Mean-field theory for open-shell nuclei

—deformation—



Quadrupole (2+) state energy: magic number

Q\ Energy ofthe ﬁrst exated B Canonical magic numbers

2+ state in e-e nuclei : 2.8,20, 28, (40), 50,82, 126

New magic numbers in neutron-rich nuclei

- 16,32, 34,. ..

magic nuclei are hard to excite
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Quadrupole (2+) state energy: pairing

7 ] - Singly-closed (Z=magic #) nuclei have
6-: _ dn energy gap
‘ 0 | The ground 0+ state is lowered by the pairing.
5_ _
_ C SN Pb | | |
4- . .a o . : two neutrons above the magic # in a single orbital

—.—.—j The total spin/ can be 0, 2, 4,... 2j-1.

All the states are degenerated.
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residual interaction
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Quadrupole (2+) state energy: zero mode

7 f The singly-closed (Z=magic #) nuclei have
6- : an energy gap
' | The ground 0+ state is lowered by the pairing.
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Excitation energies of 2+ and 4+ states
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occurrence of collective excitations

Rotation == breaking of the rotational symmetry
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Emergence of the rotational band
I+ 1)
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Emergence of the rotational band

I(I+1)
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Some nuclei are deformed!

' nuclear “surface”: classical picture
A

How to define the surface/shape of a quantal object?
(J=0]Yy,|J=0)=0

one possible definition:

the nuclear shape = the shape of the mean field = that of the density



Symmetry and its breaking

[H,J] =0 The Hamiltonian is rotationally invariant: J is a good quantum number
The Hamiltonian is thus block diagonal w.r.t J.

H= = H{Z) + H. "

I'eS

s.p. orbital in F type

J=0 _ 2
Hyp = Z €alAqalo the spherical MF ; ;
HéEOF . Z ljkl(.]) [[C Ck]][c CZ]J]O J ............ J
l]kl] k [

HrJe;OG Z l]kl(J) : [[C;CJ‘T]J[CICIC]J]O :
jkl,J

angular-momentum coupling: [A_B,] 1, = 2 UMy, | IM)A 4, By,

m,m,



Symmetry breaking

Hyp = Z ala ]0 + 2 FIJ(JM)[C;CJ-] M

a = ,J
+ 3 (AUMIEE Ty + AEUMIcye, Ly
1j,J
HF field CiM) = ) vE @ [c]cl] | @)
kl
pair field A (IM) := 2 VS I [eic] | D)

breaking of the particle number

appearance of the fields with/ > 0 <4=s= the rotational symmetry is broken



Symmetry breaking of the mean fields

| @) :Slater det. density matrix: i = (| C;Cl- | )
U, : Unitary trans.

|H,U,] =0  the symmetry the Hamiltonian has

|#) =U,l¢),  U|0)=10)

trans. ofcdf

UcTU*—Z i, (Uc/U, = ZUS*H c/)

U CkUT = Z Slk (UTCkU Z lel)



Symmetry breaking of the mean fields

density matrix for the transformed SD:

ﬁzj = <§5‘C;Ci‘¢z> — <¢‘ U;C;]T(USU;)CZUS‘¢> at <¢‘C;CZ‘¢>
=1

Z s jk k’ ci = U/ U, = Z silCT

Z S]kUszlplk = (UpU;)l]

p = p= U,OUT



Symmetry breaking of the mean fields

p—p=UpU]
the energy is unchanged Elpl =(p|H| )
[H,U,] =0 Elp) =(¢|H|¢) = (¢ | U/HU,| ¢) = Elp]
variation of dp, 8p := U,6pU; Elp + ép] = Elp + 6p]
oL oL
Opjj = op;;
lzj opji ] ; 0Pji | = ]

= (r/1[p|5p = trh[p]6p = trU h[p|U Sp

=» 1] = Uhlp]U;



Symmetry breaking of the mean fields  a[p] = Uh[p]U!

self-consistent symmetry

p is invariant under the trans. U: p = p

hlp] = hlp] commutes with U

the solution of HF (mean field and density) holds the symmetry the Hamiltonian has

broken symmetry

p is NOT invariant under the trans. U, : p # p

[hlpl,p)=0 = [h[p],p] =0 since [A[p].p] = U[h[p] plUT =
degenerate solutions

U, is a continuous sym., infinite numbers of degenerate solutions



Symmetry breaking of the mean fields: the case of HFB
Kasuya-Yoshida, PTEP(2021)

| @) - | D) = U,| D)
pair tensor:  &; = (P | cic;| @) = (@ | U, c(UU))c;U, | @) = Z Uy jikqUs i = (UkUy ),
ki

then, the generalized density matrix and the HFB Hamiltonian are transformed as

5 — U, 0 p K Ui 0 _. o/ ot
o 0 U;k — ¥ 1_p>1< 0 UST e ) )

H R =UHU similar to the case of HF

(note) the case of the anti-unitary US ex. time-reversal operation

R = (U RUD*, H - (UIU*



Symmetry breaking of the mean fields

pairing deformation
(PTY #+ 0 order para. <Q/1/4> #* 0

particle-number sym. breaking  rotational sym.

eAT |10) vacuum eFT |0)

Cooper-pair condensation Vib.-phonon condensation

strong transition

\PN+2 PT pN 2 .
‘( 0 ‘ | ()>‘ ”rOtat|On”

[ (P, | Po) |

<H>



Predicted deformation by the HFB cal.

Stoitsov+, 2003
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Phenomenological mean fields for deformed nuclei

v anisotropic oscillator potential stretched coordinates

1 m
= —p? 4+ — Z' 232 _ 1 _ maw;
hHO Im P+ 5 W; X, D = \/ Dis xX. = \/ X.

mha)i

= Z ho p; + X7) = Z ho(n; + %)

the shape of the potential: equipotential surface

y2 22
- — + — = const
R; R?

<

Z a)l.zxi2 = const
i

under the volume conservation

_ 3 3 SN
00,0, = 0y < R.R.R, = R B
0




Axially-symmetric case

- . @, = wy(l +—e¢y)
W =W, =0 3

Wy = wp(l ——=¢,)

e, >0  prolate €, <0 oblate

| 3 |
EHO = Z ho(n; + 5) = hwy |(N + 5) + E(N — 3m,)€,

N:=n1+n2+n3



Axially-symmetric case

| 3 |
EHO = Z ho(n; + 5) = hw, (N + 5) + E(N — 3m,)€,

N::n1+n2+n3:2n+f

in the spherical coordinate

e/ hay, degeneracy o)
3 = 0 2(N T 1) [n19 n29 n3] [n9 fa fz]
N ny = 1 oN N=0 [0,0,0] [0,0,0]
[19090] [0919 T 1]
n3 — N 2 N —_ 1 [09190] [09190]
29) . . [0,0,1] [0,1,1]
with spin

N
2) (i+1)=WN+DWN+2)
=0



Axially-symmetric case

| 3 |
EHO = Z ho(n; + 5) = hw, (N + 5) + E(N — 3m,)€,

principal quantum

ex.)

W] = W, = 2,

10,0,0]
10,0,1]
11,0,0]

11,0,1]

[nl ’ n29 n3]

10,1,0]

10,1,1]

10,0,2]

10,0,3]

N=n,+n,+ny;=n_+n_++ ns,

[ny, ny, n;| < [N, ns, A

[N, n3, | A
0,0,0]
[1,1,0]
[1,0,1]  [2,2,0]
[1,1,1T [3,3,0]

N=L=n_—n_

intruder
= different parity

octupole correlation
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spherical: e, =0
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degeneracy w.rt N
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spherical magic numbers

(78

superdeformation (SD) -
w,lw, =72 [170;
2
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Nilsson model

h = hyo+ gy

w, =0, <o,

- oblate
[:=XXp
not necessarily axial symmetric
) 2 2T
w =my| 1 — 56’2 cos(y + Tz) y orolate

‘—Z
spherical ‘ — > 6 W, =W, > W,




Asymptotic quantum numbers
it = hao + Nisq
h;,.. ;;is not diagonal in the HO basis

treated as perturbations at large deformations

good quantum # in an axially and reflection sym. potential: ( = j, = m), z (parity)

asymptotic quantum #: | Nn, AQ")

principal quantum# - N=n, +n,+ny =n, + n_+ ny
AN=L=n—n, Q=A+Z

Q7 k) = ) C(NIjK) [N[Q™) = ) C'(NnyAk) | Nns AQ”)
NIij Nn; A
spherical HO basis deformed HO basis



Examples of the Nilsson diagram

relatively simple T
in Iight nuclei ... T

two-fold degenerated (time-reversal sym.)
+ ()

avoided crossing
for the orbitals with same €2*

deformed magic numbers
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Collective motions in nuclei: rotation



An application of the Nilsson diagram

odd nuclei: ;
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Rotational spectra

R2
H. _ = R: collective spin (angular momentum) of the core

rot 2j
I+ 1)

s

strong coupling: deformation alignment

rotation along the perpendicular axis, 3-axis being the symmetry axis

R2

1
Hrot — E — E[(II _j1)2 + (12 _j2)2]

|
= E[I2 — 132 (]12 +]22) — (L j_+ 1 j})]

recoil  Coriolis and centrifugal forces
treated in first order perturbation theory



Rotational spectra in the strong coupling
H = Hg, + H,,

1

HF(B)  single-(quasi)particle: ¢,, e,

1 . -
o= 5 71 = B = (L4 L)

selection rules for j, are AQ = * |

1 1
Ex=le,— Al +=—[I+1)-K* K #—
k= le,— 4] ZJ[( ) ] + >
|
for the case of K = 5 bands
1 .
Ex=le,— 2| +=—[UI+1)— K>+ a(- 1)1 + 1/2)] a>>UMINg
27 axial symmetry
decoupling parameter reflection symmetry
d = — <¢1/‘]+ ‘ ¢D>

Q=1/2 Q=-1/2



Eo =AII+ 1)+ A (-1 + 1/2)ok 11
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[211 1/2]
A=0.163
Ay=-0.033

5005 /2

3905 5/

2.801 3/2
2562 /2
Kic=1/2+
[200 1/2]

A=0.150
Ay=-0.071

BM, Vol 2, Fig.5-15
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The cranking model

simultaneous description of s.p. and rotational motions

the rotation is treated classically within the quantum mechanics

X — . .
), Ap =4 uniform rotation along
< X, = yCOS wt + Z sin wt the x-axis

Xy = — ySInwt + 7 COs wf

the time-dependent wave functions in the two systems must satisfy

l/ja)(xl, X5, X3, 1) = wi(x,y,z1) up to the phase

<%> B (aij> Oy Ox, | Oy Oxg 0x, 0xy
— | | — = WX, — = — WX
or ). ot 0x, Ot Ox; Ot 9t S 2

X1,X2,X3

oy(x,y, 2, 1) 0 3
> Py = (()t la)f1> W (X1, Xy, X3, 1)



The cranking model

note;:

oy(X,y,2,1) 0 . o Y 0
Y — ( Y la)f1> v/ (xl, Xz, X3, t) fl = —1 (X2 dx3 X3a—xz>
[ 0 0
= time-dependent Sch. eq. =1 (y o Zdy) =,

10 (X, y,2,1) = hy(x,y,2,1)

¥

10 (X, Xy, X3, 1) = (h — Wl DY (X1, Xy, X3, 1)

Vo A\

the cranking Hamiltonian (Routhian):  H' = H — wJ,

<_> 5<W‘ﬁ‘llf> — ()  underthe constraint <l//‘j1 ly) = J;

@ : a Lagrange multiplier



Variational principle in a rotating frame
transformation of the frame | (0, 1)) = e—ié’fx | §bintr(1)>

time-dependent variational principle: 5<¢(9, )] iat — [—A]\ (0, ])) = ()

~ (10K . OHX O |
HPineD | H =i | ——, [ (1)) =0 note:
1 ol 00 ol
o .0 .0
—=0—=+1—
ot 00 ol

* 5<¢intr(1 ) ‘I:I - a)rotj X | ¢intr(1 )> =0

. 0 o
l% ‘ Cbintr(l)) — ]x | ¢intr(1)>
A

Hamiltonseq.. 6= = Wiy
ol
oH
I = — — O
00

F(D) = (PO, )| H|p©O, D)) = (¢ (D) | H| P, (D)
(H,J]=0



Mean field in a rotating frame
H=H-wJ,

- '|u)=¢,|p) ¢€(w,) single-particle Routhian

when the reflection symmetry is conserved

x-signature: R, = e~

X-signature is a good

— — 4+
R \u)y=rlp) ==l quantum number

r=e " g==+1/2

when the reflection symmetry is broken
X-simplex is a good

x-simplex: ZR
P x gquantum number

(xla X2, X3) — (_-xla xza -XB)

* the axial symmetry can be (is usually) broken due to the Coriolis force



Signature quantum number

R (7) = exp(—inJ.,)
RX(n)¥ = r*¥ = (- 1)V

21/27

17/27

13/27

9/27F

5/2F

a=1/2

23/27F

A rotation of 27 leaves the wavefunction

unchanged, except for a phase factor

17/27

15/27

11/27

712~

04

—1/2

signature exponent quantum number:

r

— e—lﬂ(l

+ ] (even A), a = 0,1

r==xi(oddA), a==x1/2



Correspondences to the experimental data

rotational frequency

H:af :a)rot *

diE. 1
a)mt(l) ad E ~ E[Erot(1+ 1) — Erot(I — 1)] — Ey/2

moments of inertia
note:

w.. EUl+1)—EU-1) E, Pal—J2=0
dJ 4 I=%(—1+\/4J2+1)
@) _ N
d dw,, AE

Y 1( 1 4+2J)
2



Triaxiality plays a rolel! oblate

collective rotation

DAL scheme

(abnormal scheme)

y = 1200 rotation about y = 60°

symmetry axis the long axis

and type of deformation

rotation axis
rotation about

prolate the intermediate axis DAL scheme
non-collective rotation (normal scheme)
- collective rotation RAL scheme
deformation aligned (abnormal scheme) y=0

prolate
collective rotation

- non-collective rotation

: : rotation about
rotation aligned | 4

the short axis

RAL scheme

(normal scheme) y = — 60° phase convention of BM

oblate Yy = —Y
non-collective rotation Lund convention



DFT for the rotational band

E

I+ 1)
==

E(I) — E(I = 0)
Energy (MeV)

20,
oCar SKM*
| Ny
151
| 'y
10F £/
A 1545 m _
5 - (J » O“:::'Q:::::: u 738 U
0 200 400 600 800 1000 1200
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Large-scale DFT calculation

KY, PLB834(2022)137458

low E(27) or high 1/E(2™)

an indicator of quadrupole
deformation

a patter of deformation

magic numbers

Proton number
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. 20
Example (1): the ground band of 20Ne xp. data for 20Ne (NNDC)

o . T | S B T T T T T T v r P——— | |
L Modified oscillator, k= 0.08, z =0 @ - 12 F
—~ 10 |
%) _
8 _
= |
>. O .
o 4F M
c
LlJ 2 _— ‘..0.
0 ke | |
0 2 4
Spin
alignments:
/
e 0 0.14  0.280.35 - - 0.35 028024 0.20 0.10 0 € A dg,u
x o 15 w0 60 oy VAVRINE
w/wo 0 0.15 0.18 0.19 0.20 0.10 0 W, da)rot
£ 002 004 0.05. ~ 0.05 0.035 0.025 0.02 0.01 0o &

AR BT A

Nilsson—Ragnarsson: Fig. 12.4



Example (2): the ground band of 172Hf KY, PRC105(2022)024313

Moment of inertia J{V) (/MeV)

0 At w,. ~ 0.3 MeV

- breaking of the Cooper pairs
50

40

30

005 0.1 0.15 02 025 03 035 04
Rotational frequency (MeV)

005 01 015 02 025 03 035 04
Rotational frequency (MeV)



Excitation Energy [keV]

Example (3): neutron-rich Mg isotopes

Crawford+, PRL122(2019)052501 KY. PRC105(2022)024313
_ ® 2] >
3000 : ! %
B * Present 2
2500 — . SDPF-MU =
- o —— SDPF-U-MIX —_—
2000 [— Q_ __—" o T =
- . o
1500 [ %
- (%) =
500 o
- -
oL | | | o,

36 38 40 = 0.1 02 0.3 04 05 06 0.7 08 09 1

Mass Number (A) Rotational frequency (MeV)

635(6) keV —500(14) keV

| weakening of the pairing
~20% decrease in energy

, L , deformed shell gap at N=28
s it a qualitatively unique feature?



Highly deformed nuclei at high spins

How large can a nucleus be deformed?

X
..t high moment of inertia for a highly-deformed nucleus
o I+ 1)
27

high-deformed nuclei are energetically favored at high spins

Energy higher spins

Zero spin

—

fission

Deformation
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Superdeformed band

Twin+, PRL57(1986)811

(a) Prompt matrix

< ..._..i.‘l‘.lll‘.hll '“.f. injtx&lln:du

:

a)rot(l ) =—

;52 Dy

rotational frequency

v

j(Z) P —

)
ﬁj,‘if,;,‘;;“!!

L eiuld.

da)rot
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low-energy heavy-ion fusion reaction

IOSPd(48CEl,4I/Z)152Dy

neutron deficient

E‘(MeV)

moment of inertia

d*E
dI>

_EU+D-EI-1) E(1)

1
) 4
AE,

no need of the spin identification
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Nucl. Data Sheets 78, 1 (1996)

SD discovered so far

Fission Isomers

Fm 100
Es 99
L8 Superdeformed Bands
Cm 56 Po 84 | |
Am 95 R: 93 —
Pu 94 Ph 82 B
Np 93 152 .
U 92 He 80 -
Pa9l Au 79
Th 90 -
140 144 77
0s 76 -
Deformation Re 75 118
= 2:1 W 74
1.7:1 Ta 73 114
151 Hi 72 -
Lu71
E Abundant b 70 —
. . Tm 69 - - - ]]0 Cd 48
proton rich nuclei Er 68 Ag 47
due to the fusion of stable nuclei  nyé6 - - Rh 45
Tb 65 102 Ry 44
Gd 64 - Tc 43
Eu 63 Mo 42 -
Sim 62 - Nb 41
Pm 61 98 Zr 40
Nd 60 - Y 30
Pr 5% Sr 38
Ce 58 — - Rb 37
La57 Kr 36
Ba 56 3R
70 74 78 82 86 90 94



SD band in a doubly-magic nucleus: 49Ca
E. Ideguchi et al., PRL87(2001)222501
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hay = 41 x A713 ~ 12 (MeV)

E(03) ~ E(2p2h) ~ 2hw, ~ 24 (MeV)

E(O n) ~ E(mpmh) ~ maam,

w/spin-orbit int.

coherent shell effect of
protons and neutrons

E(8p8h) ~ 40 (MeV)
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PRL85(2000)2693
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Superdeformation around 49Ca: a new island of SD
C.D. O'Leary et al., PRC61(2000)064314
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Single-particle Routhians SkM* N
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What would be expected beyond [ ~ 20?

(a) (a) Sakai et al., PTEP2020,063D02
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Higher deformation than SD

Neutron s.p. Routhian (MeV)

NN SANQNY

Hyperdef.: neutrons and protons in the hyper-intruder (N + 2) shell 28 _
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Quasi-hyperdeformation: gateway of HD

Sakai-Yoshida—-Matsuo, PTEP(2020)063D02

h(P)pp) = e(P)pP) h(p, 00) D5 o) = €/(P, D) P[P, D)
h'=h— a)rotjx

signature splitting v
due to breaking of the time-reversal symmetryi

Xzz. shell gap: rotating-deformed magic number
involving one-more nucleon in the intruder shell

intruder

single-particle energies

higher-deformation than SD

deformation 8 rotational freq. @, @PP€aring at non-zero spins



Density-functional theory and nuclear
energy-density functional method




Density Functional Theory (DFT)

developed in guantum chemistry H = 2hm /dwa(w)V2¢(w) + /dmb*(a:)vext(r)@b(a;)

1
+ [ deda! @)4! @)w(r, ) )i (@)
=T ‘l‘ ‘/ext _l_ |14

Hohenberg-Kohn theorem(1964)

The exact ground-state energy of a many-body system can be obtained by variationally minimizing an
energy density functional (EDF). Moreover, there exists such a functional (existence theorem).

PHYSICAL REVIEW VOLUME 136, NUMBER 3B 9 NOVEMEBR 1964

1998 4 Inhomogeneous Electron Gas

.- P. HOHENBERGT
Ecole Normale Superieure, Paris, France

AND

W. Kouni

Ecole Normale Superieure, Paris, France and Faculté des Sciences, Orsay, France
and
University of California at San Diego, La Jolla, California

(Received 18 June 1964)

This paper deals with the ground state of an interacting electron gas in an external potential »(r). It is
proved that there exists a universal functional of the density, F[#(r)], independent of »(r), such that the ex-
ression = ] ini associated with
»(r). The functional F[#n(x , i/my<<1, and
(2) n(x) = (r/ro) with ¢ arbitrary and 7o — . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of

these methods are presented. |




In quantum mechanics, variationof JFE|W| = 0
energy functional (functional of WF) EV| =(V|H|¥)

with the normalization condition

(v / daap' (@) (x)|¥) = N
# E[\Il] 2 Eg = E[\IIO]

A B
Vext (1) > [Wo) = po(r)  po(r) = (Tol9yT (r)ah(r) | To)



In DFT, 1. inverse mapping - po(7) — |¥o) > Vext(T)
2. density variation principle

Hohenberg-Kohn theorem (1964)

under the assumptions

1.The ground state is not degenerate.
2.For any given density, there exists at least one external potential for which that density is
the ground-state density: v-representability

The theorem was generalized to the degenerate system (W. Kohn, 1985).

A counterexample to Assumption 2 has been found.



Theorem I: mapping vVext(r) — |¥o) — po(7) is one-to-one corresponding.

D ¢ Vext(T) <= |Pp)
« By Assumption 2, the mapping is surjective.

o Injectivity is proved by contradiction:

Suppose that external potentials vext(7), v, ., () differing by more than a constant
give rise to an identical wave function |¥g) .

H \Il0> — T T ext T W \Il()> — EO \Il()>

H, \Il()> —_ T T ! — W \If()> —_ E(,) \P0>

ext |

[Vext — Vexel|®o) = [Eo — E]|¥o)
dIVIdlng both sides by <’I°10'1, s, ’I"NO'N‘\II()> — \Ifg(rla'l, s, TNO'N)

At all points where the wave function ¥o(7r101,--- ,7NvoN) does not vanish,
N

Y [ext (1) — vl (1i)] = Eo — E
=t constant

= contradict the assumption that vext(r), v__, () is different by more than a constant

ext



®) : |¥o) <= po(r)
Suppose that two wave functions, |¥o),|¥g) differing by more than a global phase,
give rise to the same density distribution Po(T) .

variational principle°
= (Vo |H|¥o) < (¥o|H|¥)

Eo < (W!|H' + H — H'|¥!)

= Ey + (5| Vext — Vexe| ¥o)

= By + [ drpo(r)[vexi(r) = v, (r)
similarly, E] < (Vo|H + H' — H|¥,)

= Eo + (¥o|V.,  — Vext|Wo)

= Eo + /dTPO (1) [Vexct (1) — Vet ()]

Adding both sides yields
Eo+ E) < Ey + E| contradiction with the assumption



Hohenberg—Kohn (Theorem I)
Vext (1) <= [Wo) <= po(r) = (¥o|p(r)|¥o)

unique except the constant (global phase)

SRt |\Il [p]) ground-state wf is a functional of density
[Wo) = |¥[po])

=l O[p] = (¥[p]|O|F[p]) ground-state expectation values a functional of density

Elp) = (¥[pl| H|¥[p]) = Flp] + [ drp(r)vest(r
F[p] = (¥[p]|T + W|¥[p]) universal energy density functional (EDF)

msm Density variational principle (Theorem ll)

po(r) 7 P6 (7)

E[po] < E[py] <= Eo = H%ilglE[P]
p(r



Constrained search formulation as a solution to the issue of v-rep. M. Levy, PRA26(1982)1200

For any given density, there exists at least one wave function giving that density:
N-representability

T. L. Gilbert, PRB12(1975)2111

- J. E. Harriman, PRA24(1981)680
—

X

1)} {p(r)}
set of many-body wave functions p(r) = (T|YT(r)y(r)|P)

variational orinciole : Eo = min [(V|H|WP)| = min min v H|PY
ariational principle : Fo = myn [(PIHIL)] = xaln | min - [(ZIHE)]

Elp| = min V| H (W 1
p] (19} s (P|H|¥)] Levy-Lieb EDF



v- and N-repsentabilities

condition for the v-rep.

not yet proven mathematically for a general case

condition for the N-rep.

non-negativity normalization (particle number)  continuous (finite kinetic energy)

2
Vi/p(7)

< 0

p(r) > 0, Jd?’p(?) = N, Jﬁ



Harriman’s construction

one-dimensional without spin d.o.f for simplicity

density is non-zeroin x; < x < X, c(x) = p(x)/IN, qx) = J dx'o(x’)

X1
single-particle orbitals

¢k(x) =\ o(x) 6Xp[27tikq(x)] k=0,x£1,£2,.-
orbital density | @(x) \2 = o(x)

orthonormal J dxg (X)) (x) = 0y,

1

we can construct a many-body wf by the Slater determinant of ¢,

giving any density



Practical way of DFT calculation: Kohn-Sham method

PHYSICAL REVIEW VOLUME 140, NUMBER 4A 15 NOVEMBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects*

 W. Konn axp L. J. Smam
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

"Reference system” (independent particle motion in a unknown potential)

H=— [ ey @) V(@) + [ deg! @)ool r)w()
—T + V,[p] 2 exact ground-state der)vsity
ohn-shameq. {5 V2 +ulol( | 6:(r) =i(r)  wlpp p(r) = (01p(I0) = 3 6x(r)P
N 2 N B 5TS
Kinetic energy density:  Ti[p] = » (¢4 zﬁmlqb»:}jei— / drvs[p](r)p(r) g vs[p](r) = 5p(5f))]
Interacting system
density variational principle Flp| = Ty[p] + {F[p] — Ts[p]}
0E[p] _ 0Tslp] | (r) - OVerrlp] _ = Ts[p] + Ves|p]
op(r) — bp(r) = T Sp(r)

o Verr [ p]
dp(r)

5 exact ground-state density of the
Interacting system

Vs[p](T) = Vext(r)



What is different from the mean-field approximation

H=— [ dowt @) V(@) + [ dowt @)ven (9@

1
T R AU VIOV
=T + Vext + W two-body interaction

neglect of the fluctuation : 'y yy -

dexlxzr (X1, %) 2 W (ew(x,) :

some part of the interaction are only included in the mean field |



An example

_ t _
v(x1, T2) = |to(1l + zoPy) (;”(1 + 23P,)p*(r1) ]| 8(r1 — 72)

- 10(2 4 xp) fo(1 + 2xp) N K(2+x3) o (1 +2x)

HF potential r
P q 7 o la 2 7 12

PP
neglecting spin-dependent parts

KS potential Energy density functional Fp] = (¢ |v|¢) = Id?%[p]

B (2 +x) ,  f(l+2x)

5(2 + x3) 5(1 + 2x3)
R 2 (P, + P7) YR 2 p (P, + pPx)
SF  1,2+x)  f(1+2x)  5Q2+x) t(1 + 2x3)
V= — = | a + 2)potl ap® L (p? + p?) + 2p°
=5 S P L i (a+2)p 2 lap™ (p; + pp) +2p%p,]

rearrangement

considered as many-body correlations beyond the HF approximation



Nuclear Energy-Density Functional (EDF)
An EDF is derived from an (effective) interaction E[p] = (D] V\ D) = Jd?%[p]

but, E|p| & V | @): Slater determinant WF

In some calculation using the Skyrme-type EDF,
different types of interaction are employed in the ph and pp channels

E = Elp|+ Elp, k]

Skyrme-HF(B) calculation is not the Hartree-Fock one but the EDF one.



Skyrme interaction energy functional
. t -
D(F15) = t9(1 + xoP )S(F5) + 51(1 + x, P ) (k% + K2)8(F,,)
- - S t N N
+5,(1 + P )k - ko(r,) + é(l + X3P )6(r 15)pg(R) 10 parameters

Va\

+ZW()(31 + 82) * l—g* X 5(?12)]_{)

(D| V| D) Fo=T1 =T k=—(V;=V,), K==(Vi-V)),

D Jd?’xz

=0,1

ESky

even _ (p 2 CA,O A C* CVJ V. J CJ ?2
At t[P()]Pz +C 7 pAp+ Cipt + o py Ll G

104 = C[pyls? + CSs, - As +C]]t +CV]S (VXj)+Cls,-T,+ CY5(V -5,)?



Skyrme interaction energy functional

The coupling constants (Cf , C;, --+) are expressed by the combination of

the Skyrme parameters (7, X, ***).

(time-even) (time-odd)
. 1
C() — 1_6(3t1 + 5t2 —+ 4t2x2) C(J) —_— 1_6(3t1 —+ Stz + 4t2X2) —_— Cg
C=-¢

cl=-c/, CtVf =CY/

GGalilean inv.

\ 4

reduces the # of coupling constants



Skyrme interaction energy functional

— CPplp2 + CYp Ap + Ci(pz —j2) + CY[pV - ] +5,- (VXj) + Cls, - T, — J?2
X Cloolpr + CpAp, + Ci(pyr, J7)+ Clp, s (VX + G, - T, ’)

+CS[pols? + CA%s, - As, + CV5(V - 5))? 16 coupling constants
(time-even) (time-odd)
C” 3t+3t * O 1t(2 1)+1t(2 1)p“
C” 1t(2 + 1) 1t(2 + 1)p¢ C? lt lt *

= — —1Iy(ZLxX — —1L(Zx = — —fy— —

determined by the int. parameters

fixed by the static properties!



Skyrme energy—density functional

= _To T Z( N x4 + Z X:+ Ecoul

T=n,p
t = 0 :iso-scalar neutron + proton
t = 1 :iso-vector neutron - proton

15" = Cllpylp? + C¥pAp, + Clpa,+ COTF + CIUJF + CPY + CYpV -,

724 = Cilpolsf + C*s, - As, + Cl's,- T, + Cj? + Cs,- (VXj)+ CY*(V-s)*+ Cs, - F,



p(rst,r's't) = (O |y (r's't y(rst) | D)

Skyrme energy-density functional
p(r,r’) = Z p(rst, r’st’)rt’ft

time-even densities time-odd densities stt’
density spin density S (. r’) = ZPA(I’SL r's't)oy,y,
pAr) = p[r,r) s(r) =s/(r,r) st
kinetic density spin kinetic density
o) = (V-Vprr)| T(r)=(V-Vs.r)|
tensor density i current density o

T r) = %(V - V) Qs(r,r)
l

1
JAr) = 5 (V—=V)p/r,r’)
l

tensor kinetic density

Ji = Z Jiaa 1
: Fi(r)=5(V® V' + V' ®V)s(r.r)

J r Z Gabcj tbc
bc

r=r’

r=r’

1 1 1
me = EJkab T 5 tha gjtéab



Skyrme EDF for nuclear DFT
_ a2 Ap : % vJ - J 2
X = Copr + ClpAp + Cilpr =)+ Glp V- Ji 8- (VX)L + G, - 1, = T )

+CJs + CPs, - As,+ C°(V - 5,)° 16 coupling constants
Independent

A pioneering work toward this direction:
Bender—-Dobaczewski—-Engel-Nazarewicz, PRC65(2002)054322

C? as a free coupling constant Cs = — L > 1 Lp*  C) = 3y (& + &1)
related to the Landau parameters :
g = No(2C3 +2CT pp) 0oo(F,0' ) =No[ g, 8(r—1')
g1 = — 2NoC| pp*” g k'-6(r—r'")k](o-o")(7 7).

IB — (371.2/2)2/3



Examples of Skyrme-type EDD

vSkM*  J.Bartel etal., NPA386 (1982) 79

Fission barrier height of 240Py

=» rare-earth and actinides v

700

600
vSLy4  E.Chabanatetal, NPA627 (1997) 710 .
w0 |
E. Chabanat et al.,, NPA635 (1998) 231 E“ J
Microscopic EoS of neutron matter 5 |

R.B. Wiringa et al., PRC38 (1988) 1010 |

=p nNeutron-rich nuclei

vSGIl H. Sagawa and N.V. Giai, PLB106 (1981) 379

Excitation energy of Gamow-Teller resonance in 208Pp

= SPIN-ISOSPinN response

TTTTTT

——— AVI4+UVII
— UVI4+UVIHI
o best fits

o— — -0 SkM*

— — & SGIT

o-— O SIT

- —-a7TH

o— — < RATP

) T i J N |




UNEDF project
== NUCLEI(Nuclear Computational Low-Energy Initiative)

Building a Universal Nuclear Energy-Density Functional
by the researchers in nuclear theory, applied mathematics, computational science and computer science

M. Kortelainen et al., PRC89 (2014) 054314

1 A Ok (8i5(x) —dij\° . .
Y(x) = L L (S 4(2) ’”) 15 parameters including ph and pp channels
nNd — Ng =1 3=1 Wi
2 130 experimental data
ng = an
' mass of spherical (29) and deformed (47) nuclei

Dy =5, ng =130, n, = 14 charge radius (28)

RMS deviation odd-even staggering (13)
fission isomer (4)

Observable UNEDFO0 UNEDF1 UNEDF2 No.

spin-orbit splitting in spe (9
E 1.428 1.912 1.950 555 P P J P ( )
E (A < 80) 2.092 2.566 2.475 113

E (A > 80) 1.200 1.705 1.792 442



Ground state properties
OFE|p,p,7,J] =0
ms=l Skyrme Kohn-Sham-Bogoliubov (KSB) equation

S (hq(ram o’) — Af hi(r,o,0’) ) <90°11,a(r»0’)) _E. (soil,a(raﬂ))

o’ il’q(r7 g, U,) _(hq(r, g, U,) — )\q) (70(21,01 (r7 OJ) (70(21,05 (’l“, G)
hz
hi=-—-V.——V+4+U,+Ucbqr—iBg- (V X ),
ZmZ
(q)
- V. ~
hq — 02 F(T)pq
h h?

= - bip — bipg  effective mass: finite range of the interaction (momentum dependence)

B! B N
2 lap® ) p2 4+ 2p%p,
q

3

b
Uq =bop — bopg + b7 — bymg + — (a + 2)p>*

rearrangement

OF
—byV - J — b,V - Ty — b2 VZp + b,V p, 5o 2P,
q

B, =bJq+ b4sVp+ b,Vp,



Application to deformed nuclei

coordinate-space representation 30 points for each direction

dimension of the KSB matrix AN =4 X N, Xx N, X N, ~ 10°

the size of nucleus gradually increases as A1/3 == the box size also does

a few tens to hundred iterations are needed to get the convergence

‘ computationally demanding

v Expansion with the basis function

HO basis "HFODD" .
a large number of basis
two-basis method » states are required to
HFB Hamiltonian in the HF basis describe the drip-line nuclei

B. Gall etal., Z. Phys. A348 (1994) 183

v Assumption of the axial symmetry

Vanderbilt Oak Ridge

E. Teran et al.,, PRC67 (2003) 064314 J.C. Peietal., PRC78 (2008) 064306 (the reflection sym.)
Kyoto-Orsay Niigata

KY and N.V. Giai, PRC78 (2008) 014305 H. Oba and M. Matsuo, PTP120 (2008) 143

(the reflection sym.)



axial symmetry [’H, Rz] — ()

!

rotation along the z-axis R.(¢) = exp(—i¢j./h) [7{9 jz] =0

cigenstates "y <¢1,i(g,z,(b, g)> _ 5 (gol,,,;(g,z,qb, a)> cylindrical coordinate
SOZ,i(Qazaqba 0') 902,?3(97Z7¢9 U) r — (Q, Z, ¢)

3z (901,1:(97 z, ¢, 0')) _ hﬂz (Sol,i(ga Zq ¢9 0')>

902,2‘(Q,Z, ?, U) QOZ,i(Qaza @, U)
parity is also a good quantum number when assuming the reflection sym.
wave functions

+ iN. @
. Z)e 4
pi(0s 2y, 0) = (“’z (2, 2) iw) AfF=Q;+1/2

p; (0,2)e
for each €2 (block diagonal)
(bt + =X hpy ht 1 hir /9"1}'\ /9";&'\
Byt hig — A h s hyy Pri| — g | Pri
Pt 4 hyr —(hr 1 =A)  —hpy 3 3
\ h 4 hy, —h 4 —(hu—)\)) 02.:) P2.i)

parallelize for each €2

dimension of the block becomes smaller ==
4 X N, X N, ~ 3000

easy to extend the box size for the drip-
line nuclei



parallel computing

using the MPI (w/N cores: N=4n)

neutrons protons
proc. ~ proc. proc. proc. proc.
| 2 N/2 N/2+] N
Qr 1/2+ 1/2- (N-2)/4 1/2+ 1/2- (N-2)/4
diagonalization w/ lapack: dgeev - communication among CPUs
proc.

| densities, hamiltonians

proc. proc. proc. proc. proc.
I 2 N/2 N/2+| N

iterations: Broyden
A. Baran et al., PRC78(2008)014318



Zr isotopes: a sudden shape change
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. tail structure
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Zr isotopes: strong deformation at N=64
T. Sumikama et al.,, PRL106 (2011) 202501

exp. @ RIBF
8+ 1687.2
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strong deformation in Zr and Sr
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Cr-Fe isotopes: deformation at N=40-50
C. Santamaria etal., PRL115 (2015) 192501

(p,.2p)y @ RIBF
Cr isotopes Fe isotopes
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H. Oba and M. Matsuo, PTP120 (2008) 143
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Nilsson diagram
H. Oba and M. Matsuo, PTP120 (2008) 143

(a) SkM™ neutron (b) SKM* proton
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neutrons start to occupy the go/2 orbital beyond N=40

high deformation at N=42



Open sources

SHF

Langanke, Maruhn, Koonin: Computational Nuclear Physics I
Chap. 2 Skyrme Hartree-Fock (P.-G. Reinhard)

HFBRAD  spherical HFB in radial mesh
Bennaceur and Dobaczewski, Comp. Phys. Commun. 168, 96 (2005)

HOSPHE  spherical HFB in HO basis
Carlsson et al., Comp. Phys. Commun. 181, 1641 (2010)

HFBTHO  axial-sym. HFB in 2D HO basis
Marevic et al., Comp. Phys. Commun. 276, 108367 (2022)

HOODD  HFBin 3D HO basis
Schunck et al., Comp. Phys. Commun. 216, 145 (2017)



Exercise and Homework

h* d- y R2E(2 + 1)
1 Cm dr2 Uy f(1) + | Vvs(r) + 22 Uy (1) = Eppillypi(T)
-2 + % 1 0 0 i,
1 _2 + * 1 oo O u3
hu=—B 0 1 24+ % : Uy
I ., ., . 1 :
0 0 1 =24+ % ) \Un-1

include the spin-orbit potential

1 3
0 Ry T [ - sW(P)]u,,; = B j(j+1)—f(b”+1)—z W(ru,,

r(i) =r. =1 XA, 1
( ) 01 i v Vs(r) = 1 +expl(r — R)/al = — Votws
l — ,...
’ 4 , 1 dfs
W(r) = Vso”o ~ +: proton
A: radial mesh size roar - neutron
N—7 N—7

N.: number of mesh points Vo=—51£33——MeV,a=067fm,V,, =22+ 14——MeV




Homework

HFBTHO  axially-symmetric transformed HO (THO) basis

v2.00d: Stoitsov et al., Comp. Phys. Commun. 184, 1592 (2013)
this is not the latest version, but you can enjoy the physics

https://data.mendeley.com/datasets/f8n37xtbmg/1

tar zxvf adui_v2_0.tar.gz

O

i “ hfbtho — -zsh — 74x24

kyoshida®MacBook—-Air-6 hfbtho % 1ls
adui_v2_0.tar.gz

kyoshida®MacBook-Air—-6 hfbtho % tar zxvf adui_v2_0.tar.gz

X

KX X XXX X X X X XXX XXX X X XX

hfbtho/

hfbtho/hfbtho_NAMELIST.dat

hfbtho/COPYING

hfbtho/examples/

hfbtho/examples/test_temperature/
hfbtho/examples/test_temperature/main_Z 24 N 26 SLY4 Nlegf.out
hfbtha/examples/test_temperature/hfbtho_NAMELIST.dat
hfbtho/examples/test_temperature/thoout.dat
hfbtho/examples/test _odd/

hfbtho/examples/test_odd/run_%/

hfbtho/examples/test _odd/run_9/main_Z 56 N_1062 SLY4 Nleg?.out
hfbthao/examples/test_odd/run_9/thoout.dat
hfbtho/examples/test_odd/run_%/hfbtho_NAMELIST.dat
hfbtho/examples/test _odd/run_19/
hfbtha/examples/test_odd/run_10/thoout.dat
hfbtho/examples/test_odd/run_10/main_Z_56_N_182_SLY4_Nlegl@.out
hfbtho/examples/test _odd/run_10/hfbtho_NAMELIST.dat
hfbtho/examples/test_odd/run_3/

hfbtho/examples/test odd/run_3/thoout.dat
hfbthao/examples/test_odd/run_3/hfbtho_NAMELIST.dat
hfbtho/examples/test_odd/run_3/main_Z_56_N_102_SLY4_Nleg3.out



Let’s try the HFB calculation by using HFBTHO

ene 3 hibtho = -2sh = 72x6 one can find the source files (codes) in

kyoshida@®MacBook—-A1ir—-6 hfbtho % cd hfbtho

kyoshida@MacBook-Air—6 hfbtho % 1s "hfbth()" direCtO ry

COPYING blas.f hfbtho_v200d. 98
Makefile examples lapack.f
README hfbtho_NAMELIST.dat main_v2600ed.f90 I I l l
kyoshida@MacBook-Air—6 hfbtho % vim Makefile || mCIUdmg libraries such as IapaCk and blas
. O hfbtho — vim Makefile — 88x31
fé SHELL := /bin/bash
Open the Makefile
47 # Names
48 VERSION = 2008d
49 BTH( | = main

50 HFBTHO_SOURCE = main_vS(VERSION).f90

ACML_LIBRARY = TRUE

53 # Makefile Options

54 COMPILER = GFORTRAN
= gfortran

o 1o ICDUA =- FALSE

57 ACML_LIBRARY =JIFALSE *

58 STATIC LIE = FALSE

60 # Preprocessor options FAI__S E

=1

63 # BLAS and LACPACK libraries

64 1feq ($(ACH BRARY ), TRUE)

7 = —-L%$(HOME) /1ib/lapack—-3.4.1 -1lapack LINUX -1blas_LINUX
else

A€ LAPACK_0OBJ = lapack.o

70 BLAS OBJ = blas.o

72 endif



Let’s try the HFB calculation by using HFBTHO

then, make to prepare the executable file “main”

O Q ~ hfbtho — -zsh — 127x13

kyoshida@MacBook—Air—-6 hfbtho % make

gfortran —ffree—-form -ffree-line-length-none -cpp -Dhide_openmp=1 -03 -c hfbtho_v200d.f%0

gfortran —ffree—form —-ffree-line—length—none -cpp —-Dhide_openmp=1 -03 -c main_v200d.f90

gfortran —ffixed-form —cpp -Dhide_openmp=1 -03 -c blas.f

gfortran —ffixed-form —cpp -Dhide_openmp=1 -03 -c lapack.f

gfortran —ffree—-form -ffree-line-length—none -cpp -Dhide_openmp=1 -03 -0 main main_v280d.o hfbtho_v200d.o blas.o lapack.o
kyoshida@MacBook—-Air-6 hfbtho % 1s

COPYING blas.o hfbtho_gauss.mod hfbtho_version.mod main_v260d.f90

Makefile ellipticintegrpal.mod hfbtho_tho.mod lapack.f main_v260d.o

README examples ‘ hfbtho_utilities.mod lapack.o unedf.mod

bessik.mod hfbtho.mod hfbtho_v200d.f90 linear_algebra.mod ﬁ d . f f I
blas.f hfbtho_NAMELIST.dat hfbtho_v200d.o mailn #

kyoshida@MacBook—Air-6 hfbtho % | yOu Can n It IT SUCCESSTU

you can find some examples in the “examples” directory



Let’s try the HFB calculation by using HFBTHO

an example  examples/test_spherical/run_0

input file: hfotho_ NAMELIST.dat
you can execute the job:./main

. (O run_0O — vim hfbtho_NAMELIST.dat — 78x29

1 MHFBTHO GENERAL

2 number_of_shells = 16,
3 oscillator_length = 2.0,

4, basis_deformaticn = 0.0, 208 b( — — )
5 proton_number = 82, neutron_number = 126, type_of_calculation E 1/ P Z_821 N_1 26
6 &HFBTHO ITERATIONS

number_iterations = 100, accuracy E 1.E-9, restart_file E -1 /
8 &HFBTHO FUNCTIONAL . .
9 functional = 'SLY5', add_initial_pairing § F, Skyrme SLyS |nteract|0n
10  type_of_coulomb = 9@/
11 &HFBTHQO PAIRING
12 user_pairing = T, vpair_.n § -366.6, vpair_p & -300.0,
13 pairing_cutoff = 60.0, pairing_feature B 0.5 /
14 &HFBTHO _CONSTRAINTS

15 1lambda_values =1, 2, 3, 4, 5, 6, 7, 8,
16 lambda _active = 9, 0, 0, @, 0, @, 9, 0,
/ expectation_values = 0.0, 0.0, 0.9, 0.9, 0.9, 0.9, 0.0, 9.0 /

18 &HFBTHO_BLOCKING

19 proton_blocking = @, 9, 0, @, 6, neutron_blocking = e, 9, @, 6, 0 /
20 &HFBTHO_PROJECTION

21 switch_to_THO = 8, projection_is_on § @,

22 gauge_points = 1, delta_Z E @, delta_N E e /

23 &HFBTHO_TEMPERATURE

24 set_temperature = F, temperature E 0.0 /

25 &HFBTHO_DEBUG

26 number_Gauss = 40, number_Laguerre = 4@, number_lLegendre E 80,
27 compatibility HFODD = T, number_states § 969, force_parity § T,
28 print_time = @ /



soe 5 run_0 — -zsh — 78x43 one will obtain
neutrons protons total
Requested part.numbs. 126.000000 82.000000 208.000000
UnPj(av) part.numbs . 126.000000 82.000000 208.000000
b, bz, bp ceeveeiet. 2.000000 2.000000 2.000000
lanbda (ala) ........ 5.025158  —24.890068 lambda: chemical potent|a|
Lambda (alast) ...... -7 .515407 -27.907951
delta(n,p), pwi ..... 9.000000 0.000000 60.000000 o o o o
pairing energy ...... ~0. 000000 —9.000000 ~9. 000000 pPalring gap and pPalring energy
rmS—Tadius ..eeeevens 5.519846 5.250015 5.415076
charge-radius, 1@ ... 5.310617 8.877508
deformation beta2.... -D.0P0B0d —0.000000 -0.000000 . .
dipole moment[fm] ... 0.000000 0.000000 0.000000 radlLIS, Charge rad|US, and moments
quadrupole moment([b] -0 .0P0BAO —0.000000 -0.000000
octupole moment ..... B .00008a6o 0.000000 @.0080000
hexadecapole moment . o5 1515151515 0.000000 0.000000
o £ T 0 .0000oao 0.000000 ©.0200000
o 1< D.0D0B0O 0.000000 0.000000
o 72 0 .0b000o 0.000000 ©.0200000
(@ 1< J -0 .0BB0B0B0 —0.000000 -0 .000000
kinetic energy ...... 2614.806852 1438.160641 4052 .967492
volume energy ....... -6737.799728 b kd f h
rho_tau ....... 1470.319183 rea Own O t e energy
rho_rho ....... -8208.118910
surface energy ...... 344.593323
rho_DELTA_rho ...... 344.593323
(NABLA_rho)?2 ...... 0.000000
spin-orbit energy ... -109.091691
rho NABLA J ... -109.0891691
NABLA_rho_J ... ©.000000
coulomb energy ...... 0.000000
direct ...... 0.000000
exchange .... 0.000000
tensor energy «...... 3.400388
direct Hartree E . 0.000000
Extra E ....cieveiit, 0.000000
External field E .... 0.000000
ENtIopY .ovvevveannny 0.0D0000o 0.006000 ©.000000

tEnergy: ehfb (gp)... -2445,930216

total energy : —B



Let’s try the HFB calculation by using HFBTHO
1545m (Z=62, N=92)

away from the magic numbers

modify the input file: hfotho_NAMELIST.dat

proton_number = 62
neutron_number = 92

functional = SKM*
often used in the structure calculations

Question: is this nucleus deformed? what is the deformation?

deformation beta2
quadrupole moment



