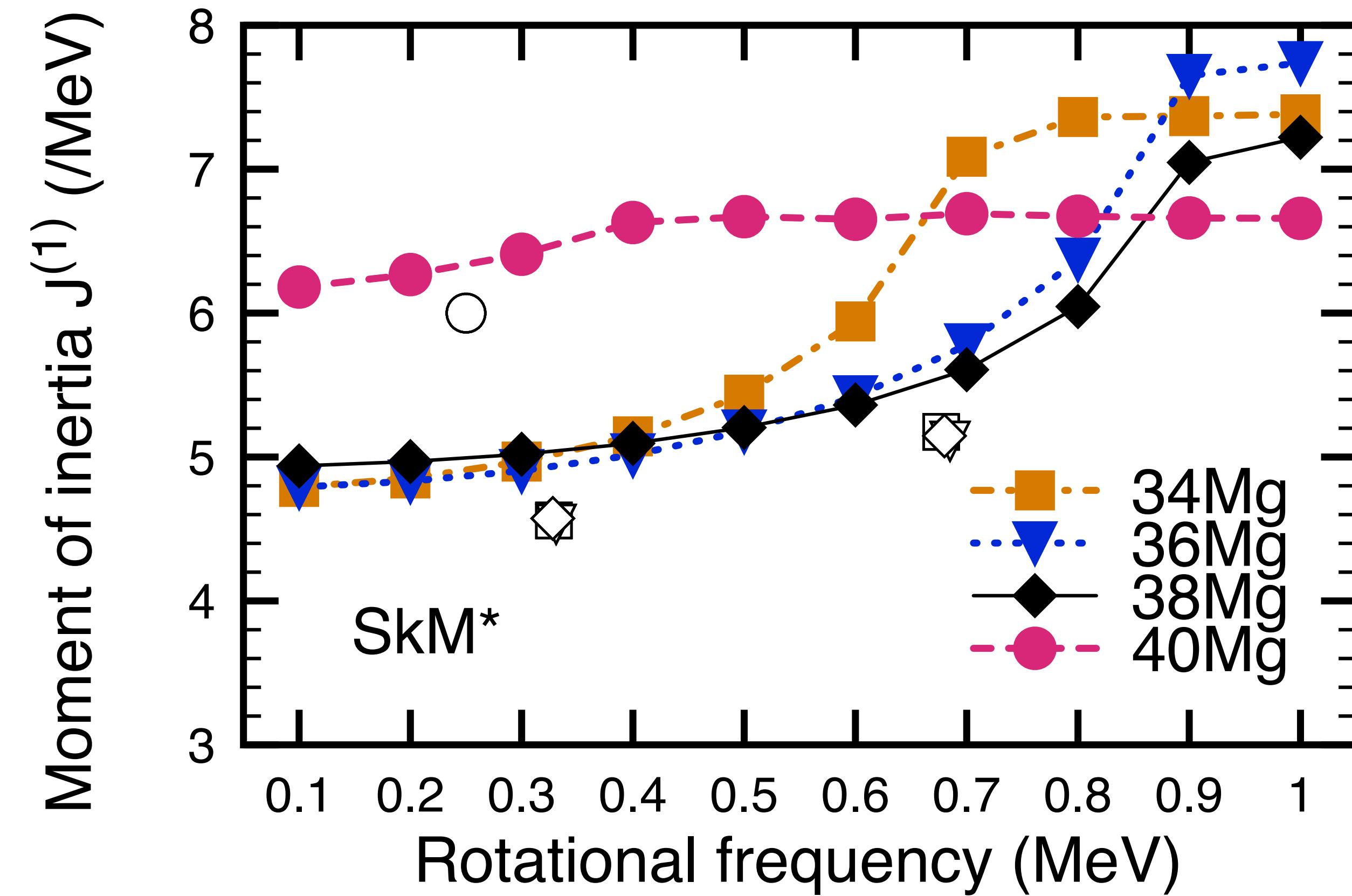


$635(6)$ keV $\rightarrow 500(14)$ keV

$\sim 20\%$ decrease in energy

Is it a qualitatively unique feature?

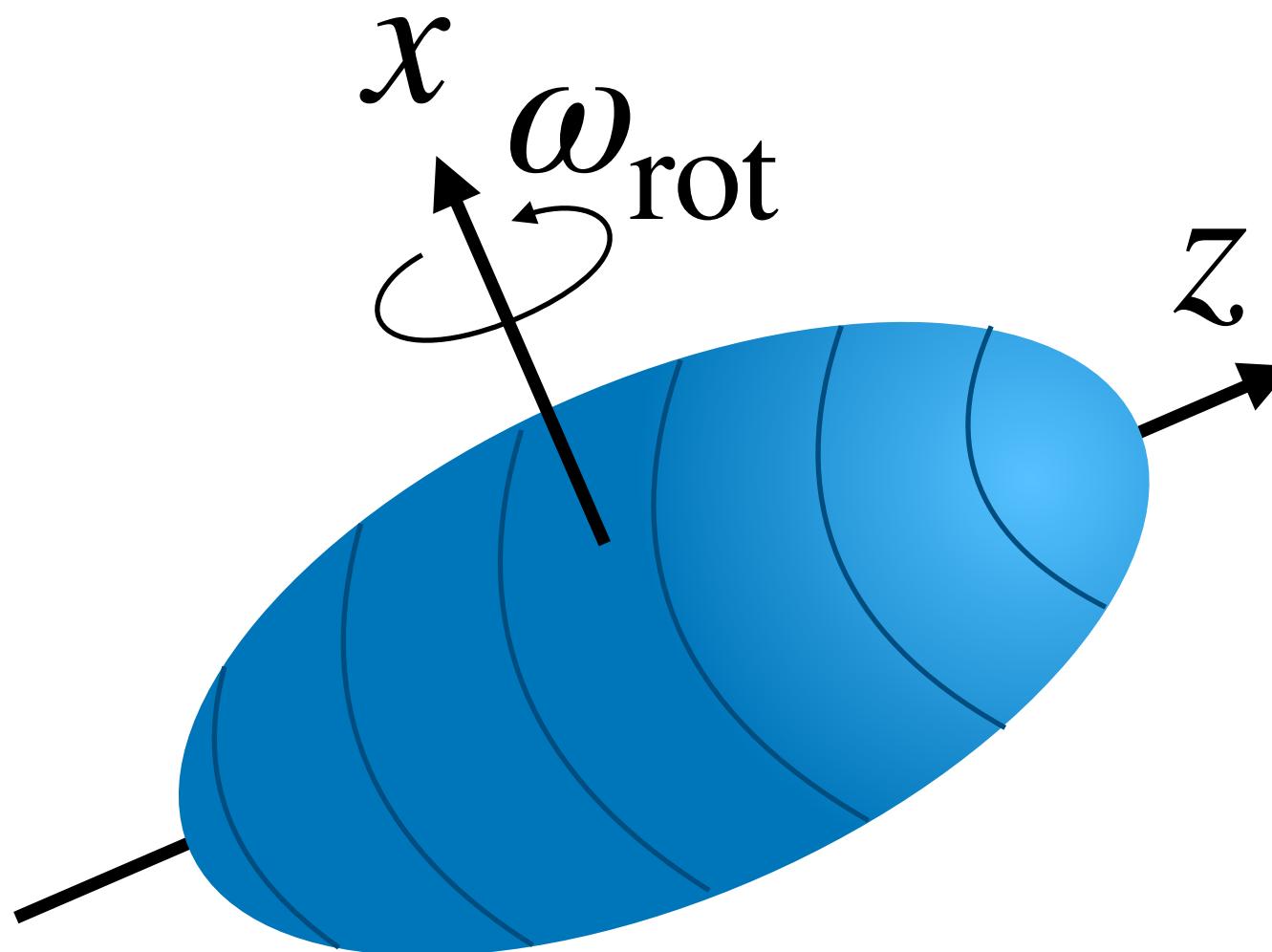
KY, PRC105(2022)024313



weakening of the pairing
deformed shell gap at $N=28$

Highly deformed nuclei at high spins

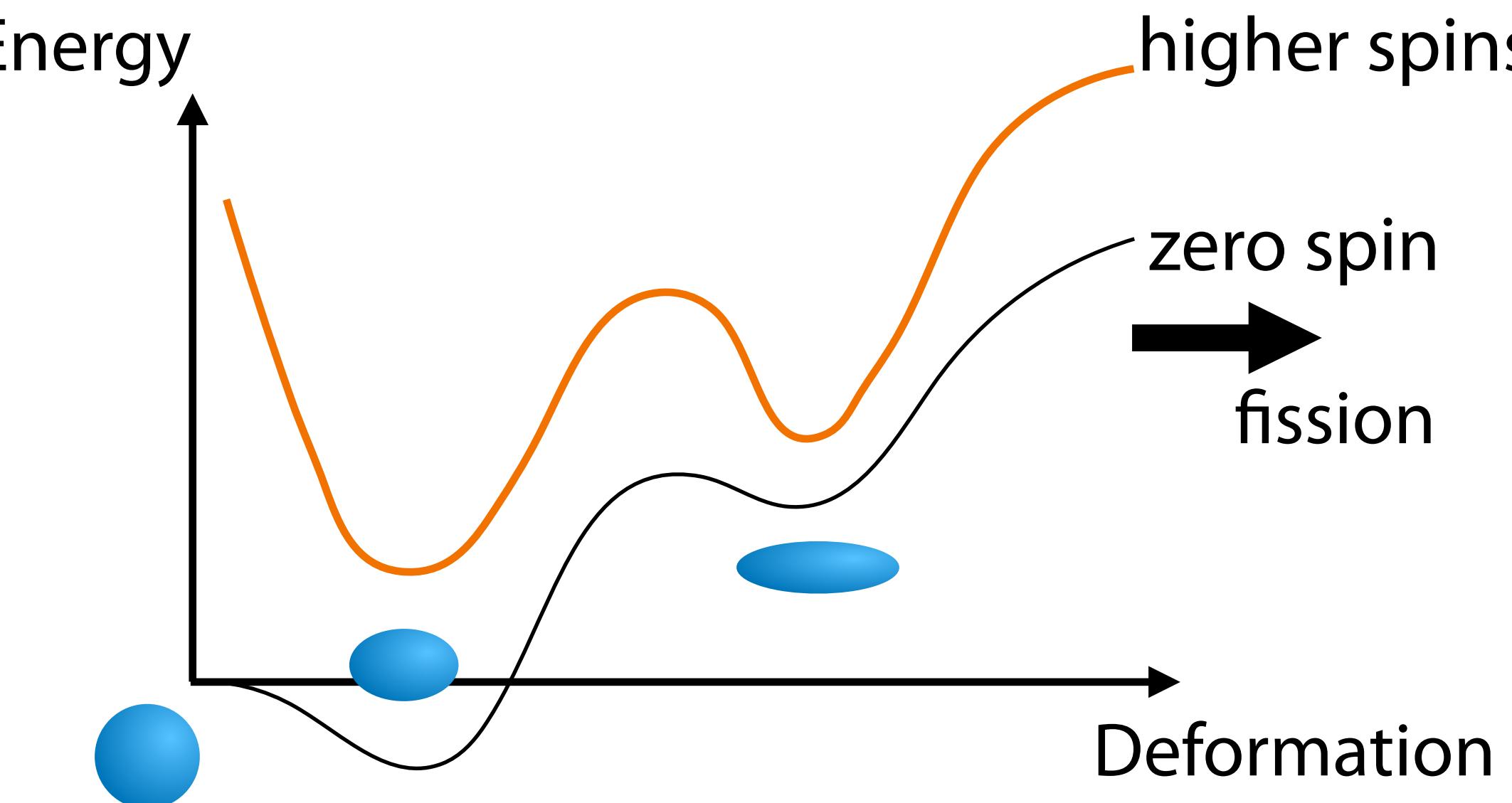
How large can a nucleus be deformed?



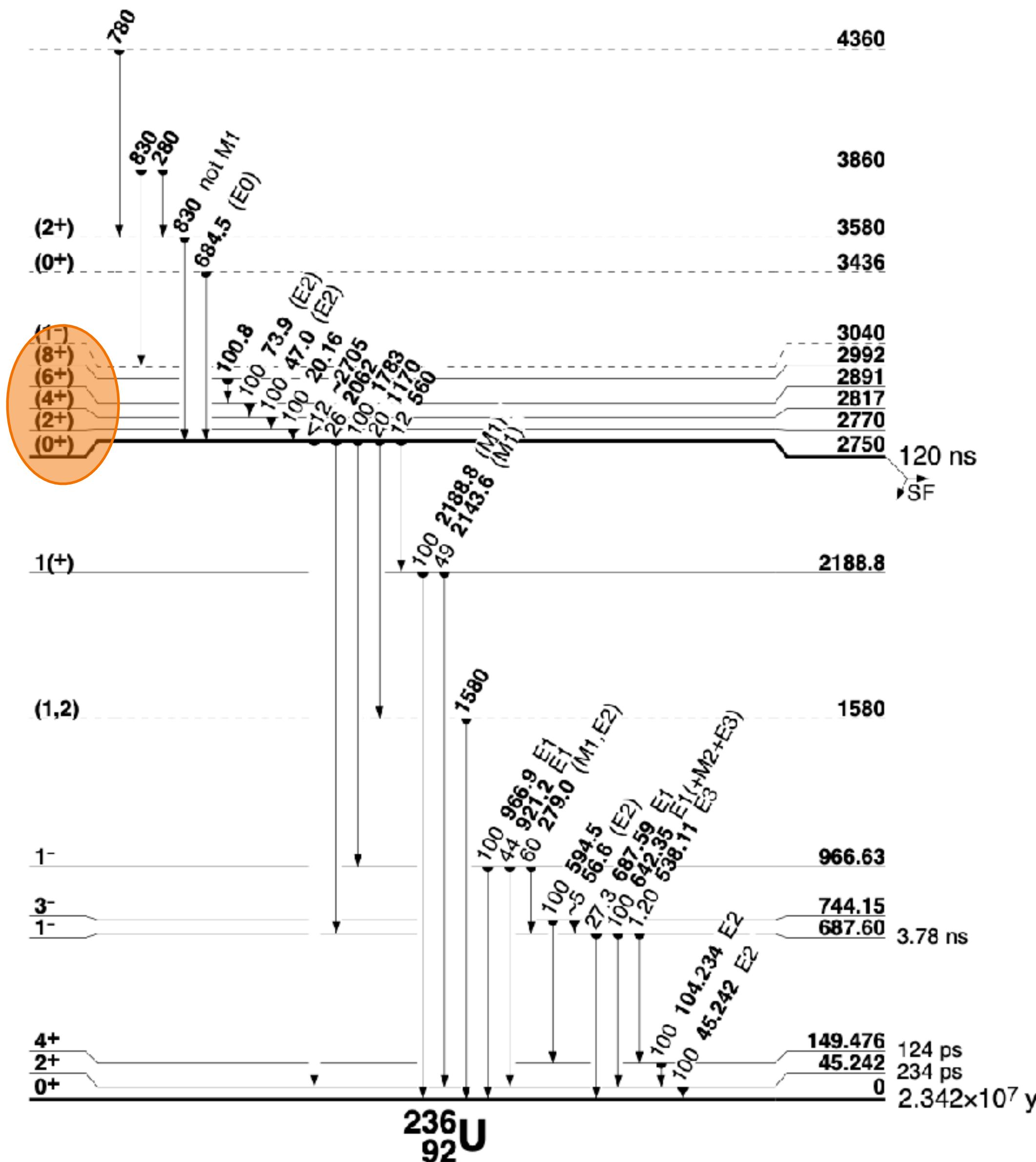
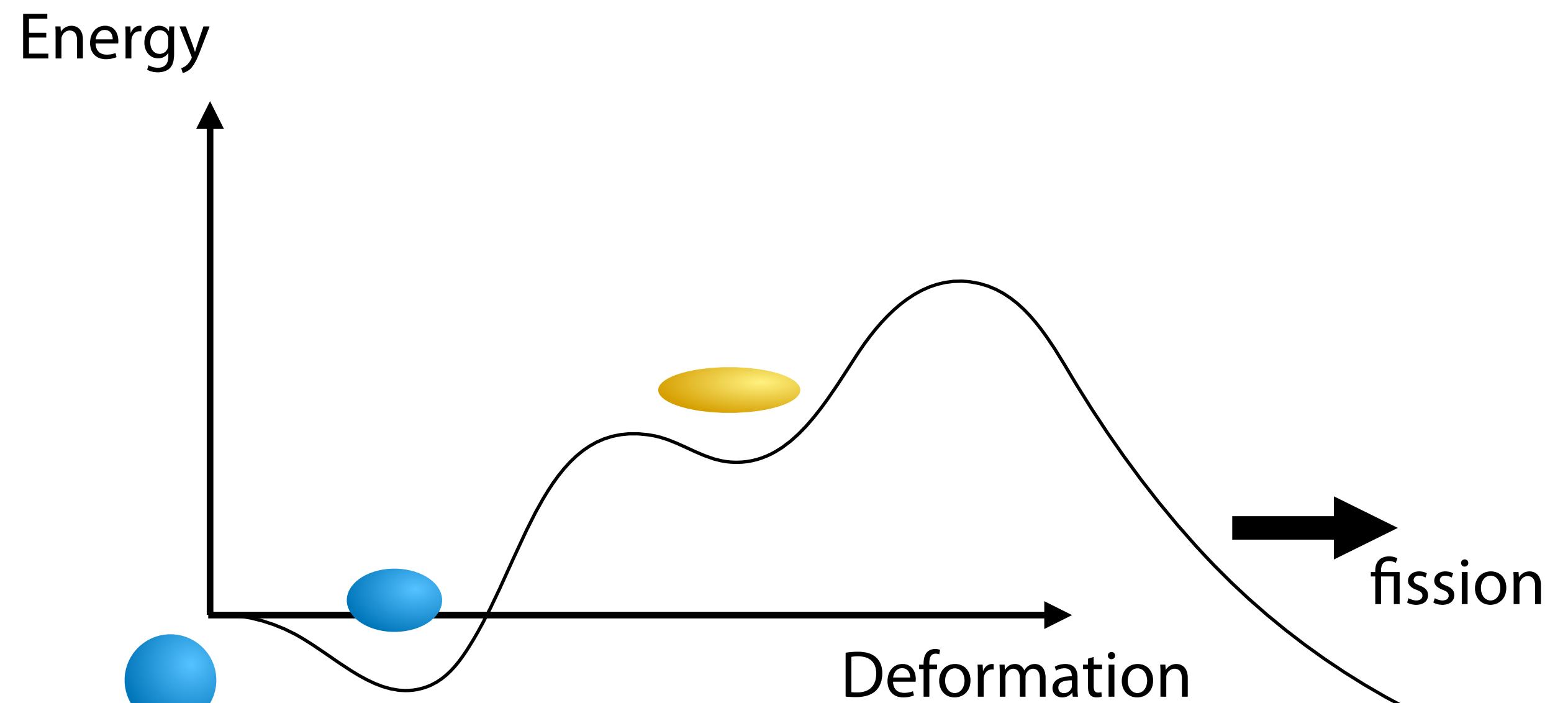
high moment of inertia for a highly-deformed nucleus

$$E = \frac{I(I + 1)}{2\mathcal{J}}$$

high-deformed nuclei are energetically favored at high spins

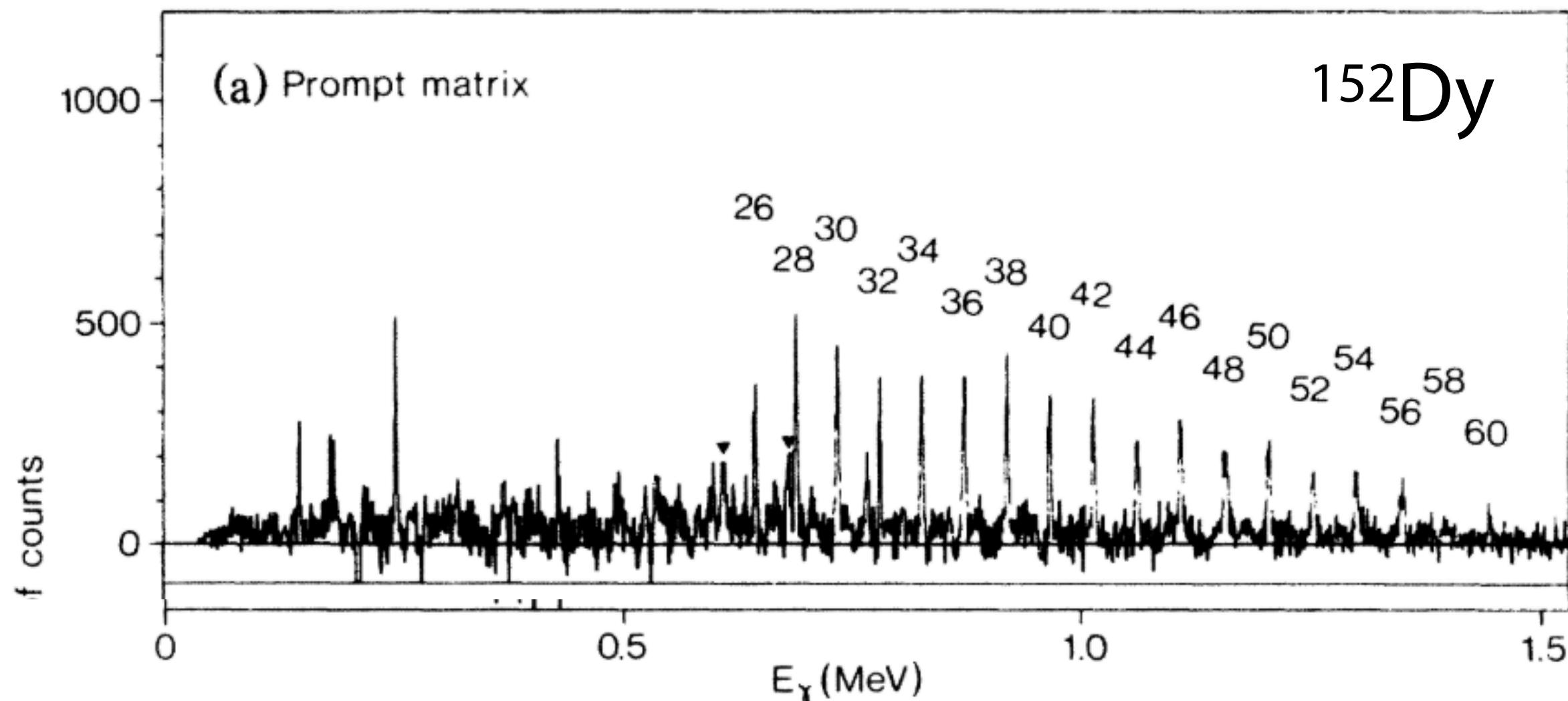


Superdeformed shape as a fission isomer



Superdeformed band

Twin+, PRL57(1986)811



low-energy heavy-ion fusion reaction

neutron deficient

rotational frequency

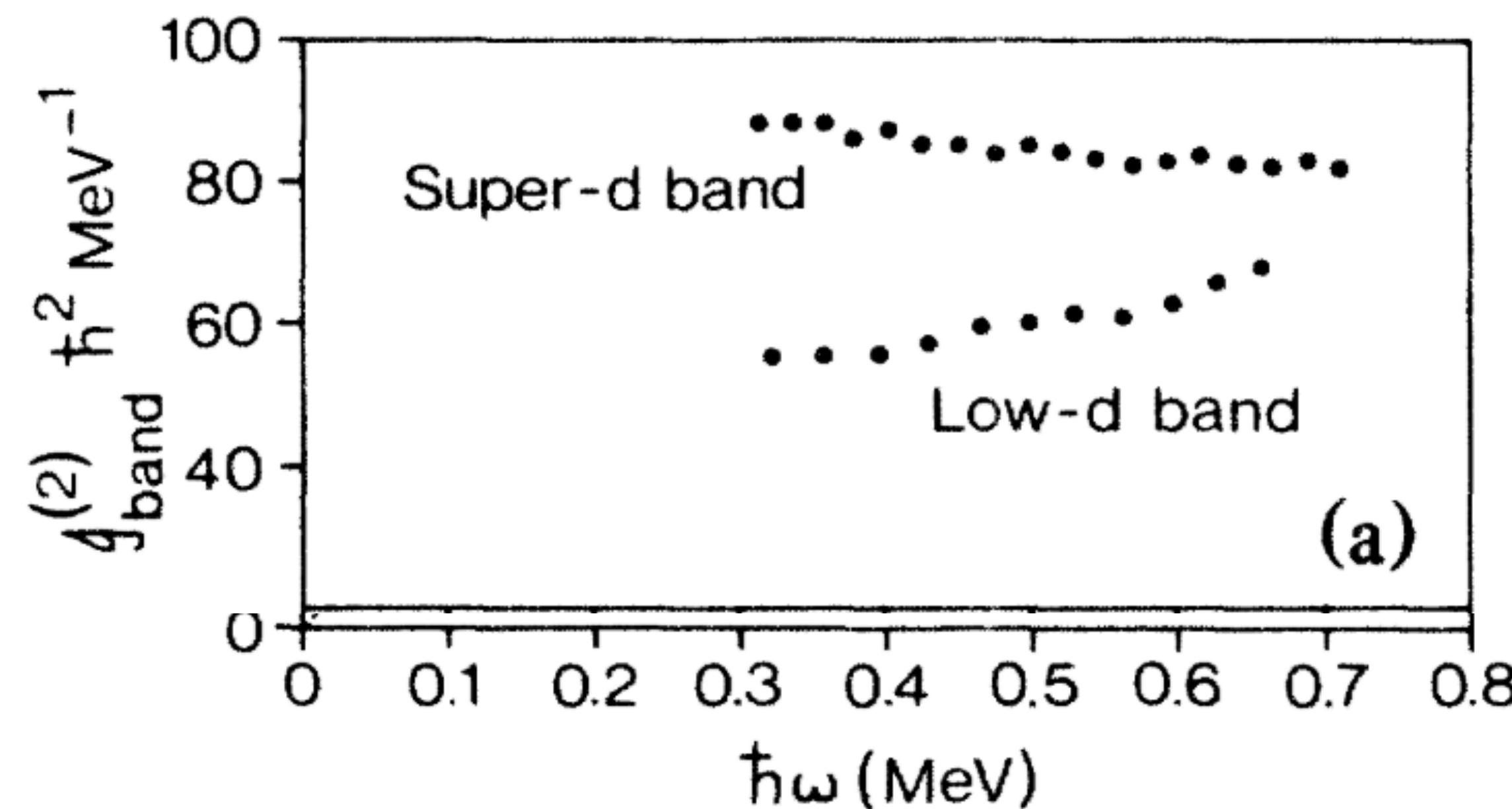
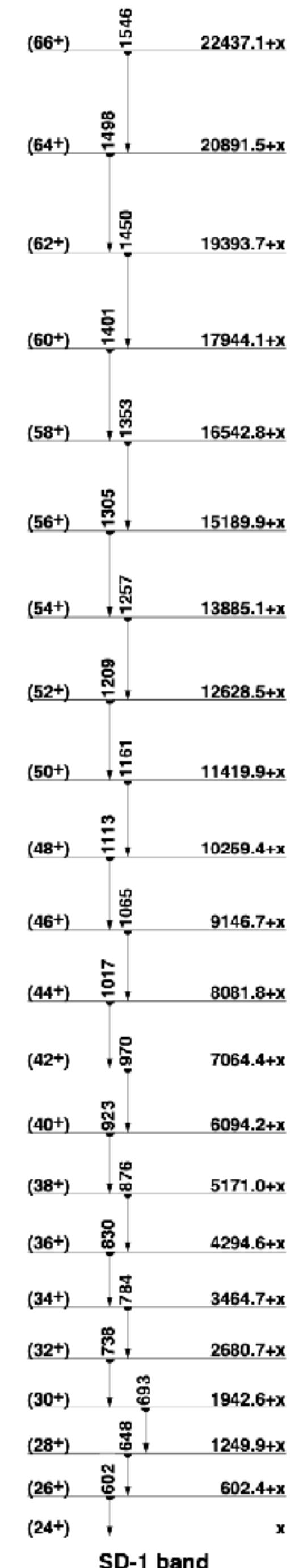
$$\omega_{\text{rot}}(I) = \frac{\partial E}{\partial I}$$

$$\approx \frac{E(I+1) - E(I-1)}{2} = \frac{E_{\gamma}(I)}{2}$$

moment of inertia

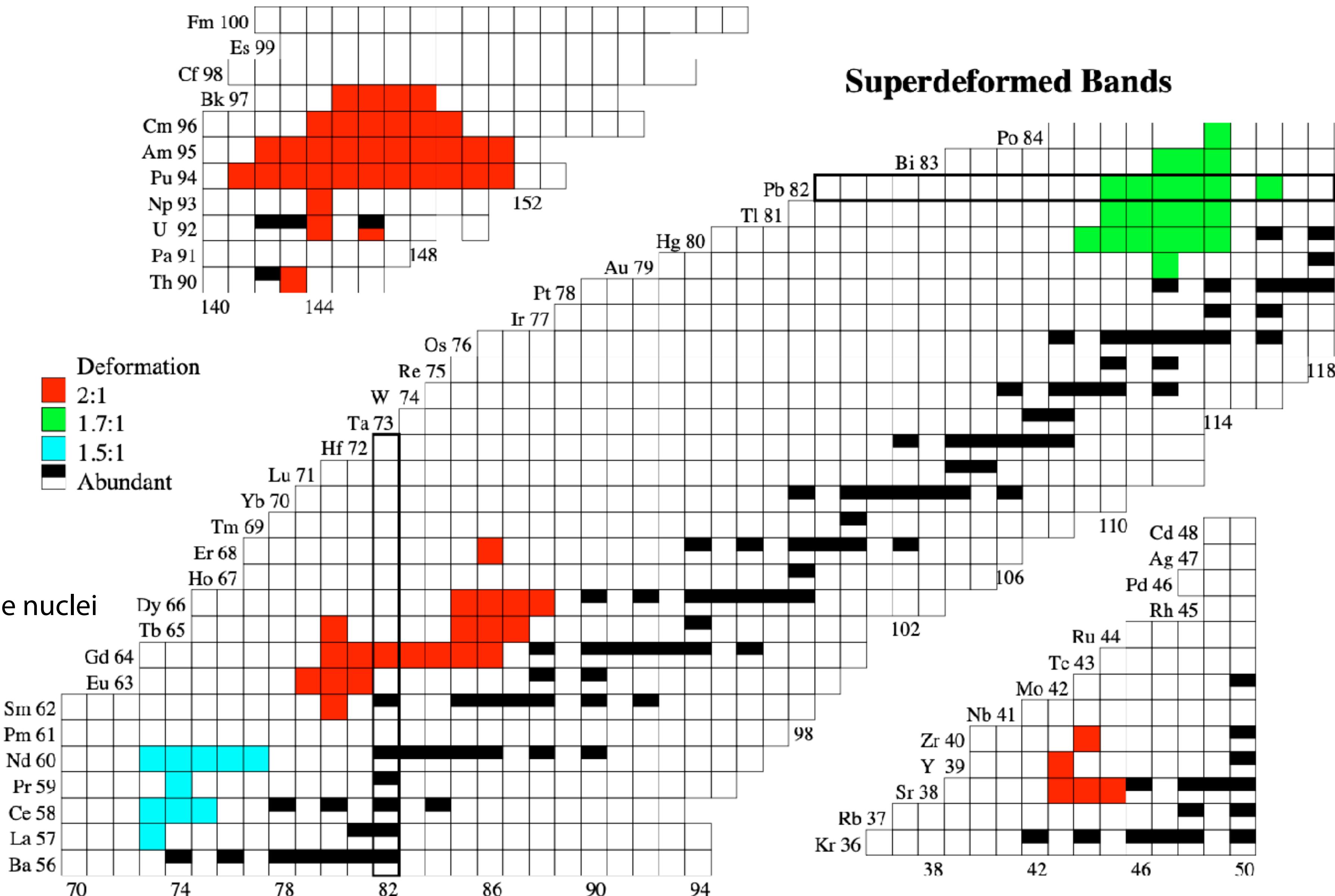
$$\mathcal{J}^{(2)} := \frac{dI}{d\omega_{\text{rot}}} = \left(\frac{d^2 E}{dI^2} \right)^{-1} = \frac{4}{\Delta E_{\gamma}}$$

no need of the spin identification



SD discovered so far

Fission Isomers

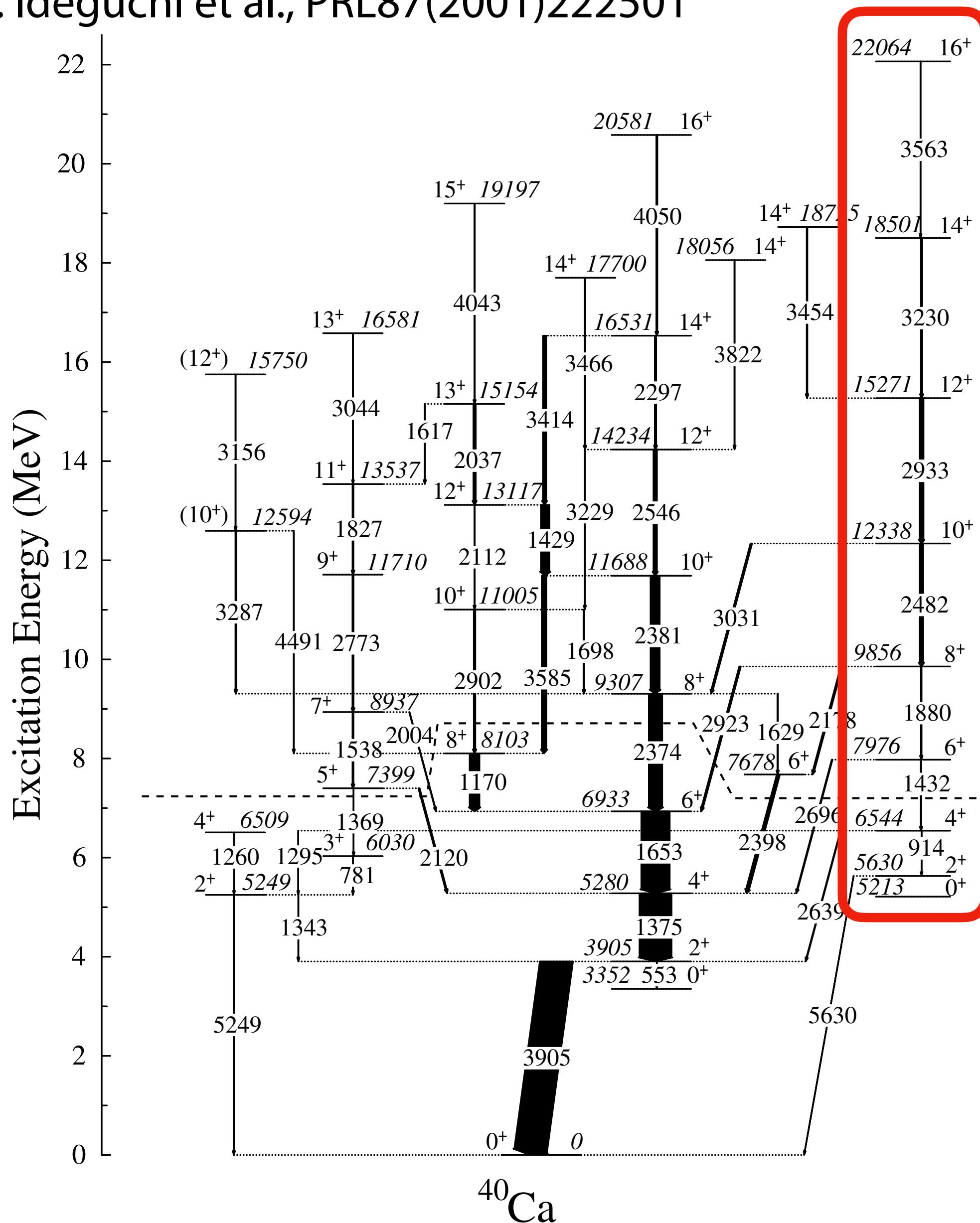


proton rich nuclei

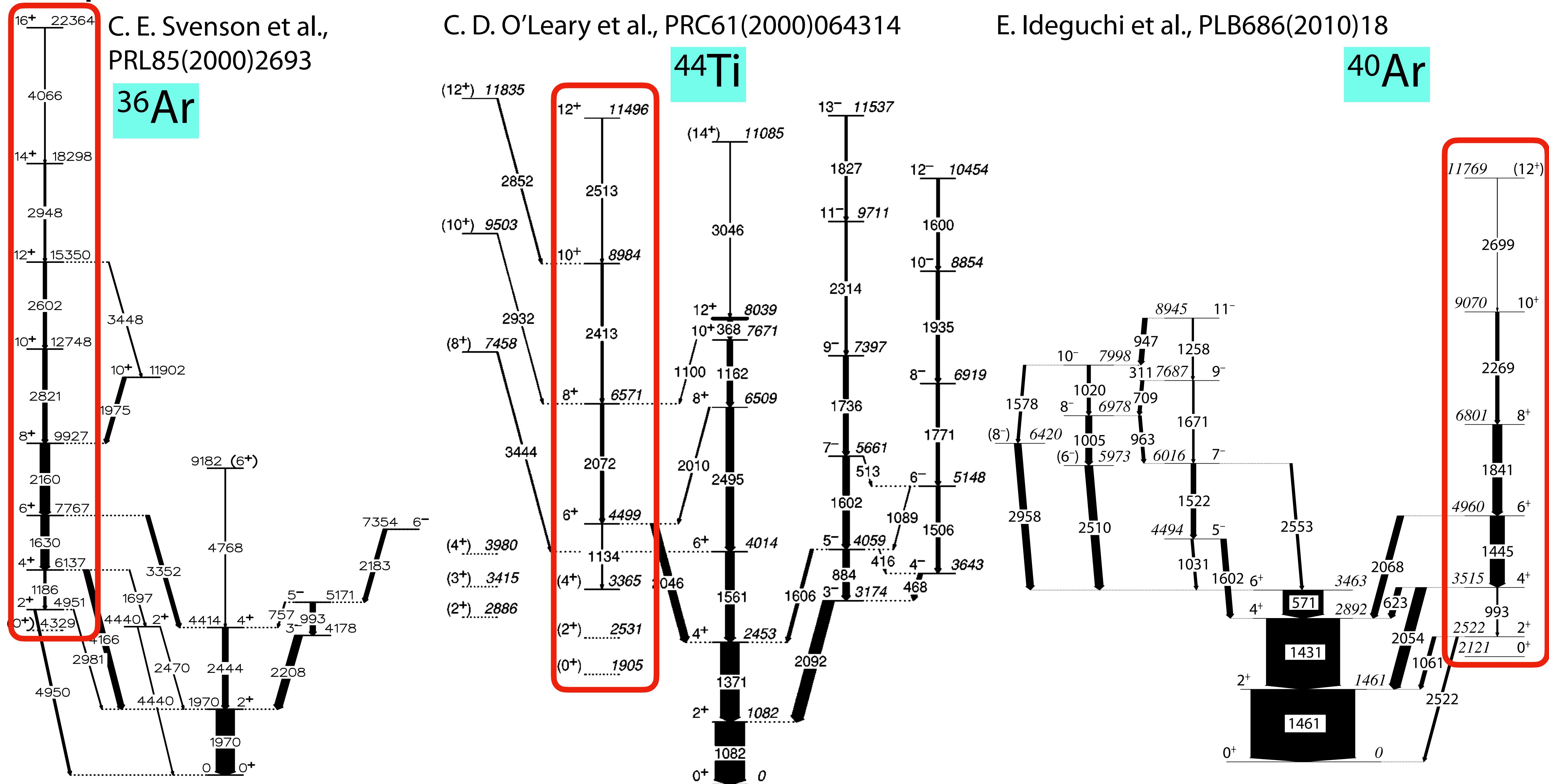
due to the fusion of stable nuclei

SD band in a doubly-magic nucleus: ^{40}Ca

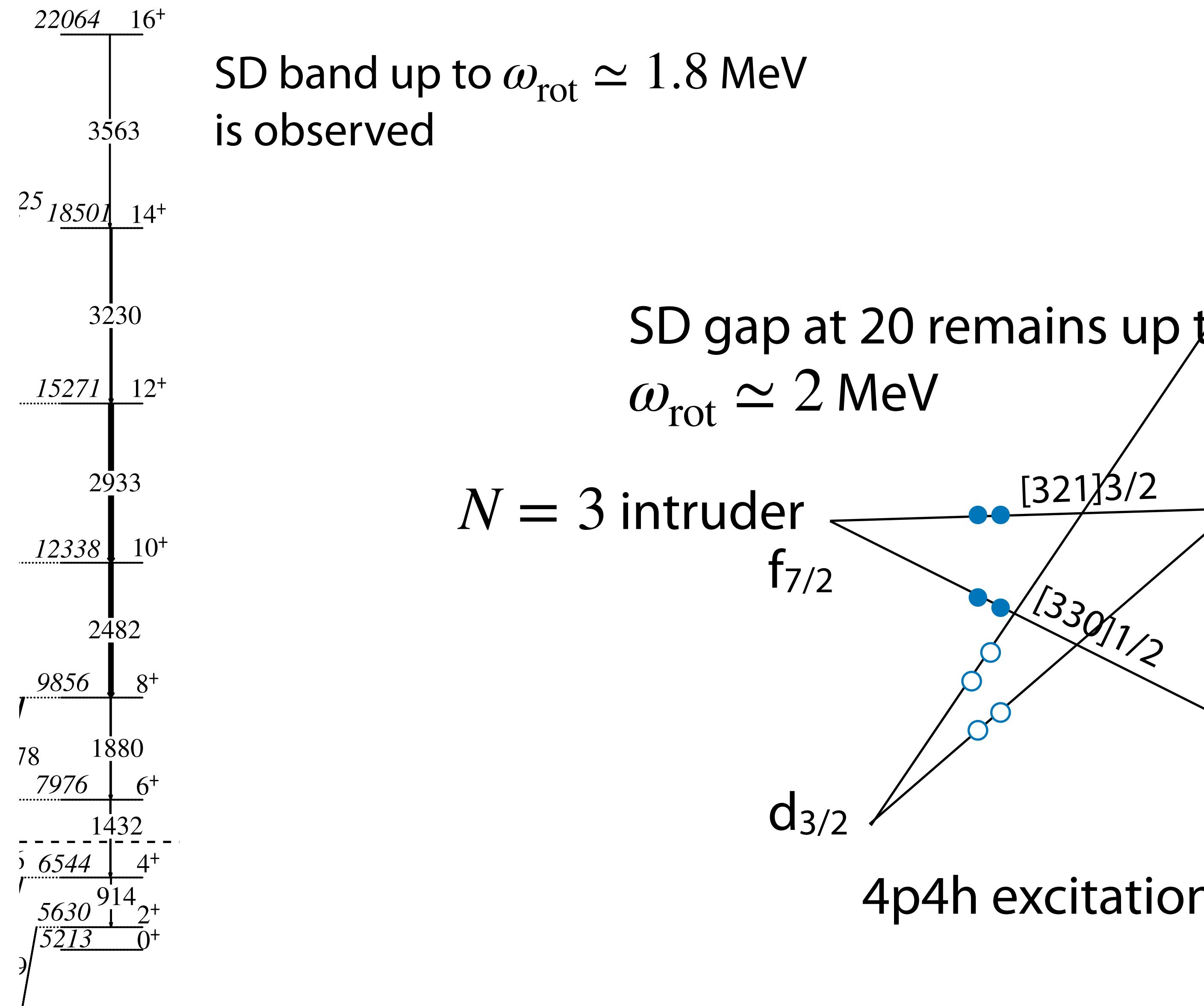
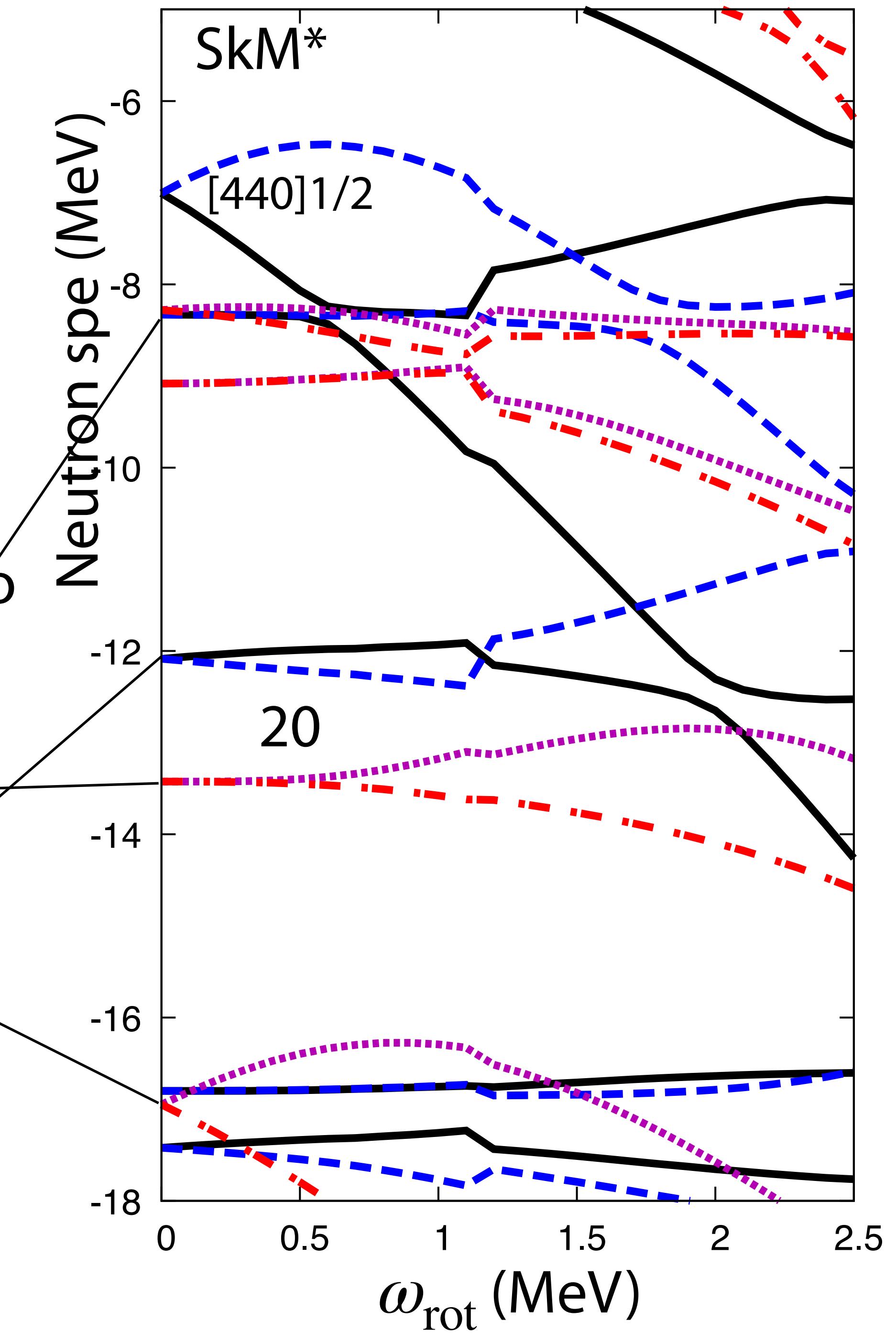
E. Ideguchi et al., PRL87(2001)222501



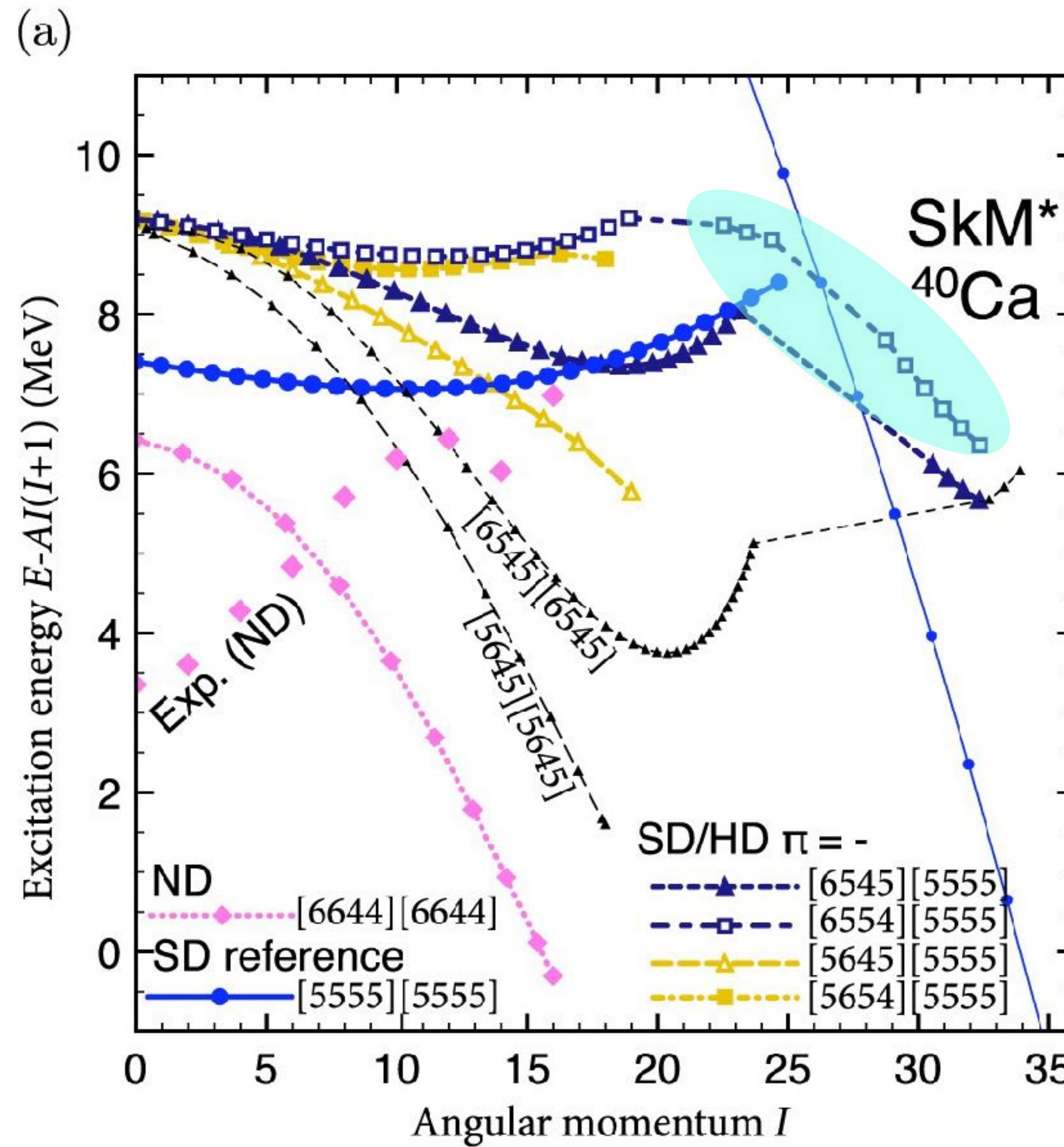
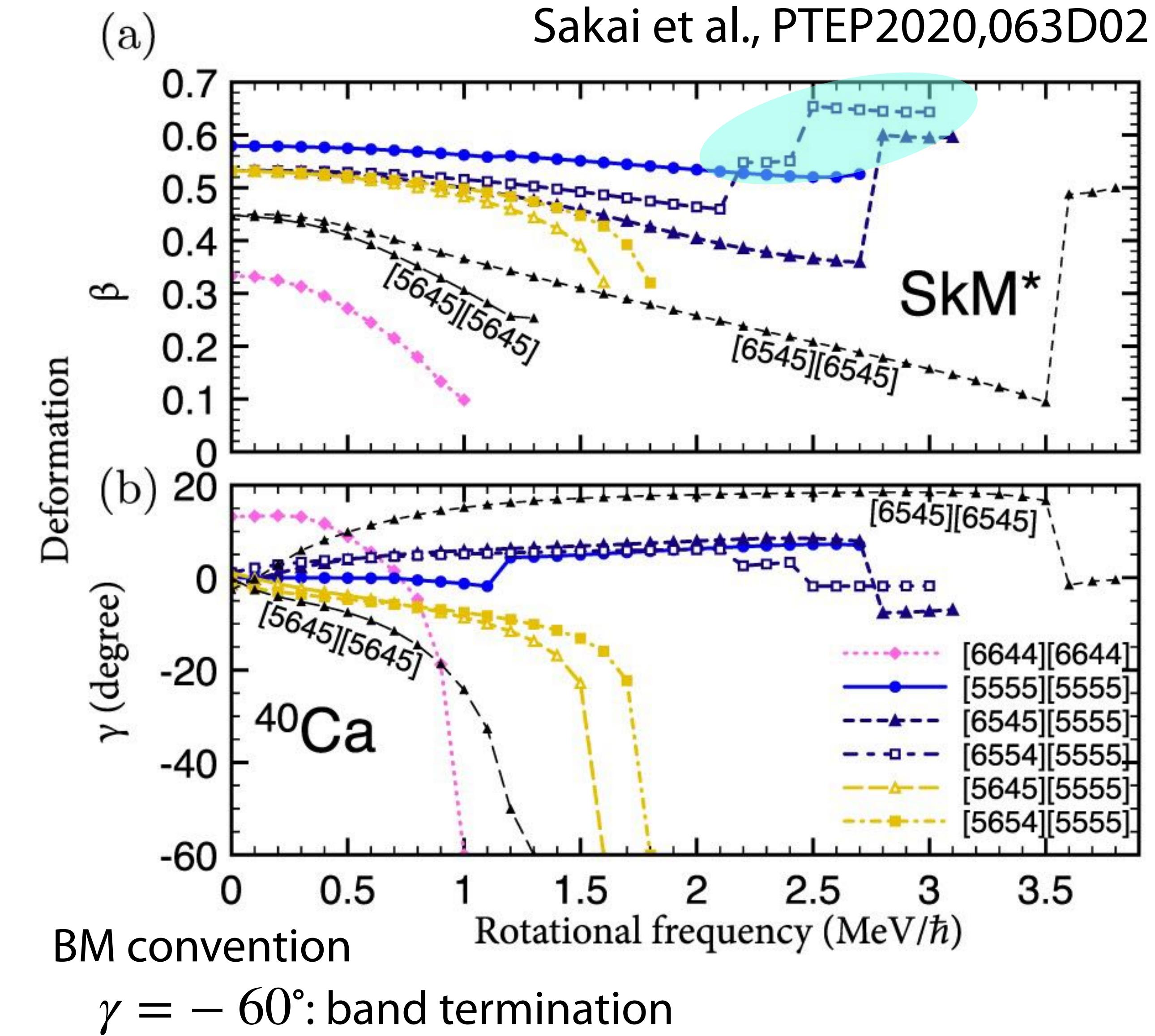
Superdeformation around ^{40}Ca : a new island of SD



Single-particle Routhians

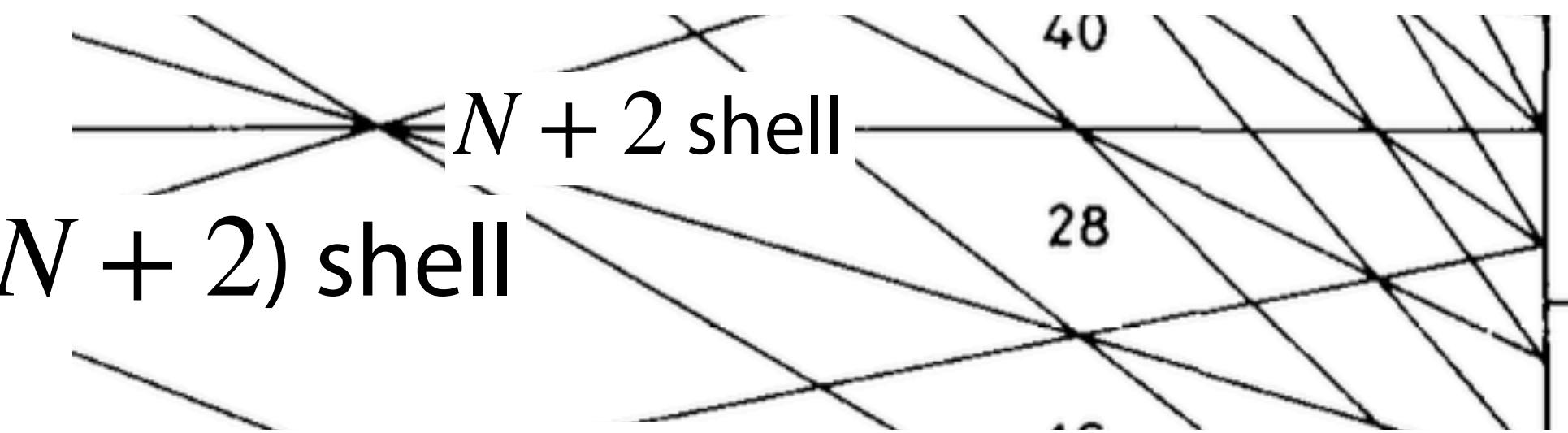


What would be expected beyond $I \simeq 20$?

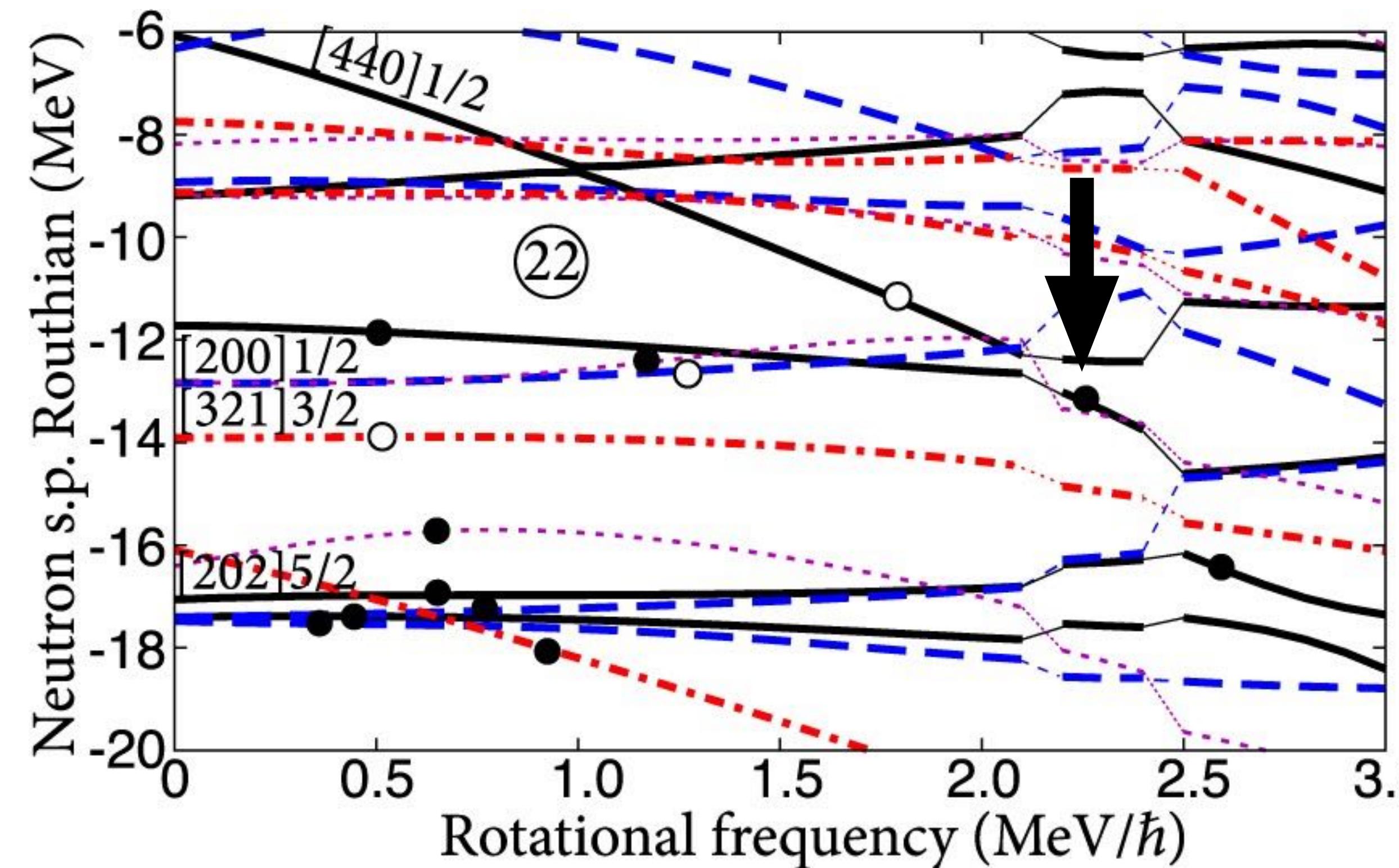


Higher deformation than SD

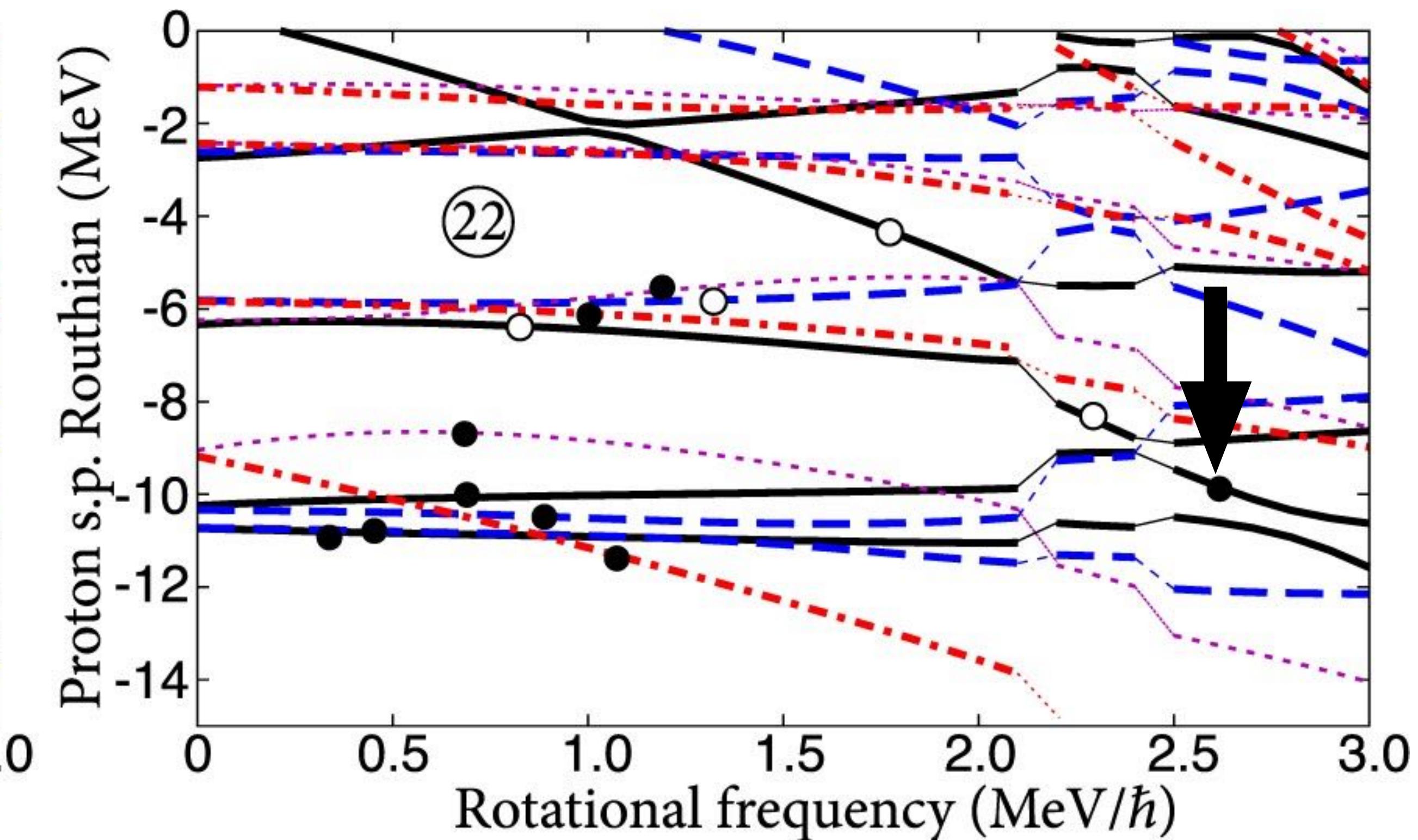
Hyperdef.: neutrons and protons in the hyper-intruder ($N + 2$) shell



a neutron occupies
the g shell



a proton occupies
the g shell



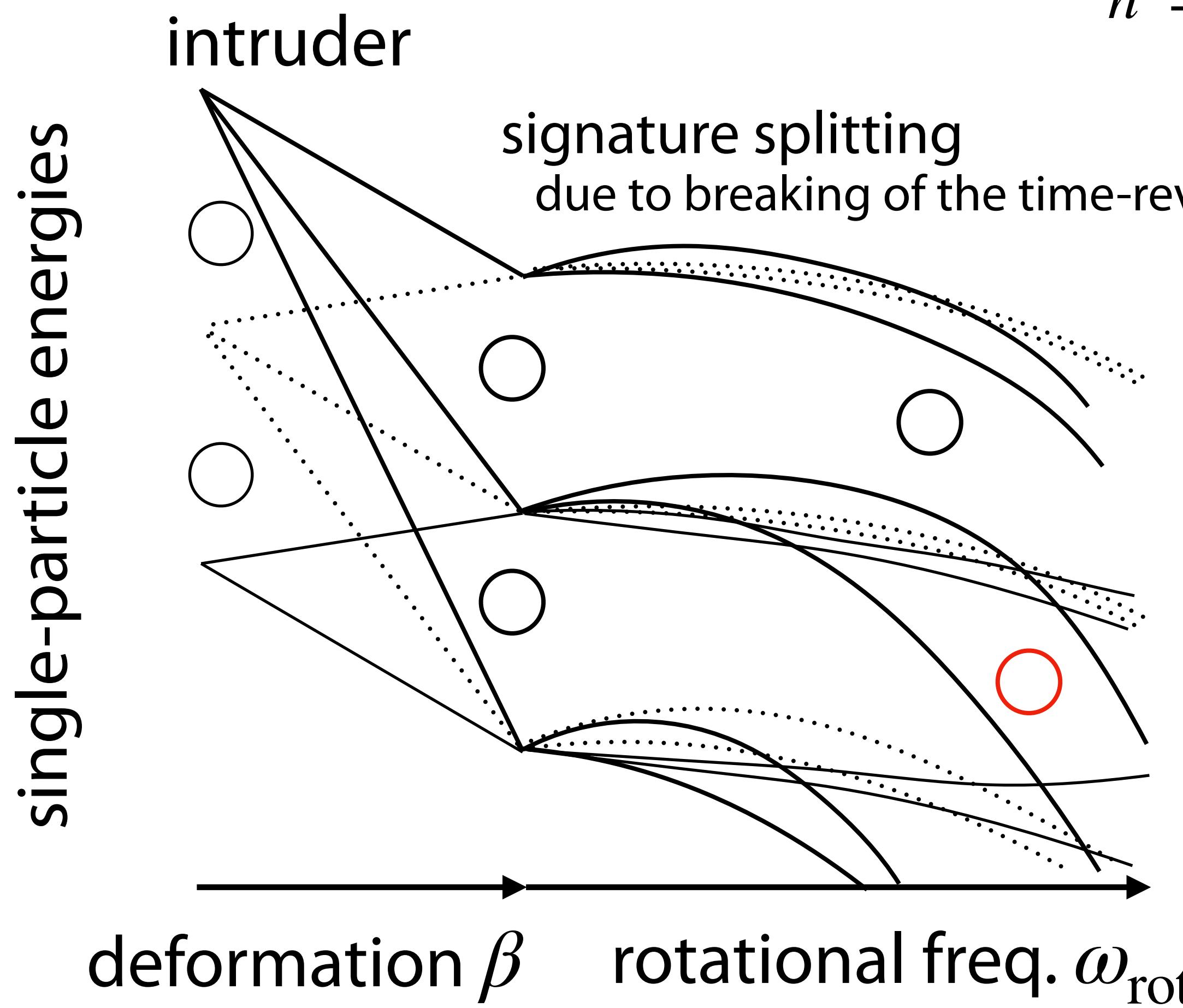
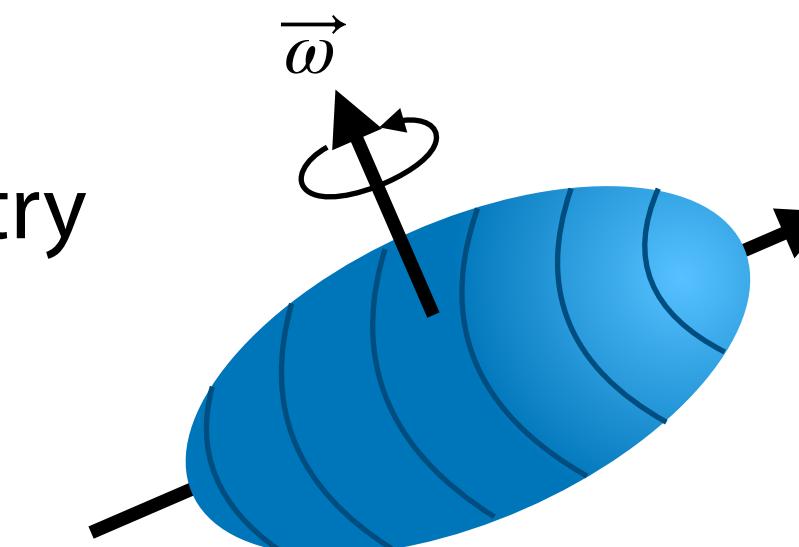
Quasi-hyperdeformation: gateway of HD

Sakai–Yoshida–Matsuo, PTEP(2020)063D02

$$h(\beta)\phi_i(\beta) = \epsilon_i(\beta)\phi_i(\beta)$$

$$h'(\beta, \omega_{\text{rot}})\phi_i(\beta, \omega_{\text{rot}}) = \epsilon'_i(\beta, \omega_{\text{rot}})\phi_i(\beta, \omega_{\text{rot}})$$

$$h' = h - \omega_{\text{rot}}j_x$$



shell gap: rotating-deformed magic number
involving one-more nucleon in the intruder shell

higher-deformation than SD

appearing at non-zero spins

Density-functional theory and nuclear energy-density functional method

Density Functional Theory (DFT)

developed in quantum chemistry

$$\begin{aligned} H = & -\frac{\hbar^2}{2m} \int dx \psi^\dagger(x) \nabla^2 \psi(x) + \int dx \psi^\dagger(x) v_{\text{ext}}(r) \psi(x) \\ & + \frac{1}{2} \int dx dx' \psi^\dagger(x) \psi^\dagger(x') w(r, r') \psi(x') \psi(x) \\ = & T + V_{\text{ext}} + W \end{aligned}$$

Hohenberg–Kohn theorem(1964)

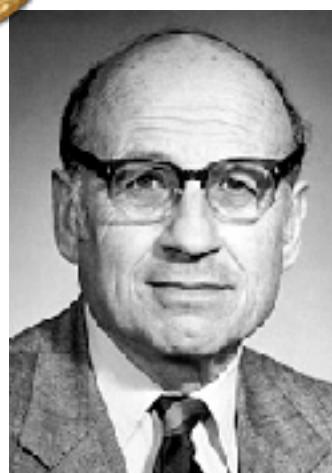
The exact ground-state energy of a many-body system can be obtained by variationally minimizing an energy density functional (EDF). Moreover, there exists such a functional (existence theorem).

PHYSICAL REVIEW

VOLUME 136, NUMBER 3B

9 NOVEMBER 1964

1998



W. Kohn

Inhomogeneous Electron Gas*

P. HOHENBERG†

École Normale Supérieure, Paris, France

AND

W. KOHN‡

*École Normale Supérieure, Paris, France and Faculté des Sciences, Orsay, France
and*

University of California at San Diego, La Jolla, California

(Received 18 June 1964)

This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathbf{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathbf{r})]$, independent of $v(\mathbf{r})$, such that the expression $E \equiv \int v(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} + F[n(\mathbf{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathbf{r})$. The functional $F[n(\mathbf{r})]$ is then discussed for two situations: (1) $n(\mathbf{r}) = n_0 + \tilde{n}(\mathbf{r})$, $\tilde{n}/n_0 \ll 1$, and (2) $n(\mathbf{r}) = \varphi(\mathbf{r}/r_0)$ with φ arbitrary and $r_0 \rightarrow \infty$. In both cases F can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.

In quantum mechanics, variation of $\delta E[\Psi] = 0$

energy functional (functional of WF) $E[\Psi] = \langle \Psi | H | \Psi \rangle$

with the normalization condition

$$\langle \Psi | \int dx \psi^\dagger(x) \psi(x) | \Psi \rangle = N$$

$$E[\Psi] \geq E_0 = E[\Psi_0]$$

$$v_{\text{ext}}(r) \xrightarrow{A} |\Psi_0\rangle \xrightarrow{B} \rho_0(r) \quad \rho_0(r) = \langle \Psi_0 | \psi^\dagger(r) \psi(r) | \Psi_0 \rangle$$

In DFT,

1. inverse mapping : $\rho_0(r) \mapsto |\Psi_0\rangle \mapsto v_{\text{ext}}(r)$
2. density variation principle

Hohenberg–Kohn theorem (1964)

under the assumptions

1. The ground state is not degenerate.
2. For any given density, there exists at least one external potential for which that density is the ground-state density: v -representability

The theorem was generalized to the degenerate system (W. Kohn, 1985).

A counterexample to Assumption 2 has been found.

Theorem I: mapping $v_{\text{ext}}(r) \mapsto |\Psi_0\rangle \mapsto \rho_0(r)$ is one-to-one corresponding.

① : $v_{\text{ext}}(r) \iff |\Psi_0\rangle$

- By Assumption 2, the mapping is surjective.

- Injectivity is proved by contradiction:

Suppose that external potentials $v_{\text{ext}}(r), v'_{\text{ext}}(r)$ differing by more than a constant give rise to an identical wave function $|\Psi_0\rangle$.

$$H|\Psi_0\rangle = [T + V_{\text{ext}} + W]|\Psi_0\rangle = E_0|\Psi_0\rangle$$

$$H'|\Psi_0\rangle = [T + V'_{\text{ext}} + W]|\Psi_0\rangle = E'_0|\Psi_0\rangle$$

$$[V_{\text{ext}} - V'_{\text{ext}}]|\Psi_0\rangle = [E_0 - E'_0]|\Psi_0\rangle$$

dividing both sides by $\langle r_1\sigma_1, \dots, r_N\sigma_N | \Psi_0 \rangle = \Psi_0(r_1\sigma_1, \dots, r_N\sigma_N)$

At all points where the wave function $\Psi_0(r_1\sigma_1, \dots, r_N\sigma_N)$ does not vanish,

$$\sum_{i=1}^N [v_{\text{ext}}(r_i) - v'_{\text{ext}}(r_i)] = \underline{E_0 - E'_0} \quad \text{constant}$$

→ contradict the assumption that $v_{\text{ext}}(r), v'_{\text{ext}}(r)$ is different by more than a constant

② : $|\Psi_0\rangle \iff \rho_0(r)$

Suppose that two wave functions, $|\Psi_0\rangle, |\Psi'_0\rangle$ differing by more than a global phase, give rise to the same density distribution $\rho_0(r)$.

variational principle:

$$E_0 = \langle \Psi_0 | H | \Psi_0 \rangle < \langle \Psi'_0 | H | \Psi'_0 \rangle$$

$$\begin{aligned} E_0 &< \langle \Psi'_0 | H' + H - H' | \Psi'_0 \rangle \\ &= E'_0 + \langle \Psi'_0 | V_{\text{ext}} - V'_{\text{ext}} | \Psi'_0 \rangle \\ &= E'_0 + \int dr \rho_0(r) [v_{\text{ext}}(r) - v'_{\text{ext}}(r)] \end{aligned}$$

similarly,

$$\begin{aligned} E'_0 &< \langle \Psi_0 | H + H' - H | \Psi_0 \rangle \\ &= E_0 + \langle \Psi_0 | V'_{\text{ext}} - V_{\text{ext}} | \Psi_0 \rangle \\ &= E_0 + \int dr \rho_0(r) [v'_{\text{ext}}(r) - v_{\text{ext}}(r)] \end{aligned}$$

Adding both sides yields

$$E_0 + E'_0 < E_0 + E'_0 \quad \text{contradiction with the assumption}$$

Hohenberg–Kohn (Theorem I)

$$v_{\text{ext}}(r) \iff |\Psi_0\rangle \iff \rho_0(r) = \langle \Psi_0 | \hat{\rho}(r) | \Psi_0 \rangle$$

unique except the constant (global phase)

→ $|\Psi[\rho]\rangle$ ground-state wf is a functional of density

$$|\Psi_0\rangle = |\Psi[\rho_0]\rangle$$

→ $O[\rho] \equiv \langle \Psi[\rho] | \hat{O} | \Psi[\rho] \rangle$ ground-state expectation values a functional of density

$$E[\rho] \equiv \langle \Psi[\rho] | \hat{H} | \Psi[\rho] \rangle = F[\rho] + \int dr \rho(r) v_{\text{ext}}(r)$$

$$F[\rho] \equiv \langle \Psi[\rho] | \hat{T} + \hat{W} | \Psi[\rho] \rangle \quad \text{universal energy density functional (EDF)}$$

→ Density variational principle (Theorem II)

$$\rho_0(r) \neq \rho'_0(r)$$

$$E[\rho_0] < E[\rho'_0] \iff E_0 = \min_{\rho(r)} E[\rho]$$

Constrained search formulation as a solution to the issue of v-rep.

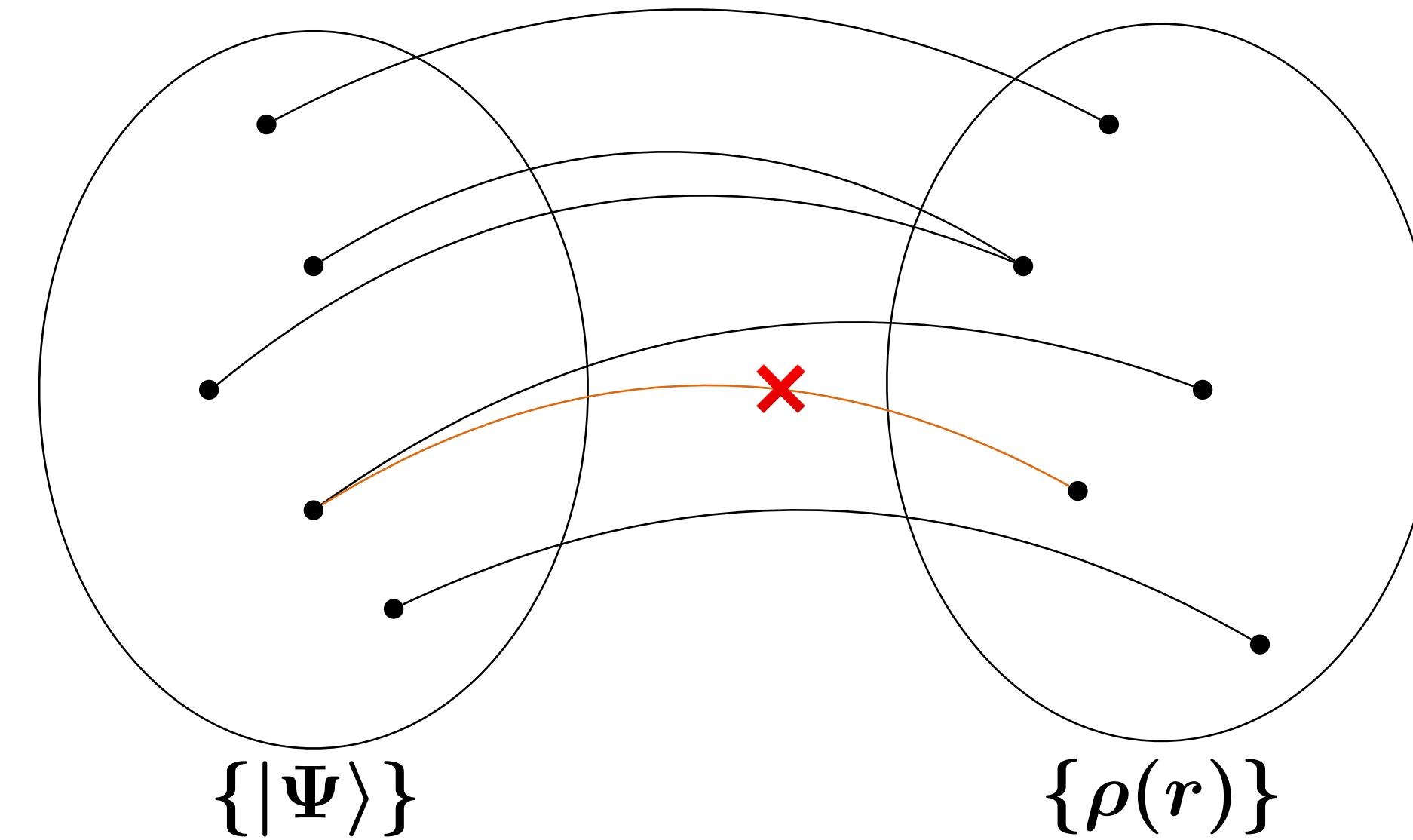
M. Levy, PRA26(1982)1200

For any given density, there exists at least one wave function giving that density:

N -representability

T. L. Gilbert, PRB12(1975)2111

J. E. Harriman, PRA24(1981)680



set of many-body wave functions

$$\rho(r) = \langle \Psi | \psi^\dagger(r) \psi(r) | \Psi \rangle$$

variational principle : $E_0 = \min_{\{|\Psi\rangle\}} [\langle \Psi | H | \Psi \rangle] = \min_{\{\rho(r)\}} \left[\min_{\{|\Psi\rangle\}_{\rho(r)}} [\langle \Psi | H | \Psi \rangle] \right]$

$$E[\rho] \equiv \min_{\{|\Psi\rangle\}_{\rho(r)}} [\langle \Psi | H | \Psi \rangle]$$

Levy-Lieb EDF

v - and N -representabilities

condition for the v -rep.

not yet proven mathematically for a general case

condition for the N -rep.

non-negativity

$$\rho(\vec{r}) \geq 0,$$

normalization (particle number)

$$\int d\vec{r} \rho(\vec{r}) = N,$$

continuous (finite kinetic energy)

$$\int d\vec{r} \left| \nabla \sqrt{\rho(\vec{r})} \right|^2 < \infty$$

Harriman's construction

one-dimensional without spin d.o.f for simplicity

density is non-zero in $x_1 \leq x \leq x_2$

$$\sigma(x) = \rho(x)/N, \quad q(x) = \int_{x_1}^x dx' \sigma(x')$$

single-particle orbitals

$$\phi_k(x) = \sqrt{\sigma(x)} \exp[2\pi i k q(x)] \quad k = 0, \pm 1, \pm 2, \dots$$

orbital density $|\phi_k(x)|^2 = \sigma(x)$

orthonormal $\int_{x_1}^{x_2} dx \phi_k(x) \phi_{k'}(x) = \delta_{kk'}$

we can construct a many-body wf by the Slater determinant of ϕ_k
giving any density

Practical way of DFT calculation: Kohn–Sham method

PHYSICAL REVIEW

VOLUME 140, NUMBER 4A

15 NOVEMBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects*

W. KOHN AND L. J. SHAM

University of California, San Diego, La Jolla, California

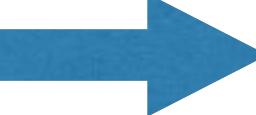
(Received 21 June 1965)

"Reference system" (independent particle motion in a unknown potential)

$$H = -\frac{\hbar^2}{2m} \int dx \psi^\dagger(x) \nabla^2 \psi(x) + \int dx \psi^\dagger(x) v_s[\rho](r) \psi(x)$$

$$= T + V_s[\rho]$$

exact ground-state density

Kohn–Sham eq. $\left\{ -\frac{\hbar^2}{2m} \nabla^2 + v_s[\rho](r) \right\} \phi_i(r) = \epsilon_i(r)$  $\rho(r) = \langle 0 | \hat{\rho}(r) | 0 \rangle = \sum_{i=1}^N |\phi_i(r)|^2$

Kinetic energy density: $T_s[\rho] = \sum_{i=1}^N \langle \phi_i | -\frac{\hbar^2}{2m} | \phi_i \rangle = \sum_{i=1}^N \epsilon_i - \int dr v_s[\rho](r) \rho(r)$ $v_s[\rho](r) = -\frac{\delta T_s[\rho]}{\delta \rho(r)}$

Interacting system

density variational principle

$$\frac{\delta E[\rho]}{\delta \rho(r)} = \frac{\delta T_s[\rho]}{\delta \rho(r)} + v_{\text{ext}}(r) + \frac{\delta V_{\text{eff}}[\rho]}{\delta \rho(r)} = 0$$

$$v_s[\rho](r) \equiv v_{\text{ext}}(r) + \frac{\delta V_{\text{eff}}[\rho]}{\delta \rho(r)}$$

$$F[\rho] = T_s[\rho] + \{F[\rho] - T_s[\rho]\}$$

$$= T_s[\rho] + V_{\text{eff}}[\rho]$$

exact ground-state density of the interacting system

What is different from the mean-field approximation

$$H = -\frac{\hbar^2}{2m} \int dx \psi^\dagger(x) \nabla^2 \psi(x) + \int dx \psi^\dagger(x) v_{\text{ext}}(r) \psi(x)$$

$$+ \frac{1}{2} \int dx dx' \underbrace{\psi^\dagger(x) \psi^\dagger(x') w(r, r') \psi(x') \psi(x)}$$

$$= T + V_{\text{ext}} + W$$

two-body interaction

neglect of the fluctuation : $\psi^\dagger \psi^\dagger \psi \psi :$

$$\int dx x_1 x_2 \Gamma(x_1, x_2) : \psi^\dagger(x_1) \psi(x_2) :$$

some part of the interaction are only included in the mean field Γ

An example

$$v(x_1, x_2) = \left[t_0(1 + x_0 P_\sigma) + \frac{t_3}{6}(1 + x_3 P_\sigma) \rho^\alpha(r_1) \right] \delta(r_1 - r_2)$$

HF potential $\Gamma_q = \frac{t_0(2 + x_0)}{2} \rho - \frac{t_0(1 + 2x_0)}{2} \rho_q + \frac{t_3(2 + x_3)}{12} \rho^{\alpha+1} - \frac{t_3(1 + 2x_3)}{12} \rho_q \rho^\alpha$ neglecting spin-dependent parts

KS potential Energy density functional $F[\rho] = \langle \phi | v | \phi \rangle = \int d\vec{r} \mathcal{H}[\rho]$

$$\mathcal{H} = \frac{t_0(2 + x_0)}{4} \rho^2 - \frac{t_0(1 + 2x_0)}{4} (\rho_\nu^2 + \rho_\pi^2) + \frac{t_3(2 + x_3)}{24} \rho^{\alpha+2} - \frac{t_3(1 + 2x_3)}{24} \alpha \rho^\alpha (\rho_\nu^2 + \rho_\pi^2)$$

$$v_s = \frac{\delta F}{\delta \rho} = \frac{t_0(2 + x_0)}{2} \rho - \frac{t_0(1 + 2x_0)}{2} \rho_q + \frac{t_3(2 + x_3)}{24} (\alpha + 2) \rho^{\alpha+1} - \frac{t_3(1 + 2x_3)}{24} [\alpha \rho^{\alpha-1} (\rho_\nu^2 + \rho_\pi^2) + 2 \rho^\alpha \rho_q]$$

rearrangement

considered as many-body correlations beyond the HF approximation

Nuclear Energy-Density Functional (EDF)

An EDF is derived from an (effective) interaction
but, $E[\rho] \not\Rightarrow \hat{V}$

$$E[\rho] = \langle \Phi | \hat{V} | \Phi \rangle = \int d\vec{r} \mathcal{H}[\rho]$$

$|\Phi\rangle$: Slater determinant WF

In some calculation using the Skyrme-type EDF,
different types of interaction are employed in the ph and pp channels

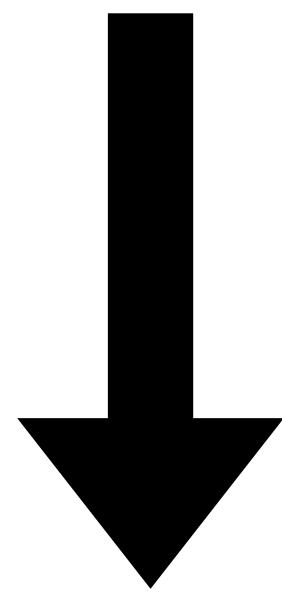
$$E = E[\rho] + E[\rho, \kappa]$$

Skyrme-HF(B) calculation is not the Hartree–Fock one but the EDF one.

Skyrme interaction energy functional

$$\begin{aligned}
\hat{v}(\vec{r}_{12}) = & t_0(1 + x_0 \hat{P}_\sigma) \delta(\vec{r}_{12}) + \frac{t_1}{2}(1 + x_1 \hat{P}_\sigma)(\hat{\vec{k}}'^2 + \hat{\vec{k}}^2) \delta(\vec{r}_{12}) \\
& + t_2(1 + x_2 \hat{P}_\sigma) \hat{\vec{k}}'^* \cdot \hat{\vec{k}} \delta(\vec{r}_{12}) + \frac{t_3}{6}(1 + x_3 \hat{P}_\sigma) \delta(\vec{r}_{12}) \rho_0^\alpha(\vec{R}) \\
& + iW_0(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \hat{\vec{k}}'^* \times \delta(\vec{r}_{12}) \hat{\vec{k}}
\end{aligned}$$

10 parameters

$$\begin{aligned}
E_{\text{Sky}} &= \langle \Phi | \hat{V} | \Phi \rangle \\
&= \sum_{t=0,1} \int d\vec{r} \chi_t
\end{aligned}$$


$$\begin{aligned}
\vec{r}_{12} &= \vec{r}_1 - \vec{r}_2, & \hat{\vec{k}} &= \frac{1}{2i}(\vec{\nabla}_1 - \vec{\nabla}_2), & \hat{\vec{k}}' &= \frac{1}{2i}(\vec{\nabla}'_1 - \vec{\nabla}'_2), \\
\hat{P}_\sigma &= \frac{1}{2}(1 + \vec{\sigma}_1 \cdot \vec{\sigma}_2), & \hat{P}_\tau &= \frac{1}{2}(1 + \vec{\tau}_1 \cdot \vec{\tau}_2), & \vec{R} &= \frac{\vec{r}_1 + \vec{r}_2}{2}
\end{aligned}$$

$$\chi_t^{\text{even}} = C_t^\rho[\rho_0] \rho_t^2 + C_t^{\Delta\rho} \rho_t \Delta \rho_t + C_t^\tau \rho_t \tau_t + C_t^{\nabla J} \rho_t \nabla \cdot \vec{J}_t + C_t^J \vec{J}_t^2$$

$$\chi_t^{\text{odd}} = C_t^s[\rho_0] \vec{s}_t^2 + C_t^{\Delta s} \vec{s}_t \cdot \Delta \vec{s}_t + C_t^j \vec{j}_t^2 + C_t^{\nabla j} \vec{s}_t \cdot (\nabla \times \vec{j}_t) + C_t^T \vec{s}_t \cdot \vec{T}_t + C_t^{\nabla s} (\nabla \cdot \vec{s}_t)^2$$

Skyrme interaction energy functional

The coupling constants (C_t^ρ, C_t^s, \dots) are expressed by the combination of the Skyrme parameters (t_0, x_0, \dots).

(time-even)

$$C_0^\tau = \frac{1}{16}(3t_1 + 5t_2 + 4t_2x_2)$$

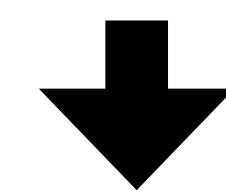
(time-odd)

$$C_0^j = -\frac{1}{16}(3t_1 + 5t_2 + 4t_2x_2) = -C_0^\tau$$

$$C_1^j = -C_1^\tau$$

$$C_t^T = -C_t^J, C_t^{\nabla j} = C_t^{\nabla J}$$

Galilean inv.



reduces the # of coupling constants

Skyrme interaction energy functional

$$\begin{aligned}\chi_t = & C_t^\rho [\rho_0] \rho_t^2 + C_t^{\Delta\rho} \rho_t \Delta \rho_t + C_t^\tau (\rho_t \tau_t - \mathbf{j}_t^2) + C_t^{\nabla J} [\rho_t \nabla \cdot \mathbf{J}_t + \mathbf{s}_t \cdot (\nabla \times \mathbf{j}_t)] + C_t^J (\mathbf{s}_t \cdot \mathbf{T}_t - \overleftrightarrow{\mathbf{J}}_t^2) \\ & + C_t^s [\rho_0] \mathbf{s}_t^2 + C_t^{\Delta s} \mathbf{s}_t \cdot \Delta \mathbf{s}_t + C_t^{\nabla s} (\nabla \cdot \mathbf{s}_t)^2\end{aligned}$$

16 coupling constants

(time-even)

$$C_0^\rho = \frac{3}{8} t_0 + \frac{3}{48} t_3 \rho^\alpha$$

$$C_1^\rho = -\frac{1}{8} t_0 (2x_0 + 1) - \frac{1}{48} t_3 (2x_3 + 1) \rho^\alpha$$

(time-odd)

$$C_0^s = \frac{1}{8} t_0 (2x_0 - 1) + \frac{1}{48} t_3 (2x_3 - 1) \rho^\alpha$$

$$C_1^s = -\frac{1}{8} t_0 - \frac{1}{48} t_3 \rho^\alpha$$

determined by the int. parameters
fixed by the static properties!

Skyrme energy-density functional

$$\mathcal{E} = \frac{\hbar^2}{2m} \tau_0 + \sum_{t=0}^1 (\chi_t^{\text{even}} + \chi_t^{\text{odd}}) + \sum_{\tau=n,p} \tilde{\chi}_\tau + \mathcal{E}_{\text{Coul}}$$

$t = 0$: iso-scalar neutron + proton

$t = 1$: iso-vector neutron - proton

$$\chi_t^{\text{even}} = C_t^\rho[\rho_0] \rho_t^2 + C_t^{\Delta\rho} \rho_t \Delta \rho_t + C_t^\tau \rho_t \tau_t + C_t^{J0} J_t^2 + C_t^{J1} \mathbf{J}_t^2 + C_t^{J2} \underline{\mathbf{J}}_t^2 + C_t^{\nabla J} \rho_t \nabla \cdot \mathbf{J}_t$$

$$\chi_t^{\text{odd}} = C_t^s[\rho_0] \mathbf{s}_t^2 + C_t^{\Delta s} \mathbf{s}_t \cdot \Delta \mathbf{s}_t + C_t^T \mathbf{s}_t \cdot \mathbf{T}_t + C_t^j \mathbf{j}_t^2 + C_t^{\nabla j} \mathbf{s}_t \cdot (\nabla \times \mathbf{j}_t) + C_t^{\nabla s} (\nabla \cdot \mathbf{s}_t)^2 + C_t^F \mathbf{s}_t \cdot \mathbf{F}_t$$

Skyrme energy-density functional

time-even densities
density

$$\rho_t(\mathbf{r}) = \rho_t(\mathbf{r}, \mathbf{r})$$

kinetic density

$$\tau_t(\mathbf{r}) = (\nabla \cdot \nabla') \rho_t(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r}=\mathbf{r}'}$$

tensor density

$$\overleftrightarrow{J}_t(\mathbf{r}) = \frac{1}{2i} (\nabla - \nabla') \otimes s_t(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r}=\mathbf{r}'}$$

$$J_t = \sum_a J_{taa}$$

$$J_t = \sum_{bc} \epsilon_{abc} J_{tbc}$$

$$\underline{J}_{tab} = \frac{1}{2} J_{kab} + \frac{1}{2} J_{tba} - \frac{1}{3} J_t \delta_{ab}$$

time-odd densities

spin density

$$s_t(\mathbf{r}) = s_t(\mathbf{r}, \mathbf{r})$$

spin kinetic density

$$T_t(\mathbf{r}) = (\nabla \cdot \nabla') s_t(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r}=\mathbf{r}'}$$

current density

$$\mathbf{j}_t(\mathbf{r}) = \frac{1}{2i} (\nabla - \nabla') \rho_t(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r}=\mathbf{r}'}$$

tensor kinetic density

$$\mathbf{F}_t(\mathbf{r}) = \frac{1}{2} (\nabla \otimes \nabla' + \nabla' \otimes \nabla) s_t(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r}=\mathbf{r}'}$$

$$\hat{\rho}(\mathbf{r}st, \mathbf{r}'s't') = \langle \Phi | \psi^\dagger(\mathbf{r}'s't') \psi(\mathbf{r}st) | \Phi \rangle$$

$$\rho_k(\mathbf{r}, \mathbf{r}') = \sum_{stt'} \hat{\rho}(\mathbf{r}st, \mathbf{r}'st') \tau_{t't}^k$$

$$s_k(\mathbf{r}, \mathbf{r}') = \sum_{ss'tt'} \hat{\rho}(\mathbf{r}st, \mathbf{r}'s't') \boldsymbol{\sigma}_{s's} \tau_{t't}^k$$

Skyrme EDF for nuclear DFT

$$\begin{aligned}
 \chi_t = & C_t^\rho \rho_t^2 + C_t^{\Delta\rho} \rho_t \Delta \rho_t + C_t^\tau (\rho_t \tau_t - \mathbf{j}_t^2) + C_t^{\nabla J} [\rho_t \nabla \cdot \mathbf{J}_t + \mathbf{s}_t \cdot (\nabla \times \mathbf{j}_t)] + C_t^J (\mathbf{s}_t \cdot \mathbf{T}_t - \overleftrightarrow{\mathbf{J}}_t^2) \\
 & + C_t^s \mathbf{s}_t^2 + C_t^{\Delta s} \mathbf{s}_t \cdot \Delta \mathbf{s}_t + C_t^{\nabla s} (\nabla \cdot \mathbf{s}_t)^2
 \end{aligned}
 \quad \begin{matrix} 16 \text{ coupling constants} \\ \text{independent} \end{matrix}$$

A pioneering work toward this direction:

Bender–Dobaczewski–Engel–Nazarewicz, PRC65(2002)054322

C_1^s as a free coupling constant

related to the Landau parameters

$$g'_0 = N_0(2C_1^s + 2C_1^T \beta \rho^{2/3})$$

$$g'_1 = -2N_0 C_1^T \beta \rho^{2/3}$$

$$\beta = (3\pi^2/2)^{2/3}$$

$$C_1^s = -\frac{1}{8}t_0 - \frac{1}{48}t_3 \rho^\alpha$$

$$C_1^s = \frac{1}{2N_0}(g'_0 + g'_1)$$

$$v_{\text{res}}(\mathbf{r}, \mathbf{r}') = N_0^{-1} [g'_0 \delta(\mathbf{r} - \mathbf{r}')$$

$$+ g'_1 \mathbf{k}' \cdot \delta(\mathbf{r} - \mathbf{r}') \mathbf{k}] (\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}') (\boldsymbol{\tau} \cdot \boldsymbol{\tau}'),$$

Examples of Skyrme-type EDD

✓SkM* J. Bartel *et al.*, NPA386 (1982) 79

Fission barrier height of ^{240}Pu

→ rare-earth and actinides

✓SLy4 E. Chabanat *et al.*, NPA627 (1997) 710
E. Chabanat *et al.*, NPA635 (1998) 231

Microscopic EoS of neutron matter

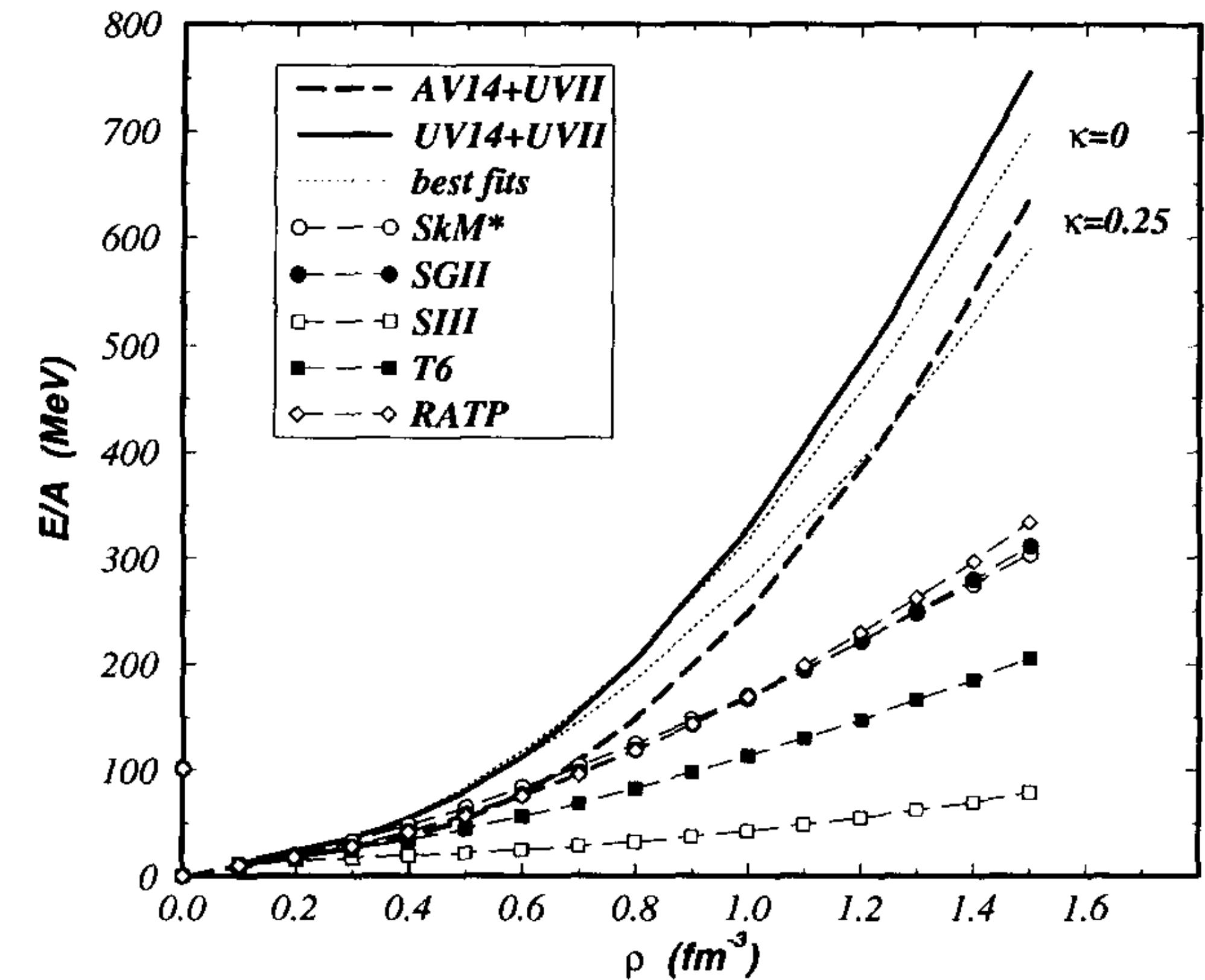
R.B. Wiringa *et al.*, PRC38 (1988) 1010

→ neutron-rich nuclei

✓SGII H. Sagawa and N.V. Giai, PLB106 (1981) 379

Excitation energy of Gamow–Teller resonance in ^{208}Pb

→ spin-isospin response



UNEDF project

→ NUCLEI(Nuclear Computational Low-Energy Initiative)

Building a Universal Nuclear Energy-Density Functional

by the researchers in nuclear theory, applied mathematics, computational science and computer science

M. Kortelainen *et al.*, PRC89 (2014) 054314

$$\chi^2(x) = \frac{1}{n_d - n_x} \sum_{i=1}^{D_T} \sum_{j=1}^{n_i} \left(\frac{s_{i,j}(x) - d_{i,j}}{w_i} \right)^2$$

$$n_d = \sum_i^{D_T} n_i$$

$$D_T = 5, \quad n_d = 130, \quad n_x = 14$$

RMS deviation

Observable	UNEDF0	UNEDF1	UNEDF2	No.
E	1.428	1.912	1.950	555
$E (A < 80)$	2.092	2.566	2.475	113
$E (A \geq 80)$	1.200	1.705	1.792	442

15 parameters including ph and pp channels

130 experimental data

mass of spherical (29) and deformed (47) nuclei

charge radius (28)

odd-even staggering (13)

fission isomer (4)

spin-orbit splitting in spe (9)

Ground state properties

$$\delta E[\rho, \tilde{\rho}, \tau, J] = 0$$

→ Skyrme Kohn-Sham-Bogoliubov (KSB) equation

$$\sum_{\sigma'} \begin{pmatrix} h^q(r, \sigma, \sigma') - \lambda^q & \tilde{h}^q(r, \sigma, \sigma') \\ \tilde{h}^q(r, \sigma, \sigma') & -(h^q(r, \sigma, \sigma') - \lambda^q) \end{pmatrix} \begin{pmatrix} \varphi_{1,\alpha}^q(r, \sigma') \\ \varphi_{2,\alpha}^q(r, \sigma') \end{pmatrix} = E_\alpha \begin{pmatrix} \varphi_{1,\alpha}^q(r, \sigma) \\ \varphi_{2,\alpha}^q(r, \sigma) \end{pmatrix}$$

$$h^q = -\nabla \cdot \frac{\hbar^2}{2m_q^*} \nabla + U_q + U_C \delta_{q,\pi} - iB_q \cdot (\nabla \times \sigma),$$

$$\tilde{h}_q = \frac{V_0^{(q)}}{2} F(r) \tilde{\rho}_q$$

$$\frac{\hbar^2}{2m_q^*} = \frac{\hbar^2}{2m} + b_1 \rho - b'_1 \rho_q \quad \text{effective mass: finite range of the interaction (momentum dependence)}$$

$$U_q = b_0 \rho - b'_0 \rho_q + b_1 \tau - b'_1 \tau_q + \frac{b_3}{3} (\alpha + 2) \rho^{\alpha+1} - \frac{b'_3}{3} \left[\alpha \rho^{\alpha-1} \sum_q \rho_q^2 + 2 \rho^\alpha \rho_q \right]$$

$$-b_4 \nabla \cdot J - b'_4 \nabla \cdot J_q - b_2 \nabla^2 \rho + b'_2 \nabla^2 \rho_q + \frac{\delta F}{\delta \rho} \sum_q \tilde{\rho}_q^2 \quad \text{rearrangement}$$

$$B_q = b'_1 J_q + b_4 \nabla \rho + b'_4 \nabla \rho_q$$

Application to deformed nuclei

coordinate-space representation

30 points for each direction

dimension of the KSB matrix $4N = 4 \times N_x \times N_y \times N_z \sim 10^5$

the size of nucleus gradually increases as $A^{1/3}$ the box size also does

a few tens to hundred iterations are needed to get the convergence

 computationally demanding

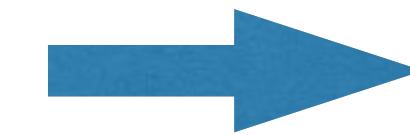
✓ Expansion with the basis function

HO basis "HFODD"

two-basis method

HFB Hamiltonian in the HF basis

B. Gall *et al.*, Z. Phys. A348 (1994) 183



a large number of basis states are required to describe the drip-line nuclei

✓ Assumption of the axial symmetry

Vanderbilt

E. Teran *et al.*, PRC67 (2003) 064314

Oak Ridge

J. C. Pei *et al.*, PRC78 (2008) 064306 (the reflection sym.)

Kyoto–Orsay

KY and N.V. Giai, PRC78 (2008) 014305
(the reflection sym.)

Niigata

H. Oba and M. Matsuo, PTP120 (2008) 143

$$\text{axial symmetry} \quad [\mathcal{H}, \hat{R}_z] = 0$$

$$\text{rotation along the z-axis} \quad \hat{R}_z(\phi) = \exp(-i\phi\hat{j}_z/\hbar) \quad [\mathcal{H}, \hat{j}_z] = 0$$

eigenstates

$$\mathcal{H} \begin{pmatrix} \varphi_{1,i}(\varrho, z, \phi, \sigma) \\ \varphi_{2,i}(\varrho, z, \phi, \sigma) \end{pmatrix} = E_i \begin{pmatrix} \varphi_{1,i}(\varrho, z, \phi, \sigma) \\ \varphi_{2,i}(\varrho, z, \phi, \sigma) \end{pmatrix},$$

$$\hat{j}_z \begin{pmatrix} \varphi_{1,i}(\varrho, z, \phi, \sigma) \\ \varphi_{2,i}(\varrho, z, \phi, \sigma) \end{pmatrix} = \hbar\Omega_i \begin{pmatrix} \varphi_{1,i}(\varrho, z, \phi, \sigma) \\ \varphi_{2,i}(\varrho, z, \phi, \sigma) \end{pmatrix}$$

cylindrical coordinate
 $r = (\varrho, z, \phi)$

parity is also a good quantum number when assuming the reflection sym.

wave functions

$$\varphi_i(\varrho, z, \phi, \sigma) = \begin{pmatrix} \varphi_i^+(\varrho, z) e^{i\Lambda_i^- \phi} \\ \varphi_i^-(\varrho, z) e^{i\Lambda_i^+ \phi} \end{pmatrix} \quad \Lambda_i^\pm = \Omega_i \pm 1/2$$

for each Ω (block diagonal)

$$\begin{pmatrix} h_{\uparrow\uparrow} - \lambda & h_{\uparrow\downarrow} & \tilde{h}_{\uparrow\uparrow} & \tilde{h}_{\downarrow\uparrow} \\ h_{\downarrow\uparrow} & h_{\downarrow\downarrow} - \lambda & \tilde{h}_{\downarrow\uparrow} & \tilde{h}_{\downarrow\downarrow} \\ \tilde{h}_{\uparrow\uparrow} & \tilde{h}_{\downarrow\uparrow} & -(h_{\uparrow\uparrow} - \lambda) & -h_{\uparrow\downarrow} \\ \tilde{h}_{\downarrow\uparrow} & \tilde{h}_{\downarrow\downarrow} & -h_{\downarrow\uparrow} & -(h_{\downarrow\downarrow} - \lambda) \end{pmatrix} \begin{pmatrix} \varphi_{1,i}^+ \\ \varphi_{1,i}^- \\ \varphi_{2,i}^+ \\ \varphi_{2,i}^- \end{pmatrix} = E_i \begin{pmatrix} \varphi_{1,i}^+ \\ \varphi_{1,i}^- \\ \varphi_{2,i}^+ \\ \varphi_{2,i}^- \end{pmatrix}$$

parallelize for each Ω

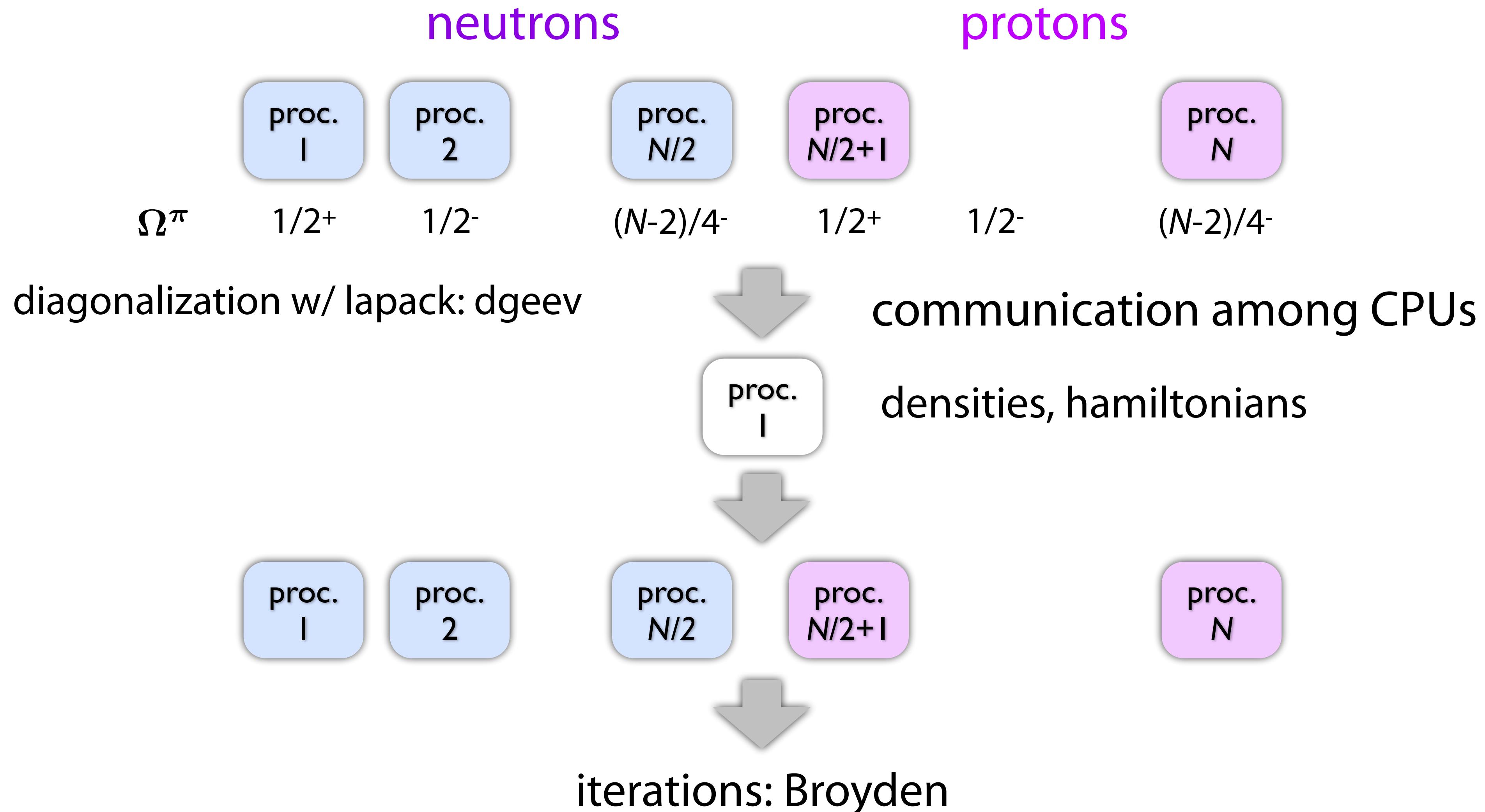
dimension of the block becomes smaller

$$4 \times N_\rho \times N_z \sim 3000$$

easy to extend the box size for the drip-line nuclei

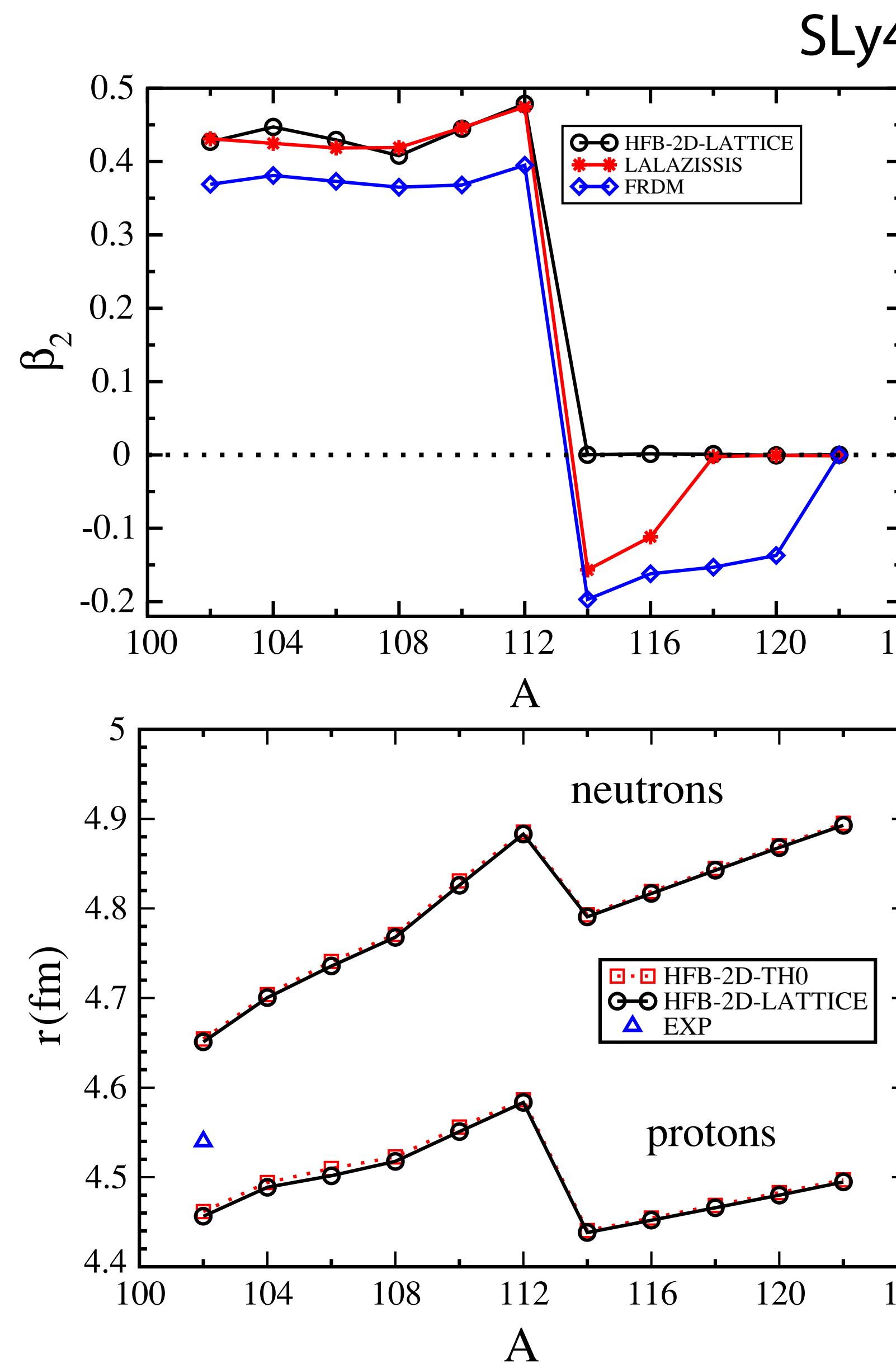
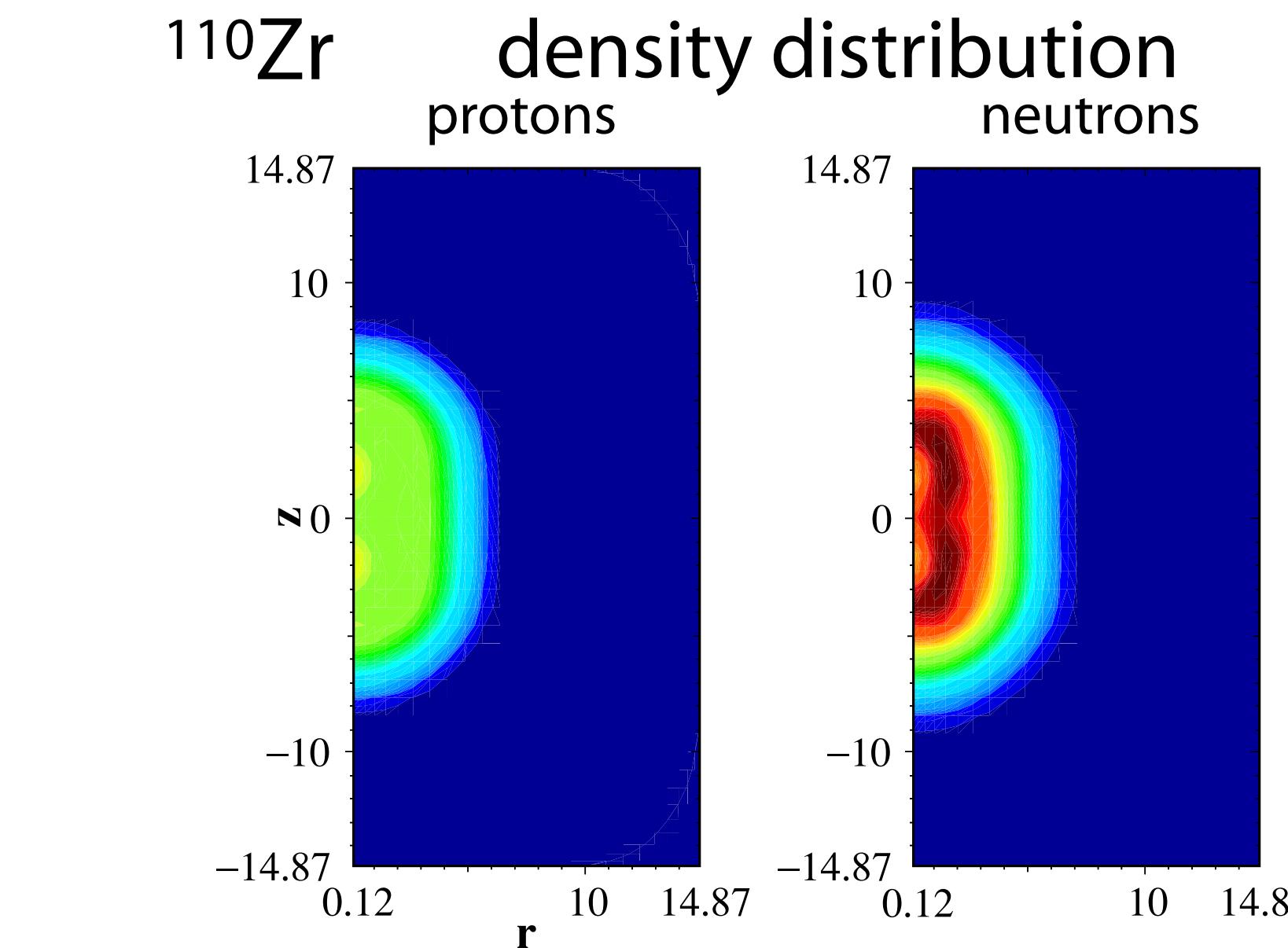
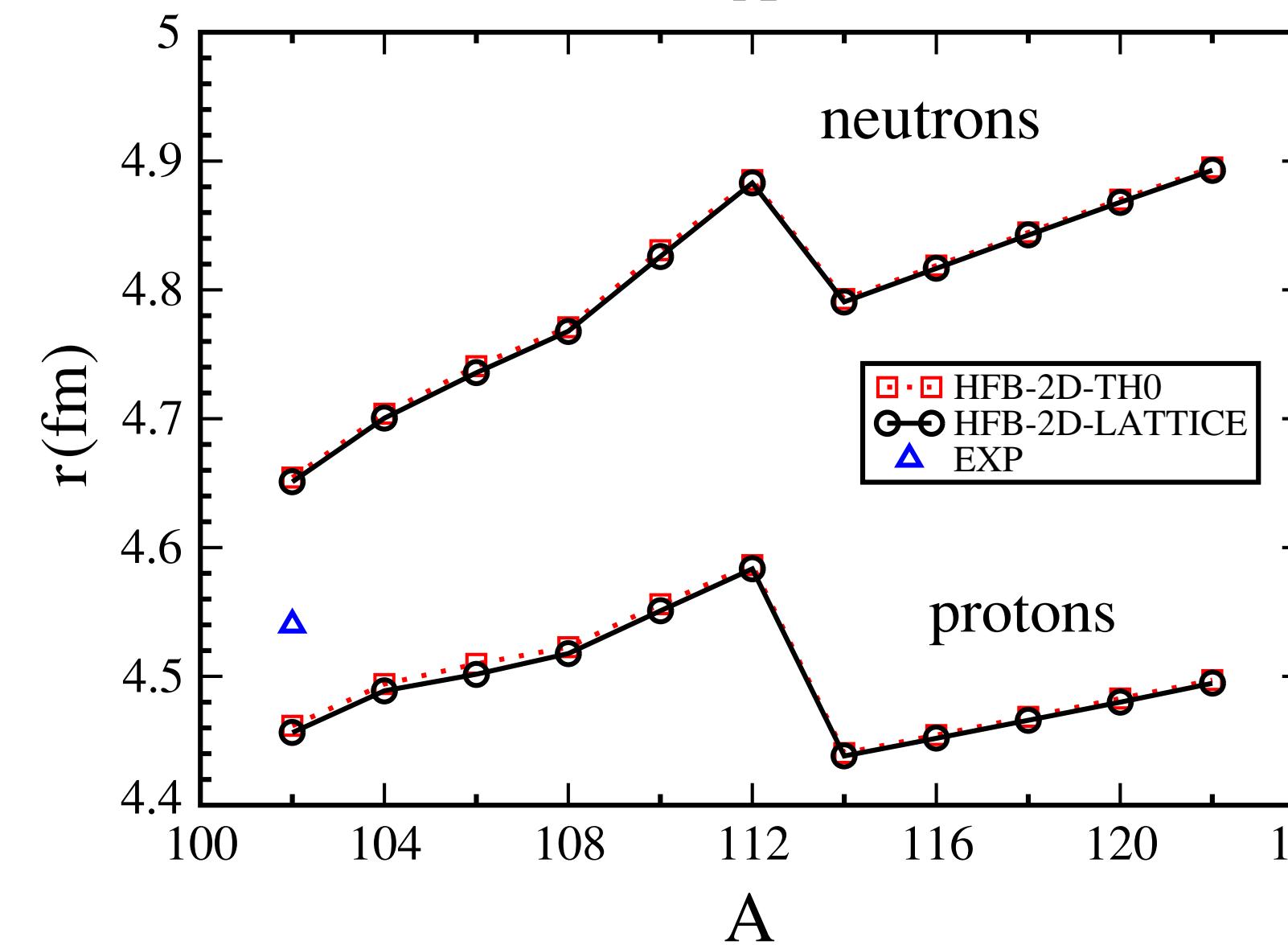
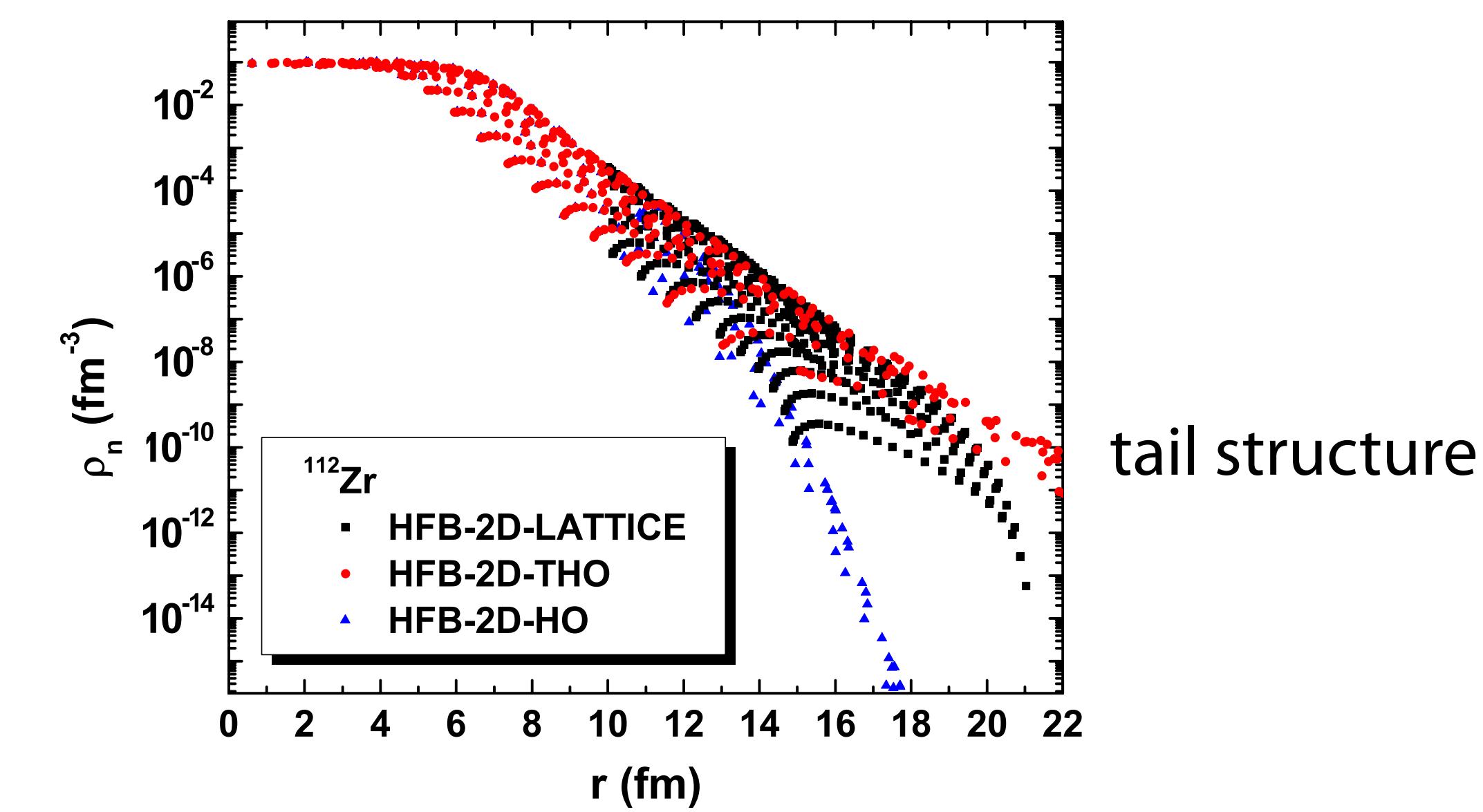
parallel computing

using the MPI (w/ N cores: $N=4n$)



Zr isotopes: a sudden shape change

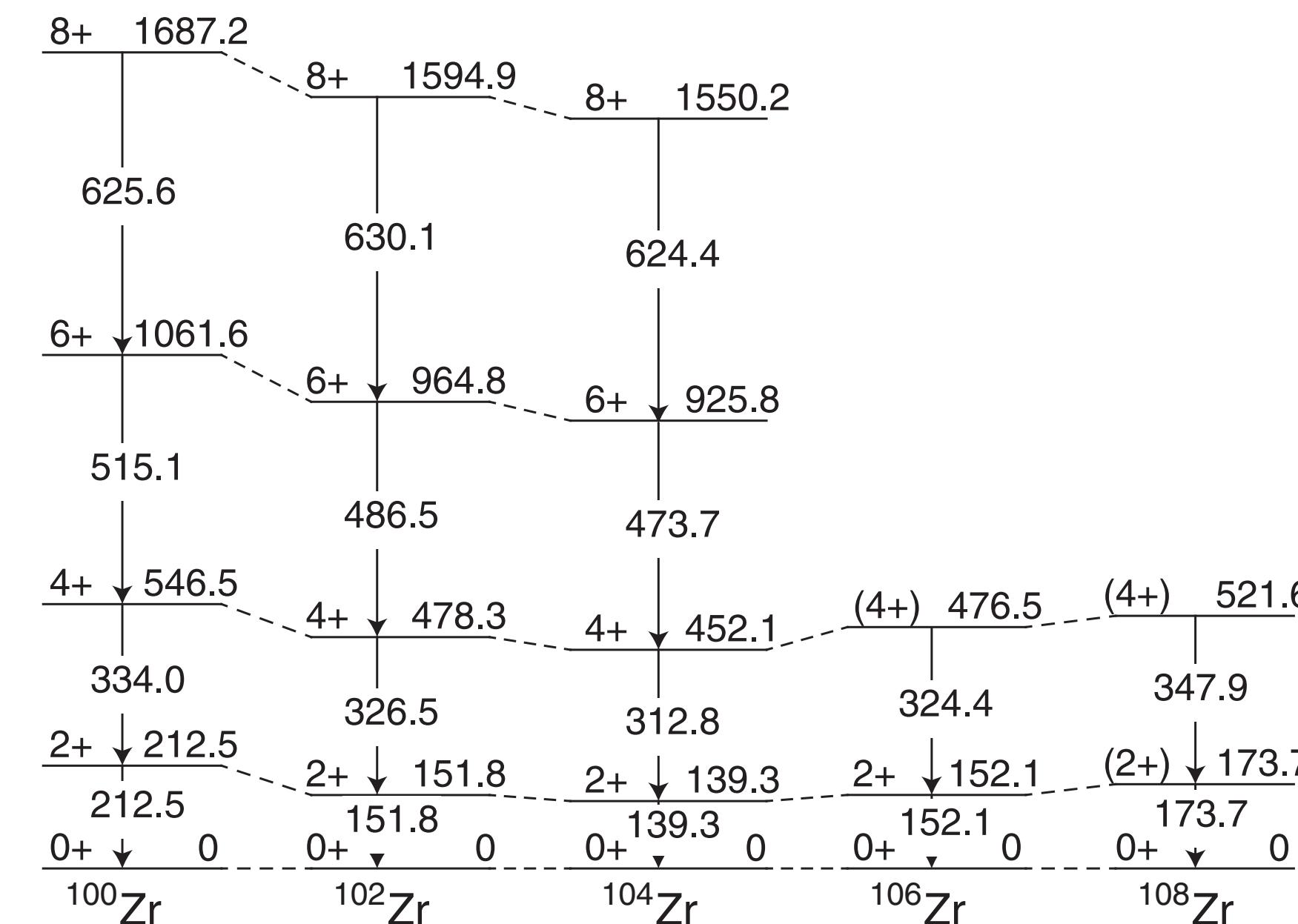
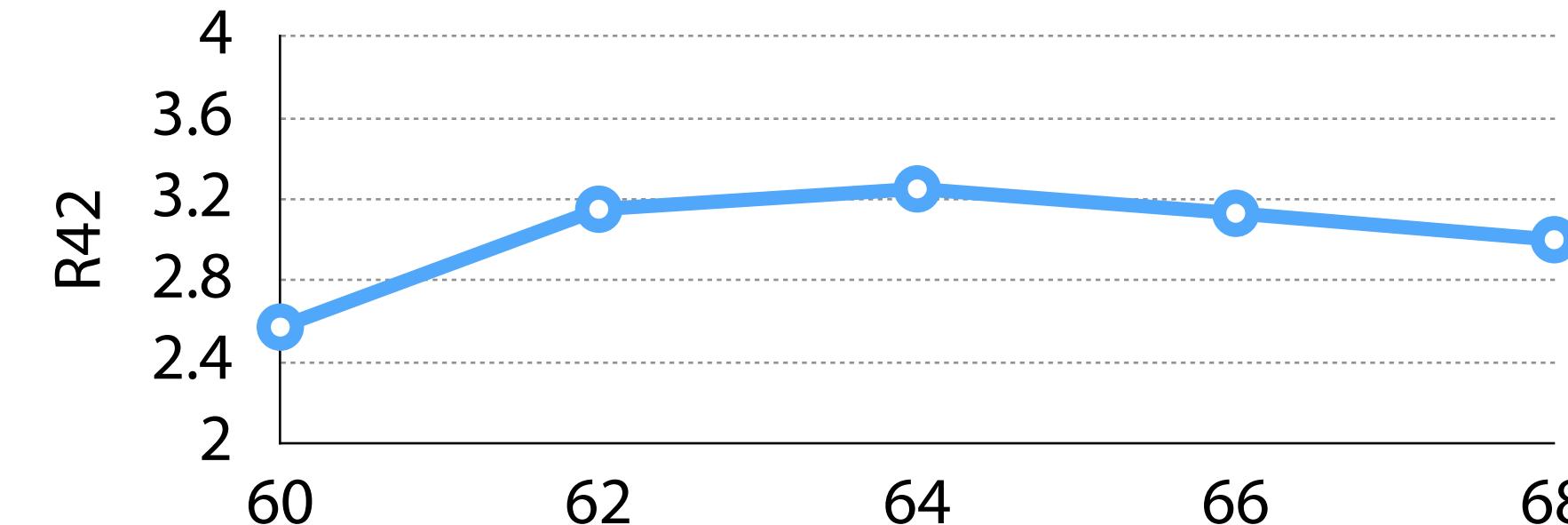
A. Blazkiewicz *et al.*, PRC71 (2005) 054321



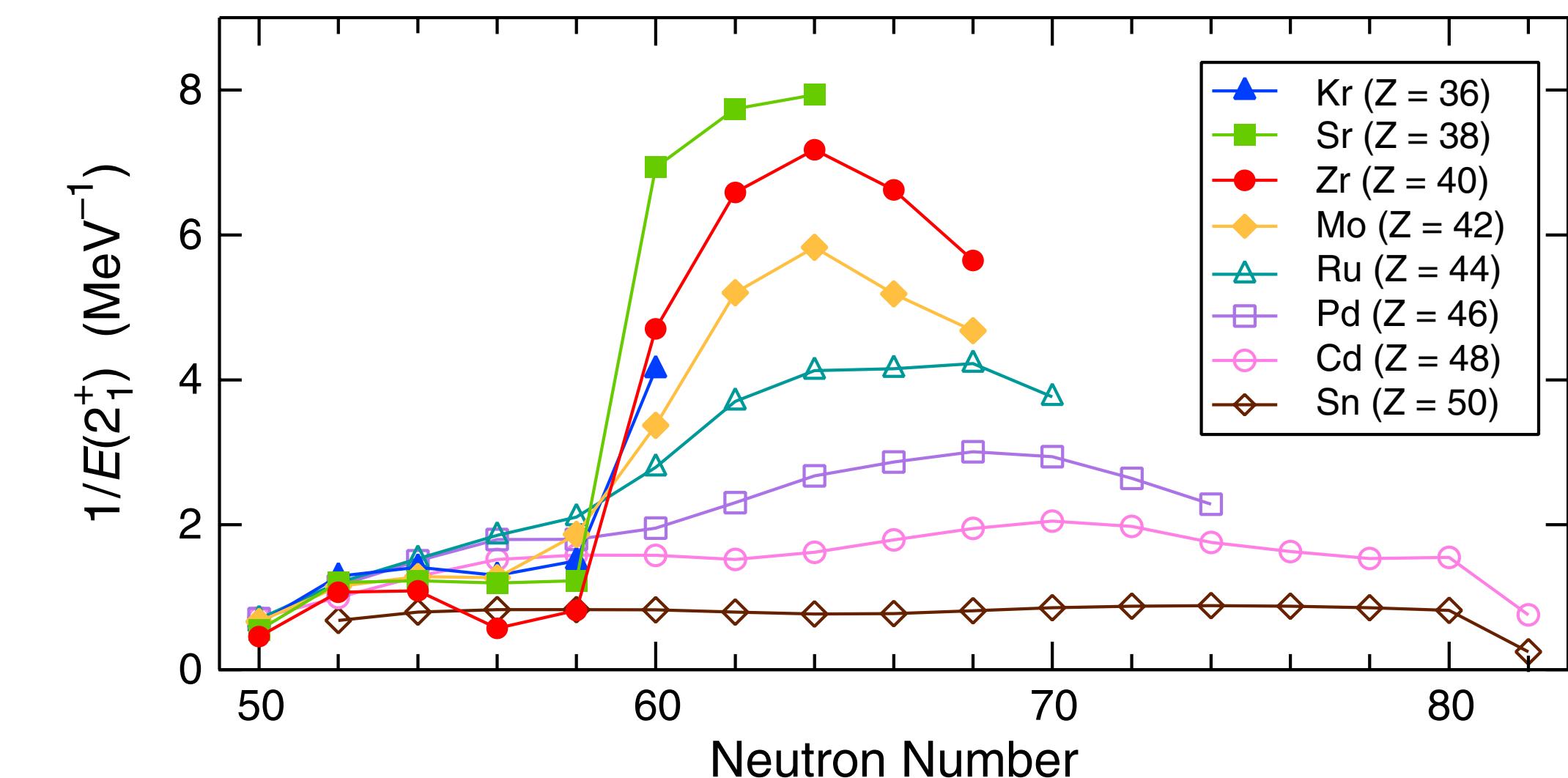
Zr isotopes: strong deformation at $N=64$

T. Sumikama *et al.*, PRL106 (2011) 202501

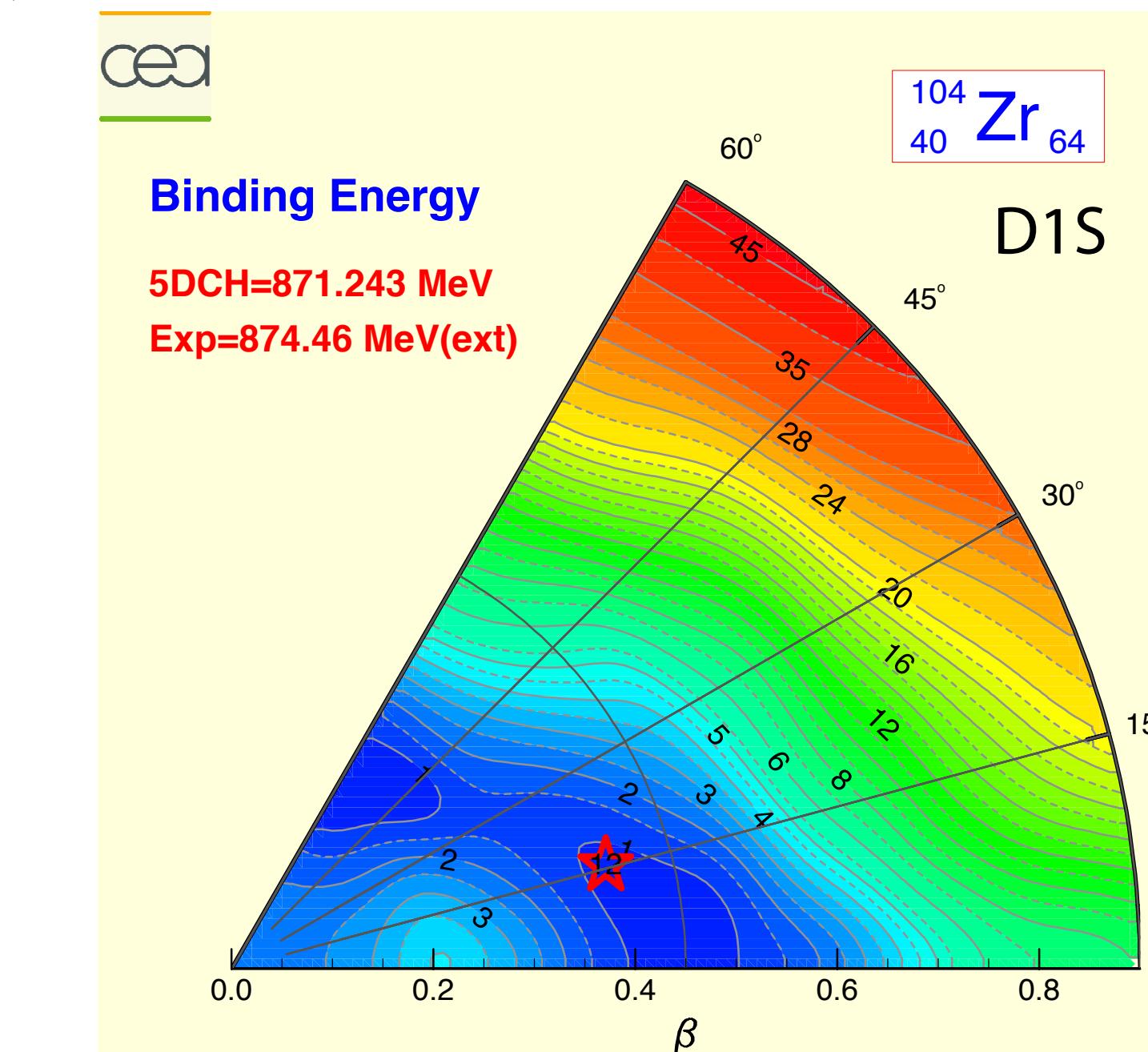
exp. @ RIBF



strong deformation in Zr and Sr

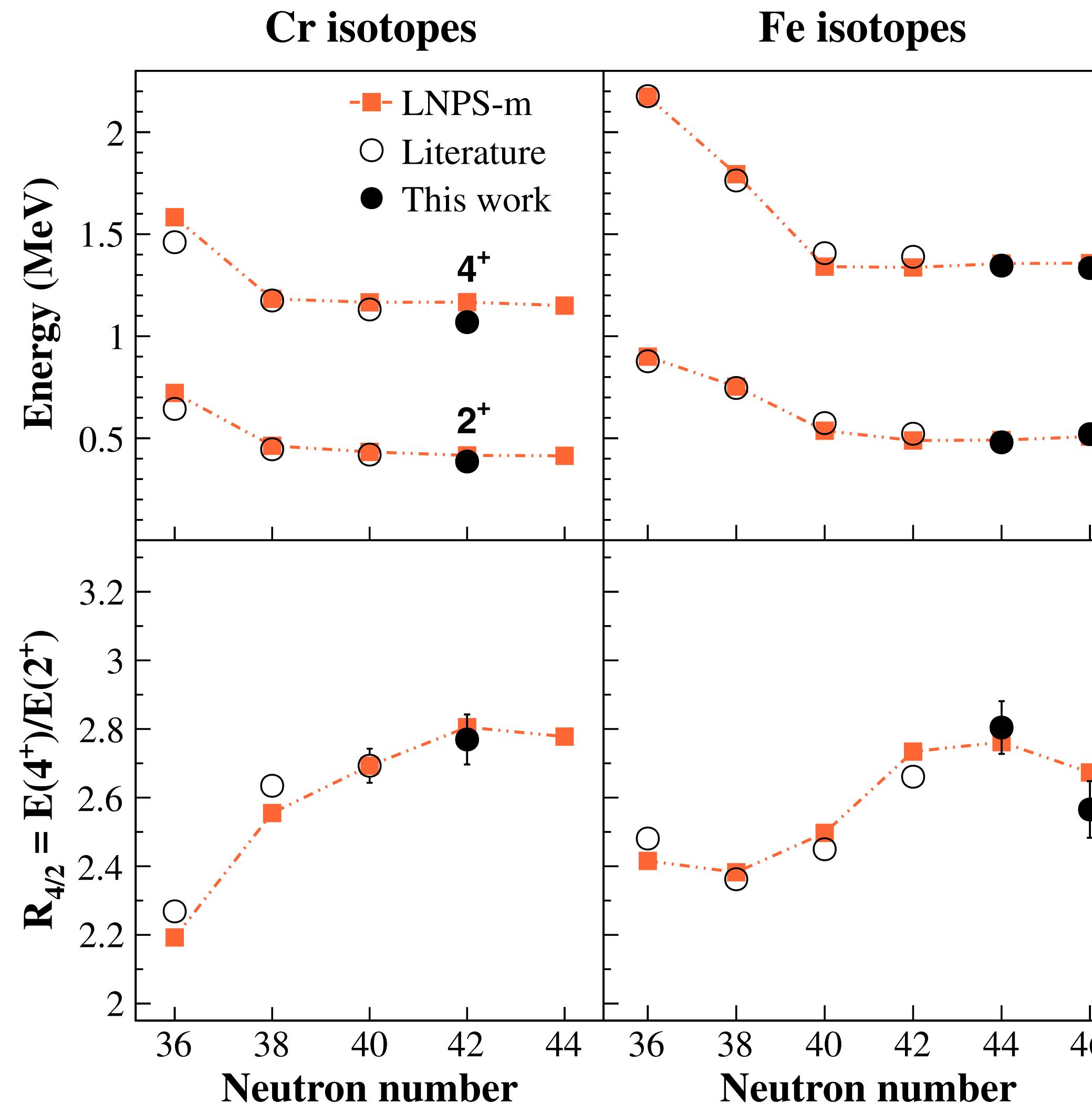
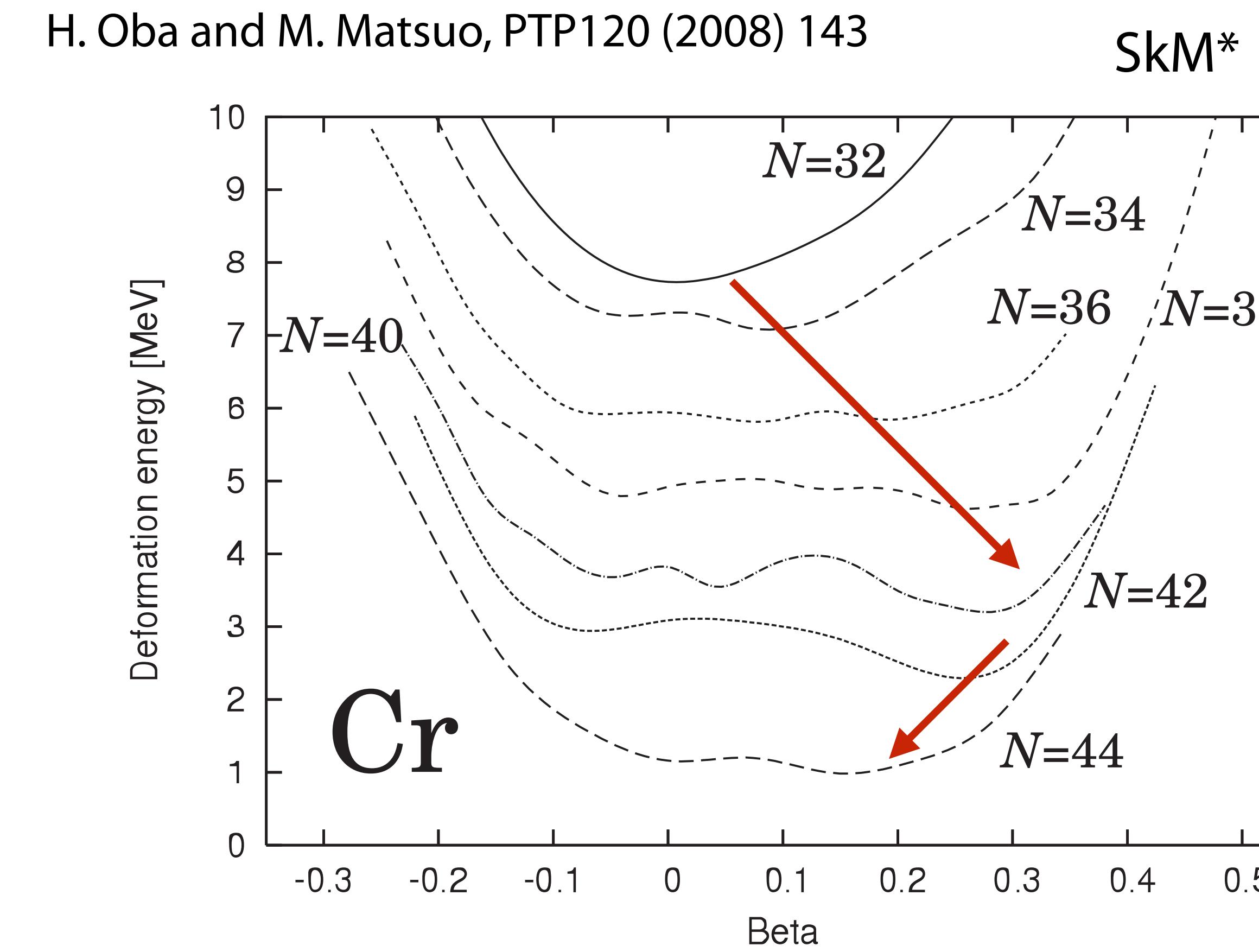


possibility of the shape coexistence



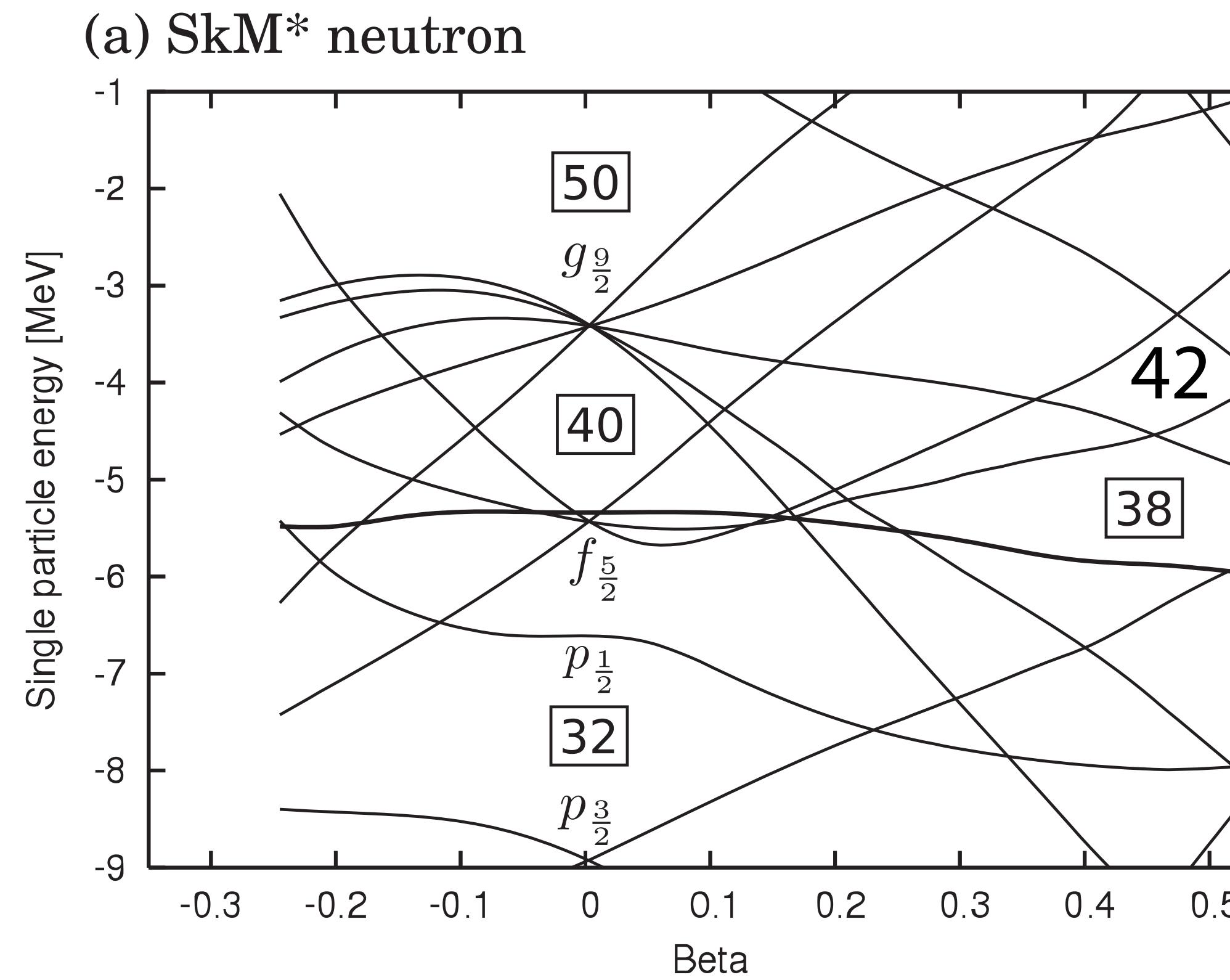
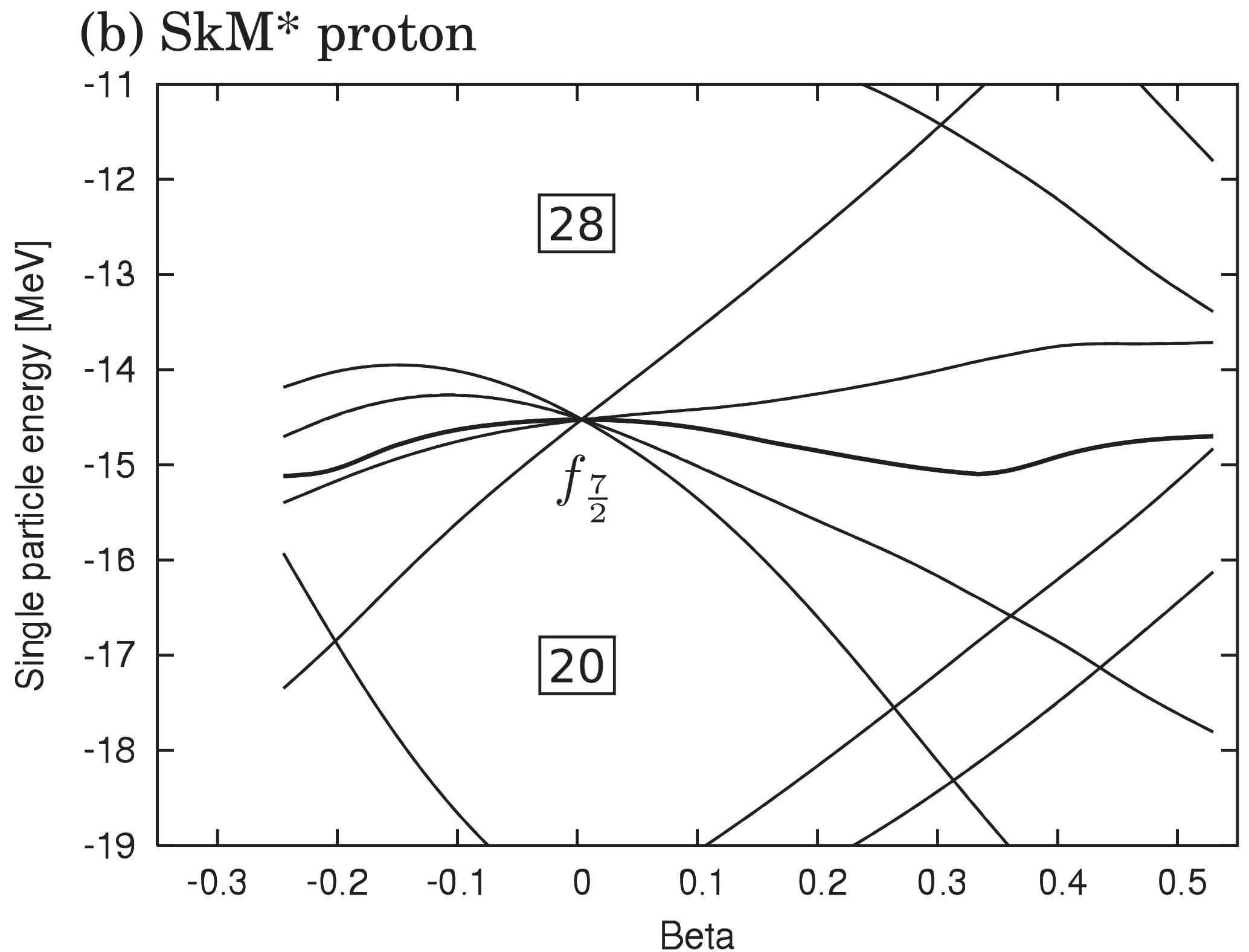
Cr–Fe isotopes: deformation at $N=40–50$

C. Santamaría *et al.*, PRL115 (2015) 192501
(p,2p) γ @ RIBF



Nilsson diagram

H. Oba and M. Matsuo, PTP120 (2008) 143



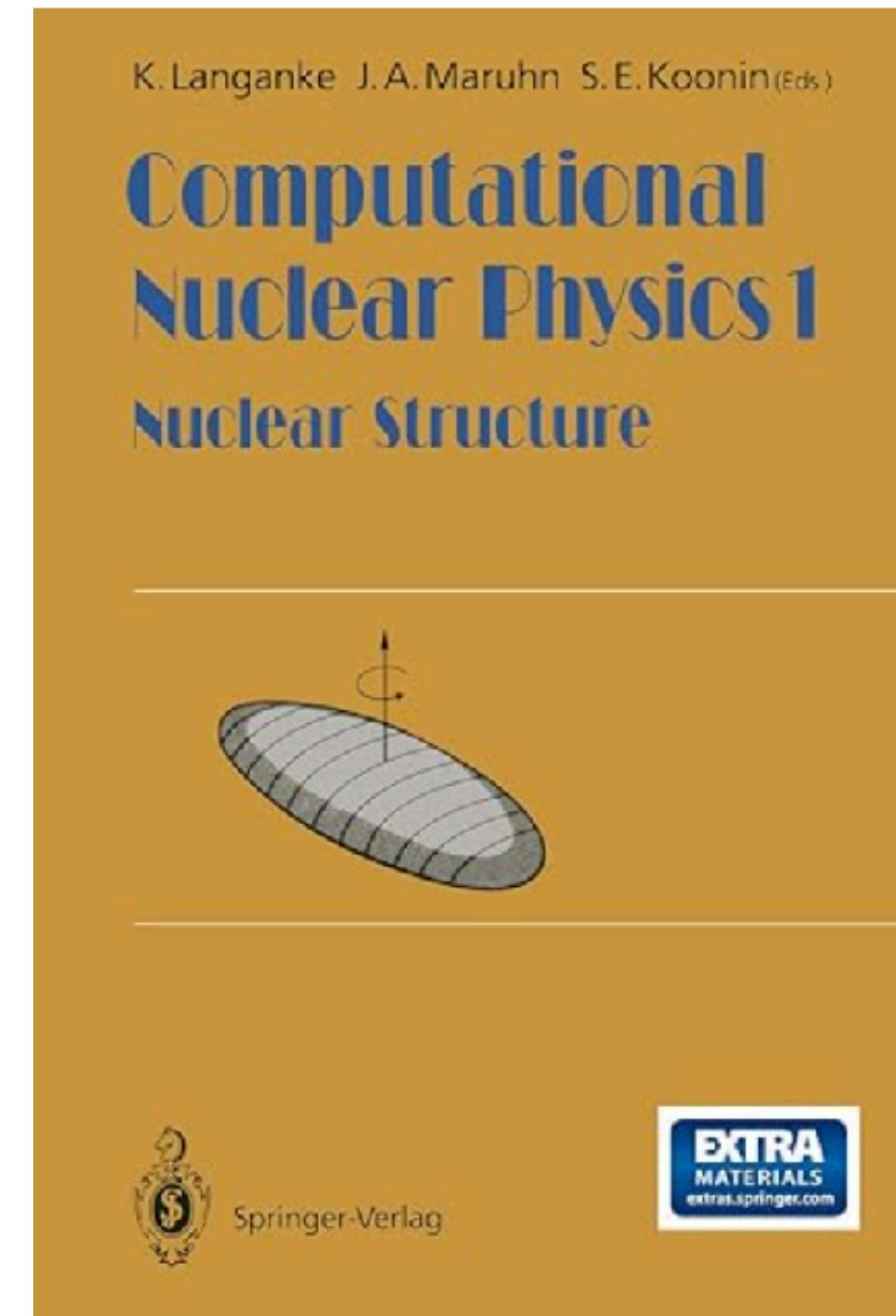
neutrons start to occupy the $g_{9/2}$ orbital beyond $N=40$

high deformation at $N=42$

Open sources

SHF

Langanke, Maruhn, Koonin: Computational Nuclear Physics I
Chap. 2 Skyrme Hartree-Fock (P.-G. Reinhard)



HFBRAD spherical HFB in radial mesh

Bennaceur and Dobaczewski, Comp. Phys. Commun. 168, 96 (2005)

HOSPHE spherical HFB in HO basis

Carlsson et al., Comp. Phys. Commun. 181, 1641 (2010)

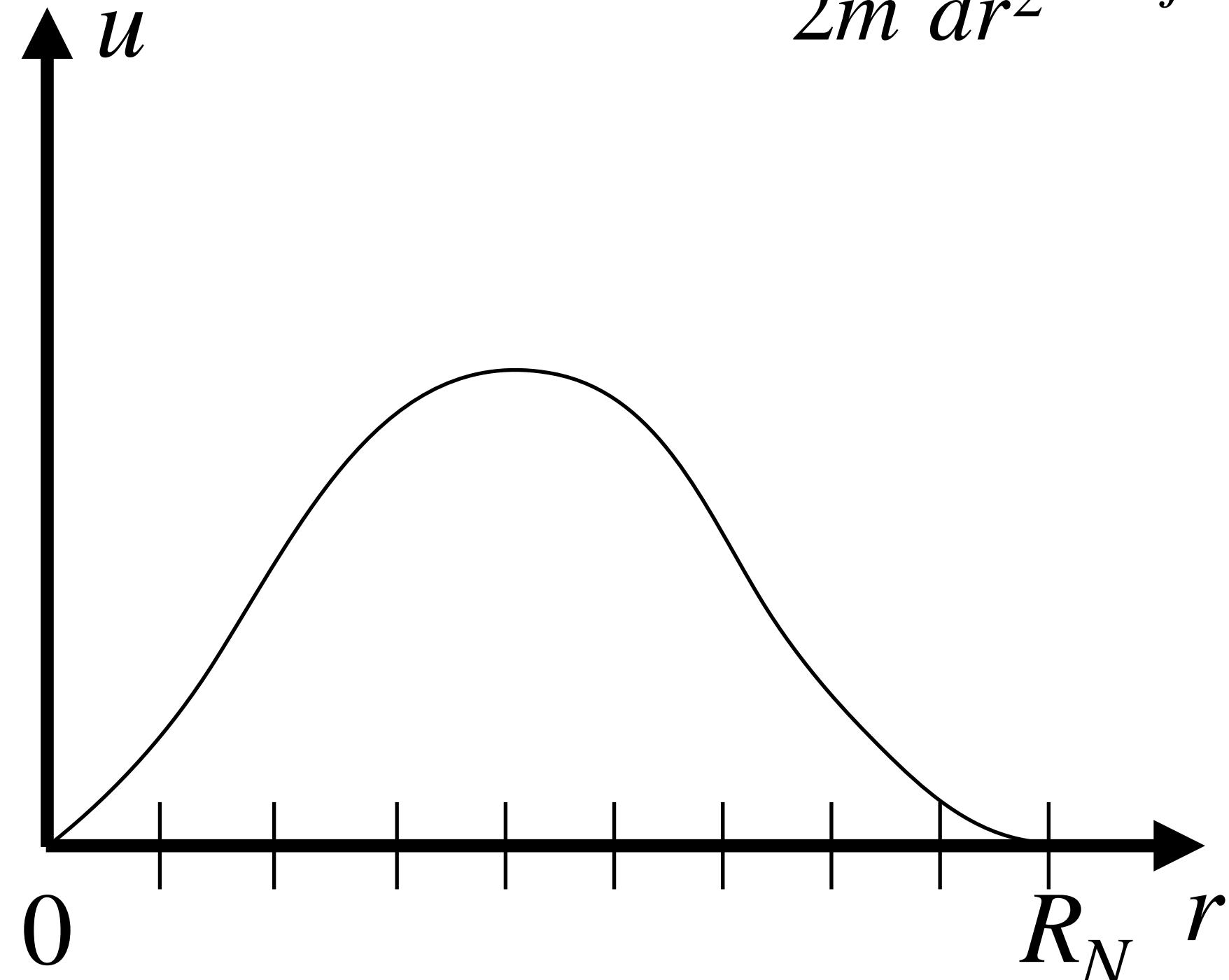
HFBTHO axial-sym. HFB in 2D HO basis

Marevic et al., Comp. Phys. Commun. 276, 108367 (2022)

HOODD HFB in 3D HO basis

Schunck et al., Comp. Phys. Commun. 216, 145 (2017)

Exercise and Homework



$$r(i) = r_i = i \times \Delta, \\ i = 0, 1, \dots, N_r$$

Δ : radial mesh size

N_r : number of mesh points

$$-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} u_{n\ell j}(r) + \left(V_{\text{WS}}(r) + \frac{\hbar^2 \ell(\ell + 1)}{2mr^2} \right) u_{n\ell j}(r) = \varepsilon_{n\ell j} u_{n\ell j}(r)$$

$$h u = -B \begin{pmatrix} -2 + \star & 1 & 0 & \dots & 0 \\ 1 & -2 + \star & 1 & \dots & 0 \\ 0 & 1 & -2 + \star & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & -2 + \star \end{pmatrix} \begin{pmatrix} u_2 \\ u_3 \\ u_4 \\ \vdots \\ u_{N-1} \end{pmatrix}$$

include the spin-orbit potential

$$[\ell \cdot s W(r)] u_{nlj} = \frac{1}{2} \left[j(j+1) - \ell(\ell+1) - \frac{3}{4} \right] W(r) u_{nlj}$$

$$V_{\text{WS}}(r) = -V_0 \frac{1}{1 + \exp[(r - R)/a]} = -V_0 f_{\text{WS}}$$

$$W(r) = V_{\text{so}} r_0^2 \frac{1}{r} \frac{df_{\text{WS}}}{dr}$$

+: proton
-: neutron

$$V_0 = -51 \pm 33 \frac{N-Z}{A} \text{ MeV}, a = 0.67 \text{ fm}, V_{\text{so}} = 22 \pm 14 \frac{N-Z}{A} \text{ MeV}$$

Homework

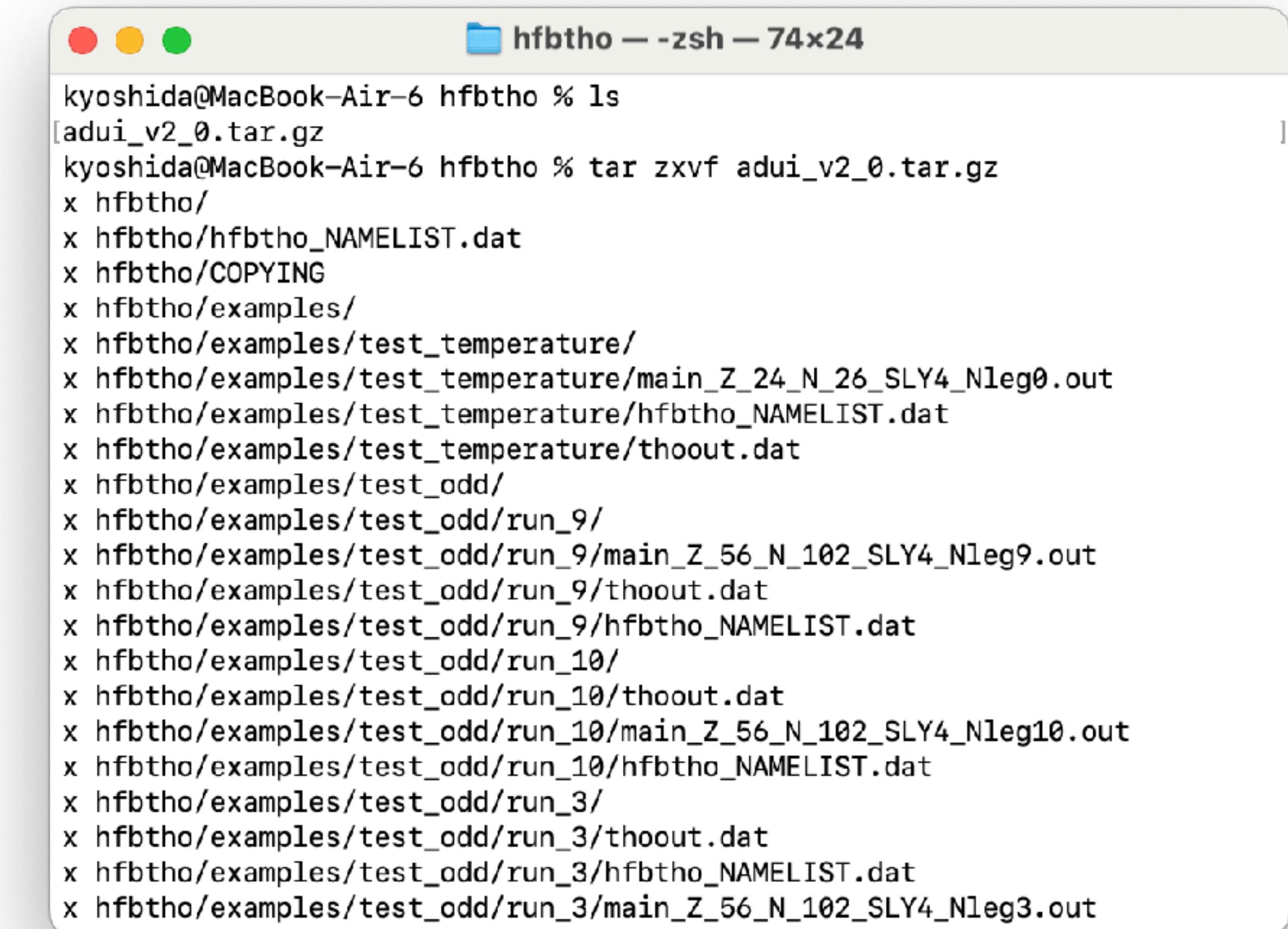
HFBTHO axially-symmetric transformed HO (THO) basis

v2.00d: Stoitsov et al., Comp. Phys. Commun. 184, 1592 (2013)

this is not the latest version, but you can enjoy the physics

<https://data.mendeley.com/datasets/f8n37xtbmg/1>

tar zxvf adui_v2_0.tar.gz



```
kyoshida@MacBook-Air-6 hfbtho % ls
[adui_v2_0.tar.gz
kyoshida@MacBook-Air-6 hfbtho % tar zxvf adui_v2_0.tar.gz
x hfbtho/
x hfbtho/hfbtho_NAMELIST.dat
x hfbtho/COPYING
x hfbtho/examples/
x hfbtho/examples/test_temperature/
x hfbtho/examples/test_temperature/main_Z_24_N_26_SLY4_Nleg0.out
x hfbtho/examples/test_temperature/hfbtho_NAMELIST.dat
x hfbtho/examples/test_temperature/thoout.dat
x hfbtho/examples/test_odd/
x hfbtho/examples/test_odd/run_9/
x hfbtho/examples/test_odd/run_9/main_Z_56_N_102_SLY4_Nleg9.out
x hfbtho/examples/test_odd/run_9/thoout.dat
x hfbtho/examples/test_odd/run_9/hfbtho_NAMELIST.dat
x hfbtho/examples/test_odd/run_10/
x hfbtho/examples/test_odd/run_10/thoout.dat
x hfbtho/examples/test_odd/run_10/main_Z_56_N_102_SLY4_Nleg10.out
x hfbtho/examples/test_odd/run_10/hfbtho_NAMELIST.dat
x hfbtho/examples/test_odd/run_3/
x hfbtho/examples/test_odd/run_3/thoout.dat
x hfbtho/examples/test_odd/run_3/hfbtho_NAMELIST.dat
x hfbtho/examples/test_odd/run_3/main_Z_56_N_102_SLY4_Nleg3.out
```

Let's try the HFB calculation by using HFBTHO

```
hfbtho -- zsh -- 72x6
[kyoshida@MacBook-Air-6 hfbtho % cd hfbtho
[kyoshida@MacBook-Air-6 hfbtho % ls
COPYING           blas.f          hfbtho_v200d.f90
Makefile          examples        lapack.f
README           hfbtho_NAMELIST.dat  main_v200d.f90
[kyoshida@MacBook-Air-6 hfbtho % vim Makefile
```

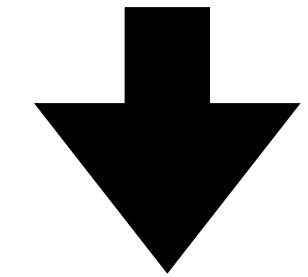
```
hfbtho -- vim Makefile -- 88x31
44
45 SHELL := /bin/bash
46
47 # Names
48 VERSION      = 200d
49 HFBTHO_EXE   = main
50 HFBTHO_SOURCE = main_v$(VERSION).f90
51 HFBTHO_OBJ   = main_v$(VERSION).o
52
53 # Makefile Options
54 COMPILER     = GFORTRAN
55 FORTRAN      = gfortran
56 DEBUG        = FALSE
57 ACML_LIBRARY = FALSE
58 STATIC_LIB   = FALSE
59
60 # Preprocessor options
61 hide_openmp  = 1
62
63 # BLAS and LAPACK libraries
64 ifeq ($(ACML_LIBRARY),TRUE)
65     LAPACK_OBJ =
66     BLAS_OBJ  =
67     ACML      = -L$(HOME)/lib/lapack-3.4.1 -llapack_LINUX -lblas_LINUX
68 else
69     LAPACK_OBJ = lapack.o
70     BLAS_OBJ  = blas.o
71     ACML      =
72 endif
73
```

one can find the source files (codes) in "hfbtho" directory

including libraries such as lapack and blas

Open the Makefile

ACML_LIBRARY = TRUE



FALSE

Let's try the HFB calculation by using HFBTHO

then, make to prepare the executable file "main"

```
kyoshida@MacBook-Air-6 hfbtho % make
[gfortran -ffree-form -ffree-line-length-none -cpp -Dhide_openmp=1 -O3 -c hfbtho_v200d.f90
[gfortran -ffree-form -ffree-line-length-none -cpp -Dhide_openmp=1 -O3 -c main_v200d.f90
gfortran -ffixed-form -cpp -Dhide_openmp=1 -O3 -c blas.f
gfortran -ffixed-form -cpp -Dhide_openmp=1 -O3 -c lapack.f
gfortran -ffree-form -ffree-line-length-none -cpp -Dhide_openmp=1 -O3 -o main main_v200d.o hfbtho_v200d.o blas.o lapack.o
kyoshida@MacBook-Air-6 hfbtho % ls
COPYING          blas.o          hfbtho_gauss.mod    hfbtho_version.mod  main_v200d.f90
Makefile         ellipticintegral.mod hfbtho_tho.mod    lapack.f          main_v200d.o
README          examples          hfbtho_utilities.mod lapack.o          unedf.mod
bessik.mod      hfbtho.mod       hfbtho_v200d.f90  linear_algebra.mod
blas.f          hfbtho_NAMELIST.dat hfbtho_v200d.o
kyoshida@MacBook-Air-6 hfbtho %
```

you can find it if successful

you can find some examples in the "examples" directory

Let's try the HFB calculation by using HFBTHO

an example examples/test_spherical/run_0

input file: hfbtho_NAMELIST.dat

you can execute the job: ./main

```
run_0 – vim hfbtho_NAMELIST.dat – 78x29
1 &HFBTHO_GENERAL
2 number_of_shells = 16,
3 oscillator_length = 2.0,
4 basis_deformation = 0.0,
5 proton_number = 82, neutron_number = 126, type_of_calculation = 1 /
6 &HFBTHO_ITERATIONS
7 number_iterations = 100, accuracy = 1.E-9, restart_file = -1 /
8 &HFBTHO_FUNCTIONAL
9 functional = 'SLY5', add_initial_pairing = F,
10 type_of_coulomb = 0/
11 &HFBTHO_PAIRING
12 user_pairing = T, vpair_n = -300.0, vpair_p = -300.0,
13 pairing_cutoff = 60.0, pairing_feature = 0.5 /
14 &HFBTHO_CONSTRAINTS
15 lambda_values = 1, 2, 3, 4, 5, 6, 7, 8,
16 lambda_active = 0, 0, 0, 0, 0, 0, 0, 0,
17 expectation_values = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /
18 &HFBTHO_BLOCKING
19 proton_blocking = 0, 0, 0, 0, 0, neutron_blocking = 0, 0, 0, 0, 0 /
20 &HFBTHO_PROJECTION
21 switch_to_THO = 0, projection_is_on = 0,
22 gauge_points = 1, delta_Z = 0, delta_N = 0 /
23 &HFBTHO_TEMPERATURE
24 set_temperature = F, temperature = 0.0 /
25 &HFBTHO_DEBUG
26 number_Gauss = 40, number_Laguerre = 40, number_Legendre = 80,
27 compatibility_HFODD = T, number_states = 969, force_parity = T,
28 print_time = 0 /
```

^{208}Pb (Z=82, N=126)

Skyrme SLY5 interaction

run_0 --zsh --78x43

	neutrons	protons	total
Requested part.nums.	126.00000	82.00000	208.00000
UnPj(av) part.nums .	126.00000	82.00000	208.00000
b0, bz, bp	2.00000	2.00000	2.00000
lambda (ala)	-5.025158	-24.890068	
Lambda (alast)	-7.515407	-27.907951	
delta(n,p), pwi	0.00000	0.00000	60.00000
pairing energy	-0.00000	-0.00000	-0.00000
rms-radius	5.519846	5.250015	5.415076
charge-radius, r0 ...		5.310617	8.877508
deformation beta2....	-0.00000	-0.00000	-0.00000
dipole moment[fm] ...	0.00000	0.00000	0.00000
quadrupole moment[b]	-0.00000	-0.00000	-0.00000
octupole moment	0.00000	0.00000	0.00000
hexadecapole moment .	0.00000	0.00000	0.00000
q5	0.00000	0.00000	0.00000
q6	0.00000	0.00000	0.00000
q7	0.00000	0.00000	0.00000
q8	-0.00000	-0.00000	-0.00000
kinetic energy	2614.806852	1438.160641	4052.967492
volume energy			-6737.799728
rho_tau			1470.319183
rho_rho			-8208.118910
surface energy			344.593323
rho_DELTA_rho			344.593323
(NABLA_rho)^2			0.00000
spin-orbit energy ...			-109.091691
rho_NABLA_J ...			-109.091691
NABLA_rho_J ...			0.00000
coulomb energy			0.00000
direct			0.00000
exchange			0.00000
tensor energy			3.400388
direct Hartree E ...			0.00000
Extra E			0.00000
External field E			0.00000
Entropy	0.00000	0.00000	0.00000
tEnergy: ehfb (qp)...			-2445.930216

one will obtain

lambda: chemical potential
pairing gap and pairing energy

radius, charge radius, and moments

breakdown of the energy

total energy : $-B$

Let's try the HFB calculation by using HFBTHO

^{154}Sm ($Z=62$, $N=92$)

away from the magic numbers

modify the input file: `hfbtho_NAMELIST.dat`

`proton_number = 62`

`neutron_number = 92`

`functional = SKM*`

often used in the structure calculations

Question: is this nucleus deformed? what is the deformation?

`deformation beta2`

`quadrupole moment`