
Mean-field theory for open-shell nuclei

—deformation—
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Quadrupole (2+) state energy: magic number
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Singly-closed (Z=magic #) nuclei have

an energy gap
The ground 0+ state is lowered by the pairing.

j
two neutrons above the magic # in a single orbital

The total spin I can be 0, 2, 4,… 2j-1.

I=0

I=2
I=4
I=6
I=8All the states are degenerated.

residual interaction
v(1, 2) = −κδ(r1 − r2)

F (r, r′) = δ(r, r′)rLYL

F (r, r′) = 1

⟨τ |τ±|τ ′⟩

m1 =

∫
dωωS(ω) =

1

2
⟨Ψ0|[Ô, [Ĥ, Ô]]|Ψ0⟩

mp =

∫
dωωpS(ω)

S(ω) =
∑

i

⟨Ψi|Ô|Ψ0⟩δ(ω − ωi)

δττ ′

δσσ′

δττ ′

Ô =

∫
drdr′F (r, r′)ψ̂†(rστ )⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ̂(r′σ′τ ′)

ωrot

Vph(r1σ1τ1, r2σ2τ2) = [v00(r1) + v01(r1)σ1 · σ2]τ1 · τ2δ(r1 − r2)

+ (v10 + v11σ1 · σ2)τ1 · τ2[k†2δ(r1 − r2) + δ(r1 − r2)k
2]

+ (v20 + v21σ1 · σ2)τ1 · τ2[k† · δ(r1 − r2)k]

+ v4(σ1 + σ2)τ1 · τ2k† × k

v̄ph(12; 1
′2′) =Vph(r1σ1τ1, r2σ2τ2)δ(r

′
1 − r1)δσ′

1,σ1
δτ ′

1,τ1
δ(r′2 − r2)δσ′

2,σ2
δτ ′

2,τ2

Γ̂†
i =

∑

αβ

Xi
αβâ

†
α,ν â

†
β,π − Y i

αβâβ̄,πâᾱ,ν

EN =
N2

2M

[ĤRPA, Θ̂] =
1

i

N̂

M
[ĤRPA, N̂ ] = 0

1

Quadrupole (2+) state energy: pairing
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The singly-closed (Z=magic #) nuclei have

an energy gap
The ground 0+ state is lowered by the pairing.
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Excitation energies of 2+ and 4+ states
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Ĥ =
Î2
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mp =

∫
dωωpS(ω)

S(ω) =
∑

i
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Rotation

Vibration

breaking of the rotational symmetry

occurrence of collective excitations

quadrupole deformation



I(I + 1)

En
er

gy
 (M

eV
)

154Sm
238U

0 200 400 600 800 1000 1200
0

5

10

15

20

Emergence of the rotational band

E =
I(I + 1)

2𝒥

from NNDC



0 200 400 600 800 1000 1200
0

5

10

15

20

I(I + 1)

En
er

gy
 (M

eV
)

40Ca*

154Sm
238U

A double-magic nucleus can be superdeformed
E. Ideguchi+, PRL87(2001)222501

Emergence of the rotational band

E =
I(I + 1)
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−

E(
I=

0)

from NNDC



θ

R(θ,φ) = R̄0

⎛

⎝1 +
∑

λµ

α∗
λµYλµ(θ,φ)

⎞

⎠

q = ⟨Q̂20⟩
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dωωpS(ω)

S(ω) =
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i

⟨Ψi|Ô|Ψ0⟩δ(ω − ωi)

δττ ′

δσσ′

1

nuclear “surface”: classical picture

How to define the surface/shape of a quantal object?

⟨J = 0 |Y2μ |J = 0⟩ = 0

R(θ, ϕ) = R̄0 1 + ∑
λμ

α*λμYλμ(θϕ) α2μ ≠ 0

Some nuclei are deformed!

one possible definition:

the nuclear shape  the shape of the mean field  that of the density = =



[H, J] = 0

HJ=0 = HJ=0
MF + HJ=0

res

HJ=0
MF = ∑

α

εα[a†
αaα]0

HJ=0,F
res =

1
2 ∑

ijkl,J

vF
ijkl(J) : [[c†

i ck]J[c†
j cl]J]0 :

HJ=0,G
res = ∑

ijkl,J

vG
ijkl(J) : [[c†

i c†
j ]J[clck]J]0 :

angular-momentum coupling: [AaBb]JM = ∑
mamb

( jama jbmb |JM)Aama
Bbmb

i j

k l

i j

k l
J J

J

J

F type G type

The Hamiltonian is rotationally invariant:  is a good quantum numberJ
The Hamiltonian is thus block diagonal w.r.t .J

s.p. orbital in  
the spherical MF

Symmetry and its breaking



HMF = ∑
α

εα[a†
αaα]0 + ∑

ij,J

Γij(JM)[c†
i cj]JM

+∑
ij,J

(Δij(JM)[c†
i c†

j ]JM + Δ*ij (JM)[cbca]JM)

Γij(JM) := ∑
kl

vF
ikjl(J)⟨Φ | [c†

k cl]JM |Φ⟩

Δij(JM) := ∑
kl

vG
ijkl(J)⟨Φ | [clck]JM |Φ⟩

appearance of the fields with J > 0 the rotational symmetry is broken

Symmetry breaking

J = 0

HF field

pair field
breaking of the particle number



Slater det.|ϕ⟩ : density matrix: ρij = ⟨ϕ |c†
j ci |ϕ⟩

 Unitary trans.Us :

[H, Us] = 0 the symmetry the Hamiltonian has

| ϕ̄⟩ = Us |ϕ⟩, Us |0⟩ = |0⟩

Symmetry breaking of the mean fields

Usc†
k U†

s = ∑
l

Us lkc†
l

UsckU†
s = ∑

l

U*s lkcl

trans. of c†, c
(U†

s c†
k Us = ∑

l

U*s klc
†
l )

(U†
s ckUs = ∑

l

Us klcl)



density matrix for the transformed SD:

ρ̄ij = ⟨ϕ̄ |c†
j ci | ϕ̄⟩ = ⟨ϕ |U†

s c†
j (UsU†

s )ciUs |ϕ⟩ =: ⟨ϕ |c†
j̄
cī |ϕ⟩

c†
j̄

:= U†
s c†

j Us = ∑
k

U*s jkc
†
k , cī := U†

s ciUs = ∑
l

Us ilcl

= ∑
kl

U*s jkUs ilρlk = (UsρU†
s )ij

ρ → ρ̄ = UsρU†
s

= 1

Symmetry breaking of the mean fields



ρ → ρ̄ = UsρU†
s

the energy is unchanged E[ρ] = ⟨ϕ |H |ϕ⟩

E[ρ̄] = ⟨ϕ̄ |H | ϕ̄⟩ = ⟨ϕ |U†
s HUs |ϕ⟩ = E[ρ][H, Us] = 0

variation of δρ, δρ̄ := UsδρU†
s E[ρ + δρ] = E[ρ̄ + δρ̄]

∑
ij

δE
δρji

δρij = ∑
ij

δE
δρji ρ=ρ̄

δρ̄ij h :=
δE
δρ

trh[ρ]δρ = trh[ρ̄]δρ̄ = trU†
s h[ρ̄]Usδρ

h[ρ̄] = Ush[ρ]U†
s

Symmetry breaking of the mean fields



self-consistent symmetry

broken symmetry

 is invariant under the trans. : ρ Us ρ̄ = ρ

 commutes with h[ρ̄] = h[ρ] Us

the solution of HF (mean field and density) holds the symmetry the Hamiltonian has

 is NOT invariant under the trans. ρ Us : ρ̄ ≠ ρ

[h[ρ̄], ρ̄] = Us[h[ρ], ρ]U†
s = 0[h[ρ], ρ] = 0

h[ρ̄] = Ush[ρ]U†
sSymmetry breaking of the mean fields

degenerate solutions
 is a continuous sym., infinite numbers of degenerate solutionsUs

[h[ρ̄], ρ̄] = 0 since



ℛ̄ = (Us 0
0 U*s ) ( ρ κ

−κ* 1 − ρ*) (U†
s 0

0 UT
s ) =: 𝒰sℛ𝒰†

s

ℋ[ℛ̄] = 𝒰sℋ𝒰†
s

Symmetry breaking of the mean fields: the case of HFB

pair tensor: κ̄ij = ⟨Φ̄ |cjci |Φ̄⟩ = ⟨Φ |U†
s cj(UsU†

s )ciUs |Φ⟩ = ∑
kl

Us jlκklUs ik = (UsκUT
s )ij

|Φ⟩ → |Φ̄⟩ = Us |Φ⟩
Kasuya–Yoshida, PTEP(2021)

then, the generalized density matrix and the HFB Hamiltonian are transformed as

similar to the case of HF

(note) the case of the anti-unitary Us ex. time-reversal operation

ℛ → (𝒰sℛ𝒰†
s)*, ℋ → (𝒰sℋ𝒰†

s)*



Symmetry breaking of the mean fields

q

<H>

0

pairing deformation

⟨P†⟩ ≠ 0 ⟨Qλμ⟩ ≠ 0

breakingparticle-number sym. rotational sym.

order para.

vacuumeA† |0⟩
Cooper-pair condensation

eΓ† |0⟩
Vib.-phonon condensation

“rotation”
strong transition|⟨ΨN+2

0 |P† |ΨN
0 ⟩ |2 |⟨Ψλ

i |Qλμ |Ψ0⟩ |2



Stoitsov+, 2003
Predicted deformation by the HFB cal.



Phenomenological mean fields for deformed nuclei

hHO =
1

2m
p2 +

m
2 ∑

i

ω2
i x2

i

= ∑
i

ℏωi(p̄2
i + x̄2

i ) = ∑
i

ℏωi(ni +
1
2

)

✓anisotropic oscillator potential

C†
i =

1

2
(x̄i − ip̄i), ni = C†

i Ci

p̄i =
1

mℏωi
pi, x̄i =

mωi

ℏ
xi

∑
i

ω2
i x2

i = const
x2

R2
x

+
y2

R2
y

+
z2

R2
z

= const

the shape of the potential: equipotential surface

spheroid

ωxωyωz = ω3
0 ↔ RxRyRz = R3

0
Ri

R0
=

ω0

ωi

under the volume conservation ω1, ω2, ω3

ωx, ωy, ωz

or

stretched coordinates



ω1 = ω2 =: ω⊥
ω⊥ = ω0(1 +

1
3

ϵ2)

ω3 = ω0(1 −
2
3

ϵ2)

ϵ2 > 0 ϵ2 < 0prolate oblate

εHO = ∑
i

ℏωi(ni +
1
2

) = ℏω0 [(N +
3
2

) +
1
3

(N − 3n3)ϵ2]
N := n1 + n2 + n3 ϵ2

ε
n3 = 0

n3 = 1

n3 = N

Axially-symmetric case



Axially-symmetric case

εHO = ∑
i

ℏωi(ni +
1
2

) = ℏω0 [(N +
3
2

) +
1
3

(N − 3n3)ϵ2]
N := n1 + n2 + n3 = 2n + ℓ

ϵ2

ε/ℏω0
n3 = 0

n3 = 1

n3 = N

degeneracy

2(N + 1)
2N

2

2
N

∑
i=0

(i + 1) = (N + 1)(N + 2)

N + 3/2

in the spherical coordinate

N = 0
[n1, n2, n3] [n, ℓ, ℓz]

[0,0,0] [0,0,0]

N = 1
[1,0,0]
[0,1,0]
[0,0,1]

[0,1, − 1]
[0,1,0]
[0,1,1]

ex.)

with spin



Axially-symmetric case

εHO = ∑
i

ℏωi(ni +
1
2

) = ℏω0 [(N +
3
2

) +
1
3

(N − 3n3)ϵ2]

ω1 = ω2 = 2ω3

[0,0,0]

[1,0,0] [0,1,0] [0,0,2]

[0,0,1]

[n1, n2, n3]

 and N = 1 2

N = 1

N = 0

[1,0,1] [0,1,1]  and N = 2 3[0,0,3]

intruder
= different parity

principal quantum #: N = n1 + n2 + n3 = n+ + n− + n3, Λ := l3 = n+ − n−

[n1, n2, n3] [N, n3, Λ]

[N, n3, |Λ | ]

[0,0,0]

[1,1,0]

[1,0,1] [2,2,0]

[1,1,1]

ex.)

[3,3,0]
octupole correlation



spherical: ϵ2 = 0

degeneracy w.r.t N

spherical magic numbers

superdeformation (SD)
ω⊥/ωz = 2

ϵ2 = 0.6

a new type of degeneracy appears

(N + 1)(N + 2)

SD magic numbers

[000]

[110]
[101]

[220]
[211]

[202][200]

N = 0

N = 1

N = 2

BM, Vol 2, Fig.6-48



Nilsson model
h = hHO + hls+ll

hHO =
1

2m
p2 +

m
2 ∑

i

ω2
i x2

i

= ∑
i

ℏωi(p̄2
i + x̄2

i ) = ∑
i

ℏωi(ni +
1
2

)

hls+ll = vlslt ⋅ s + vll(l2
t − ⟨l2

t ⟩)

lt := x̄ × p̄

ωi = ω̄0 (1 −
2
3

ϵ2 cos(γ +
2π
3

i))
not necessarily axial symmetric  

z
ωx = ωy > ωz

x
ωy = ωz < ωx

ϵ2

γ prolate

oblate

spherical



hNil = hHO + hls+ll

 is not diagonal in the HO basishls+ll

treated as perturbations at large deformations

good quantum # in an axially and reflection sym. potential:  (parity)Ω( = jz = m), π

asymptotic quantum #: |Nn3ΛΩπ⟩
principal quantum #：N = n1 + n2 + n3 = n+ + n− + n3
Λ := l3 = n+ − n−,

|Ωπ, k⟩ = ∑
Nlj

C(Nljk) |NljΩπ⟩ = ∑
Nn3Λ

C′￼(Nn3Λk) |Nn3ΛΩπ⟩

spherical HO basis

Asymptotic quantum numbers

deformed HO basis

Ω = Λ + Σ



Examples of the Nilsson diagram

in light nuclei
π = +
π = −

for the orbitals with same Ωπ
avoided crossing

deformed magic numbers
10, 12, 28 (prolate)

10
1214

14 (oblate)

28

two-fold degenerated (time-reversal sym.)

relatively simple

±Ω



Collective motions in nuclei: rotation



|Φodd⟩ = a†
i |ΦHFB⟩

odd nuclei:

measured

17O9

Jπnuclide

5/2+ ν1d5/2
15O7 1/2− ν1p1/2

19Ne9 1/2+ ν1d5/2

ν[220]1/2

An application of the Nilsson diagram



Rotational spectra

Hrot =
R2

2𝒥
: collective spin (angular momentum) of the coreR

EI =
I(I + 1)

2𝒥

strong coupling: deformation alignment
Ω = K

j

I
R

z

x

Hrot =
R2

2𝒥
=

1
2𝒥

[(I1 − j1)2 + (I2 − j2)2]

=
1

2𝒥
[I2 − I2

3 + ( j2
1 + j2

2) − (I+ j− + I− j+)]
recoil Coriolis and centrifugal forces

treated in first order perturbation theory

rotation along the perpendicular axis, 3-axis being the symmetry axis



Rotational spectra in the strong coupling

H = Hsp + Hrot

HF(B) single-(quasi)particle: ϕν, eν

EIK = |eν − λ | +
1

2𝒥
[I(I + 1) − K2] K ≠

1
2

Hrot =
1

2𝒥
[I2 − I2

3 − (I+ j− + I− j+)]

selection rules for  are j± ΔΩ = ± 1

for the case of  bandsK =
1
2

EIK = |eν − λ | +
1

2𝒥
[I(I + 1) − K2 + a(−1)I+1/2(I + 1/2)]

reflection symmetry
axial symmetry

assuming

a = − ⟨ϕν | j+ |ϕν̄⟩
decoupling parameter

Ω = 1/2 Ω = − 1/2



BM, Vol 2, Fig.5-15Erot = AI(I + 1) + A1(−1)I+1/2(I + 1/2)δK,1/2

12Fermi level



The cranking model
simultaneous description of s.p. and rotational motions

the rotation is treated classically within the quantum mechanics

ωx
z

x1 = x

x2 = y cos ωt + z sin ωt

x3 = − y sin ωt + z cos ωt

uniform rotation along
the x-axis 

ψω(x1, x2, x3, t) = ψ(x, y, z, t)
the time-dependent wave functions in the two systems must satisfy

up to the phase

( ∂ψ
∂t )

x,y,z
= ( ∂ψω

∂t )
x1,x2,x3

+
∂ψω

∂x2

∂x2

∂t
+

∂ψω

∂x3

∂x3

∂t
∂x2

∂t
= ωx3,

∂x3

∂t
= − ωx2

∂ψ(x, y, z, t)
∂t

= ( ∂
∂t

− iωℓ1) ψω(x1, x2, x3, t)



The cranking model
∂ψ(x, y, z, t)

∂t
= ( ∂

∂t
− iωℓ1) ψω(x1, x2, x3, t)

time-dependent Sch. eq.
i∂tψ(x, y, z, t) = hψ(x, y, z, t)

i∂tψω(x1, x2, x3, t) = (h − ωℓ1)ψω(x1, x2, x3, t)

note:

ℓ1 = − i (x2
∂

∂x3
− x3

∂
∂x2 )

= − i (y
∂
∂z

− z
∂
∂y ) = ℓx

Ĥ′￼ = Ĥ − ω ̂J1the cranking Hamiltonian (Routhian):

δ⟨ψ | Ĥ |ψ⟩ = 0 ⟨ψ | ̂J1 |ψ⟩ = J1under the constraint

 : a Lagrange multiplierω



Variational principle in a rotating frame
|ϕ(θ, I)⟩ = e−iθ ̂Jx |ϕintr(I)⟩

time-dependent variational principle : δ⟨ϕ(θ, I) | i∂t − Ĥ |ϕ(θ, I)⟩ = 0

δ⟨ϕintr(I) | Ĥ − ωrot
̂Jx |ϕintr(I)⟩ = 0

ℋ(I) := ⟨ϕ(θ, I) | Ĥ |ϕ(θ, I)⟩ = ⟨ϕintr(I) | Ĥ |ϕintr(I)⟩

[Ĥ, ̂Jx] = 0

·θ =
∂ℋ
∂I

= ωrot

·I = −
∂ℋ
∂θ

= 0

Hamilton’s eq.: 

∂
∂t

= ·θ
∂
∂θ

+ ·I
∂
∂I

note:

i
∂
∂θ

|ϕintr(I)⟩ = ̂Jx |ϕintr(I)⟩

δ⟨ϕintr(I) | Ĥ − i ( 1
i

∂ℋ
∂I

̂Jx −
∂ℋ
∂θ

∂
∂I ) |ϕintr(I)⟩ = 0

transformation of the frame



Mean field in a rotating frame
H′￼ = H − ωJx

h′￼|μ⟩ = ε′￼μ |μ⟩ ε′￼μ(ωrot) single-particle Routhian

x-signature: Rx = e−iπJx

Rx |μ⟩ = r |μ⟩
r = e−iπα, α = ± 1/2
r = ± i x-signature is a good 

quantum number

when the reflection symmetry is conserved

when the reflection symmetry is broken
x-simplex: πRx

x-simplex is a good 
quantum number

(x1, x2, x3) → (−x1, x2, x3)

* the axial symmetry can be (is usually) broken due to the Coriolis force



Signature quantum number

R̂2
x(π)Ψ = r2Ψ = (−1)AΨ

R̂x(π) = exp(−iπ ̂Jx) A rotation of  leaves the wavefunction 
unchanged, except for a phase factor

2π

0+
2+

4+

6+

8+

1+
3+

5+

6+

7+

5/2+
9/2+

13/2+

17/2+

21/2+

7/2+
11/2+

15/2+

17/2+

23/2+

α = 0

r = e−iπα

α = 1 α = 1/2 α = − 1/2

signature exponent quantum number:

 (even A),  r = ± 1 α = 0,1

 (odd A),  r = ± i α = ± 1/2



·θ =
∂ℋ
∂I

= ωrot ωrot(I) ≃
dE
dI

≈
1
2

[Erot(I + 1) − Erot(I − 1)] = Eγ /2

rotational frequency

moments of inertia

𝒥(1) =
J

ωrot
≈

2(I + 1/2)
E(I + 1) − E(I − 1)

=
2I + 1

Eγ

J2 = I(I + 1)
I2 + I − J2 = 0

I =
1
2

(−1 + 4J2 + 1)
𝒥(2) =

dJ
dωrot

≈
4

ΔEγ

Correspondences to the experimental data

≃
1
2

(−1 + 2J)

note:



γ = 120∘ γ = 60∘

γ = 0∘

γ = − 60∘

prolate 
collective rotation

prolate 
non-collective rotation

oblate 
non-collective rotation

oblate 
collective rotation

rotation about  
the short axis

rotation about  
the intermediate axis

rotation about  
the long axis

phase convention of BM

DAL scheme

RAL scheme

(normal scheme)

(normal scheme)

RAL scheme
(abnormal scheme)

DAL scheme
(abnormal scheme)symmetry axis

rotation axis

and type of deformation

• collective rotation

• non-collective rotation

deformation aligned

rotation aligned

Triaxiality plays a role!

γ → − γ
Lund convention
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low  orE(2+) high 1/E(2+)

an indicator of quadrupole 
deformation

3/E(2+)

magic numbers

a patter of deformation

𝒥

E(2) =
6

2𝒥



Nilsson–Ragnarsson: Fig. 12.4

Exp. data for 20Ne (NNDC)
Example (1): the ground band of 20Ne

a

alignments: 

⟨μ | ̂jx |μ⟩ = −
dε′￼μ

dωrot

→ ± 1
2

a
ωrot → 0
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Example (3): neutron-rich Mg isotopes

~20% decrease in energy
635(6) keV 500(14) keV→

Crawford+, PRL122(2019)052501

Is it a qualitatively unique feature?
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weakening of the pairing
deformed shell gap at N=28



How large can a nucleus be deformed?

ωrot
x

z
high moment of inertia for a highly-deformed nucleus

E =
I(I + 1)

2𝒥

high-deformed nuclei are energetically favored at high spins

Deformation

Energy

fission

Highly deformed nuclei at high spins

zero spin

higher spins



fission

Superdeformed shape as a fission isomer

Energy

Deformation



Twin+, PRL57(1986)811

152Dy

108Pd(48Ca,4n)152Dy

low-energy heavy-ion fusion reaction

ωrot(I) =
∂E
∂I

≈
E(I + 1) − E(I − 1)

2
=

Eγ(I)
2

𝒥(2) :=
dI

dωrot
= ( d2E

dI2 )
−1

=
4

ΔEγ

no need of the spin identification 

moment of inertia

Superdeformed band

neutron deficient

rotational frequency



Nucl. Data Sheets 78, 1 (1996)

proton rich nuclei
due to the fusion of stable nuclei

SD discovered so far



SD band in a doubly-magic nucleus: 40Ca

VOLUME 87, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 26 NOVEMBER 2001

discrimination on the signals from the CsI(Tl) scintilla-
tors. With a trigger condition of three or more Compton-
suppressed Ge detectors firing in coincidence, a total of
1.2 3 109 events were collected. From the number of
hits in the charged particle detectors, events were sorted
into an Eg 2 Eg coincidence matrix for each evaporation
channel. However, the channel selection is limited by
the efficiency of the MICROBALL and by the occasional
misidentification of charged particle signals. The 2a gated
g 2 g matrix, therefore, contains contaminations from the
2a1p !39K" and 2a2p !38Ar" channels. Their contribu-
tions were subtracted to obtain a clean data set for 40Ca.

Some of the high-spin structures in 40Ca have previously
been studied [13,14]up to spin 81 at 8.1 MeV. An inter-
esting feature of the previous level schemes is the presence
of second 01

2 and third 01
3 states, which are indications of

shape coexistence [7]. In our work, the level scheme was
extended up to spin 161 at 22.1 MeV. Figure 1 shows a
partial level scheme for 40Ca, where only positive parity
states are reported. An article reporting the complete level
scheme is forthcoming [15]. The cascades ending at the
levels of 5213 (01

3 ) , 3352 (01
2 ) , 8103 (81), and 6030

(31) keV are labeled as bands 1, 2, 3, and 4, respectively.
Attention is focused on band 1 with g-ray transitions be-
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FIG. 1. Partial level scheme of 40Ca; the energy labels are
given in keV, and the widths of the arrows are proportional to
the relative intensities of the g rays. Only the levels below the
dashed line were known prior to this work.

tween 914 and 3563 keV. These are highlighted in Fig. 2.
Transitions above the 9856 keV level of the band are in co-
incidence with the previously known transitions of 3905,
1375, and 1653 keV and appear as strong peaks in the
spectrum.

Since band 1 is connected to the previously reported fast
E2 41 ! 21 transition of 914 keV [B!E2" ! 100 W.u.,
Qt ! 1.69eb] [7], and linked to the ground state by the
5630 keV transition, it is assigned to be built on the 01

3
level. In addition, the newly observed one- and two-step
links (!) to members of band 2 ensure the placement of
the individual transitions !"" in band 1.

Spins of the observed excited levels are assigned on the
basis of angular distributions. The multipolarities of the
in-band transitions of band 1 and band 2 are found to be
consistent with a stretched quadrupole character. The re-
maining transitions also have a quadrupole character, ex-
cept for the 2120, 2004, and 2037 keV transitions from the
7399, 8937 (band 4), and 15 154 keV (band 3) levels, re-
spectively, which are dipole in nature. Assuming that the
quadrupole transitions correspond to an E2 multipolarity,
the parity of the excited states is assigned as positive. All
states for each spin in band 1 lie at higher excitation than
those in band 2 (i.e., band 1 is not “yrast”).

In order to determine the deformation of the bands 1
and 2 in 40Ca, the residual Doppler shifts [16] of the g-ray
energies were measured. The procedure is described in
Ref. [17]. The average recoil velocity #b$ is expressed as
a fraction of the initial recoil velocity to obtain F!t" %
#b$&b0. In Fig. 3, the fractional Doppler shifts F!t" are
plotted as a function of the g-ray energies. The experi-
mental F!t" values are compared with the calculated val-
ues based on the known stopping powers from SRIM-2000
[18]. In this calculation the side feeding into each state is

FIG. 2. A g-ray spectrum obtained by summing coincidence
gates set on all members of band 1 !"" starting from the 21

up to the 161 state, except for the 1432 keV transition. The !
symbols indicate the transitions decaying from the band. The
peaks marked by } are background peaks due to accidental
doublets or identified single-escape peaks.

222501-2 222501-2

E. Ideguchi et al., PRL87(2001)222501 ℏω0 = 41 × A−1/3 ≃ 12 (MeV)
E(0+

2 ) ∼ E(2p2h) ≃ 2ℏω0 ≃ 24 (MeV)
E(0+

SD) ∼ E(mpmh) ≃ mℏω0

E(8p8h) ∼ 40 (MeV)w/spin-orbit int.
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E. Ideguchi et al. / Physics Letters B 686 (2010) 18–22 19

formed magic numbers occur at similar particle numbers, which
results in shape coexistence. However, the existence of a superde-
formed shell structure in neutron-rich nuclei has not yet been
experimentally confirmed.

In order to access the currently reachable neutron-richest su-
perdeformed states with asymmetric superdeformed magic num-
bers, especially the nucleus with N = 22 corresponding to 34Mg,
we employed a proton-emission channel (2p2n) in the fusion–
evaporation reaction using the neutron-richest beam and target
combination of stable isotopes obtained so far. We successfully
populated the high-spin states of the superdeformed double magic
Z = 18 and N = 22 nucleus, 40Ar. In this Letter, we report experi-
mental results on the superdeformed states in 40Ar associated with
mp–mh excitations between the sd and fp shells.

High-spin states in 40Ar have previously been studied by
proton–γ coincidence measurements using the 37Cl(α, pγ ) reac-
tion [18]. High-spin levels below 6.8 MeV were identified up to
(8+) and spin–parity assignments up to the 6+ state were ob-
tained from the particle–γ angular correlations. The parity of the
5− state at 4.494 MeV was determined by the linear polarization of
the 5− → 4+ transition at 1602 keV. The lifetimes of low-lying lev-
els were measured by the Doppler-shift attenuation method. The
high E2 strengths of the 6+

2 → 4+
2 and 4+

2 → 2+
2 transitions are

deduced to be respectively 67+38
−19 and 46+15

−10 in Weisskopf units,
which indicates the large collectivity of the band. However, the
(8+) assignment was based solely on the similarity of the level
structure to that in 42Ca. The γ –γ coincidence relations of the
in-band transitions were not examined and the presence of the
band structure was not unambiguously identified by experiment.
Therefore, it is essential to find the higher-spin members of the
rotational band and to confirm the coincidence relations between
the in-band γ transitions.

High-spin states in 40Ar were populated via the 26Mg(18O,
2p2n)40Ar reaction with a 70-MeV 18O beam provided by the
tandem accelerator facility at the Japan Atomic Energy Agency.
Two stacked self-supporting foils of 26Mg enriched isotopes with
thicknesses of 0.47 and 0.43 mg/cm2 were used. The mean beam
energy of the 18O beam used to irradiate the 26Mg foils was
69.0 MeV. Gamma rays were measured by the GEMINI-II array [19]
consisting of 16 HPGe detectors with BGO Compton suppression
shields, in coincidence with charged particles detected by the Si-
Ball [20], a 4 π array consisting of 11 $E Si detectors that were
170 µm thick. The most forward Si detector was segmented into
five sections and the other detectors were segmented into two sec-
tions each, giving a total of 25 channels that were used to enhance
the selectivity of multi charged-particle events. With a trigger con-
dition of more than two Compton-suppressed Ge detectors firing
in coincidence with charged particles, a total number of 6.6 × 108

events were collected.
Based on the number of hits in the charged particle detectors,

events were sorted into three types of Eγ –Eγ coincidence matrices
for each evaporation channel. A symmetrized matrix was created
and the RADWARE program ESCL8R [21] was used to examine the
coincidence relations of γ rays. By gating on the previously re-
ported γ rays, high-spin states in 40Ar were investigated.

By gating on the known 1461, 1432, and 571 keV peaks of the
2+ → 0+ , 4+ → 2+ , and 6+ → 4+ transitions, several new lev-
els were identified above the 5− states at 4.49 MeV by connecting
with high-energy γ transitions of ! 2.5 MeV. The previously as-
signed deformed band members of 2+

2 , 4+
2 , and 6+

2 states were
confirmed at 2.522, 3.515, and 4.960 MeV, respectively. In addition,
two γ -ray cascade transitions of 2269 and 2699 keV were identi-
fied in coincidence with the 993, 1445, and 1841 keV transitions,
which form a rotational band up to the (12+) state at 11.769 MeV

Fig. 1. Gamma-ray energy spectrum created by gating on in-band transition of the
superdeformed band in 40Ar.

Fig. 2. Partial level scheme of 40Ar constructed in the present study. The width of
the arrow of each transition is proportional to its intensity.

(see Fig 1). Linking γ transitions were also observed between the
excited 2+

2 , 4+
2 , and 6+

2 states and the low-lying 2+
1 and 4+

1 lev-
els, which establishes the excitation energies and the spin–parity
assignment of the band (see Fig 2).

Spins of the observed levels are assigned on the basis of the
DCO (Directional Correlations from Oriented states) ratios of γ rays
by analyzing an asymmetric angular correlation matrix. The mul-
tipolarities of the in-band transitions of the band and the linking
transitions of 4+

2 → 2+
1 and 6+

2 → 4+
1 are consistent with stretched

quadrupole character. Assuming E2 multipolarity for the stretched
quadrupole transition, the parity of the band was assigned to be
positive. The multipolarity of the 2699 keV transition could not be
determined due to the lack of statistics, but it was in coincidence
with other γ transitions in the band and assigned as E2.
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shown in Fig. 1(a), and a partial decay scheme for 36Ar is
presented in Fig. 2. Transitions denoted by diamonds in
Fig. 1(a) firmly link the band to known low-spin states. For
example, Fig. 1(b) shows a spectrum of the band obtained
with a single gate set on the 4950-keV linking transition.
The spin and parity assignments in Fig. 2 are based on an-
gular distribution measurements which establish stretched-
E2 character for all of the in-band and high-energy linking
transitions. Two examples are shown in Figs. 1(c) and
1(d). Legendre polynomial fits to these data (solid curves)
yield (a2, a4) coefficients of (0.31 6 0.02, 20.09 6 0.03)
and (0.31 6 0.02, 20.08 6 0.02) for the 3352 and 4166-
keV g rays and establish the 61 and 41 states of the
band. The 4951 keV 21 state was known from earlier
35Cl! p, g"36Ar studies [16]. These studies also identified
a !01" state at 4329 keV which, based on the regular
rotational spacing, is presumed to be the SD bandhead.
The g-ray branchings from the 41 and 61 states of the
band yield in-band to decay-out B!E2" ratios of 148 6 6
and 86 6 4, consistent with strongly enhanced in-band
transitions. Assuming a similar ratio of B!E2"’s for the
21 state, a 622-keV 21 ! 01 in-band transition would
be expected to carry #0.3% of the decay intensity. The
present experiment yields an upper limit of 1.0% for this
unobserved branch.
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FIG. 1. Gamma-ray spectra obtained by (a) summing coinci-
dence gates set on all transitions in the 36Ar superdeformed band
(circles), and (b) setting a single gate on the 4950-keV transition.
Diamonds in (a) indicate linking transitions. Angular distribu-
tions measured relative to the beam axis are shown for the (c)
3352-keV and (d) 4166-keV transitions.
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FIG. 2. Partial decay scheme for 36Ar showing the superde-
formed band ( left). Transition and level energies are given to
the nearest keV and arrow widths are proportional to transition
intensities. The inset compares the experimental and shell model
“backbending” plots for the SD band in 36Ar, as well as experi-
mental values for the ground band of 48Cr [2–4].

The near-perfect rotational behavior of the 36Ar band
up to I ! 10h̄ is illustrated by the linear increase in an-
gular momentum with rotational frequency (g-ray energy)
shown in the inset in Fig. 2. The data for the ground band
of 48Cr [2–4], with low-spin deformation ´2 $ 0.25, are
also shown for comparison. We note that (i) up to the
backbend, the rotational behavior in the 36Ar band is even
better than that of 48Cr, and (ii) despite the considerable
change of mass, the low-spin moments of inertia are com-
parable, implying a larger deformation and/or quenching of
pairing correlations for the 36Ar band. The maximum spin
available in the !s1%2d3%2"4! pf"4 configuration in 36Ar is
Ip ! 161, and the high-energy g ray from the 161 state
suggests a band termination similar to that at I ! 161 in
the ! f7%2"8 configuration of 48Cr [7].

A highly deformed band in 36Ar, in which four pf-shell
orbitals are occupied, can readily be inferred from the gap
in the energy levels of the Nilsson diagram at deformation
´2 # 0.4 for particle number N , Z ! 18. This configu-
ration is obtained from the harmonic oscillator SD shell
gap at N , Z ! 16, ´2 ! 0.6 [17] by adding two protons
and two neutrons to the upsloping &202'5%2 Nilsson or-
bital, in a manner analogous to SD shell gaps in heavier
nuclei obtained by adding particles to flat or upsloping or-
bitals above the harmonic oscillator gaps. In this sense,
we refer to the 36Ar band as superdeformed. To formalize
these ideas, we have performed configuration-dependent
[18] cranked Nilsson-Strutinsky (CNS) calculations for
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from the states at 7458, 9503, and 11 835 keV, but the sug-
gestion is that they are a third set of 8!, 10!, and 12! states.
There is no experimental evidence to link these states with
the other rotational-like band observed by Simpson et al. !2"
with energies #spins$ of 2886 keV (2!), 3415 keV (3!), and
3980 keV (4!), which were not observed in this work.
The band built upon the 3" state at 3174 keV was ob-

served in the present work and has been extended to J%

#13". The 884-, 1602-, 1736-, 2314-, and 1827-keV transi-
tions are seen to be in coincidence and all display stretched-
quadrupole characteristics. It is believed that they are one-
half of a signature-split structure, with E2 transitions of
1506, 1771, 1935, and 1600 keV forming the other half. This
type of signature-split intruder band is a common feature of
nuclei in the lower half of the f 7/2 shell #e.g., 46V !12"$.

IV. DISCUSSION

The new level scheme of Fig. 2 is compared with three
sets of calculations in different model spaces, carried out
with the shell-model code OXBASH. Figure 3#a$ represents
results !13" using a f 7/2 only space. The second set of results
in Fig. 3#b$ are an extension into a full-f p model space using

the FPD6 two-body interaction of Richter et al. !14".
In Fig. 3#a$ the predicted energies for the nonyrast 0!,

2!, and 4! states are much too high; increasing the valence
space to include the full f p shell !Fig. 3#b$" results in a
moderate improvement in the energies. Also the nonyrast
states are calculated to decay primarily to the yrast band,
which does not agree with the band structure observed in the
experiment. Due to the lack of success in reproducing the
excited bands using the above model spaces, we have also
performed calculations in a d f valence space. Figure 4
shows level schemes developed from the results of a shell
model calculation in a d f model space using the two-body
interaction of Hsieh et al. !15". A small adjustment was
made to the d f Hamiltonian by lowering the d3/2– f 7/2 gap by
0.5 MeV and multiplying the Hamiltonian matrix elements
by 0.9. Figure 4#a$ indicates the relative magnitude of the
B(E2)s between states. In Fig. 4#b$ information on the en-
ergy of the gamma rays is included such that the arrow
widths represent the fraction of the total (E2) decay prob-
ability of a particular transition from each state. This results
in a predicted level scheme that has high similarity to the
experimental scheme of Fig. 2; note in particular the repro-
duction of feeding patterns in and around the excited 02

!

band and the strong decay out of the band at 62
! to the

ground-state band.
The d f wave functions for 44Ti can be expanded in terms

of the partitions (d3/2)(8"k"p)( f 7/2)(nv!k!p), where nv#4,
p#0 for positive parity and p#1 for negative parity. When
the Hamiltonian is restricted to its spherical single-particle
part, the positive-parity ground-state band and the lowest
negative-parity band are purely k#0. The two-body interac-
tion connects partitions which differ in k value by two units
and the resulting states are mixtures of the k partitions. The
mixed d f wave functions for 44Ti are shown in Table I #the
k&6 components are small for all of these$. One finds that
the lowest states of each spin are indeed dominated by k
#0 (4p"0h relative to 40Ca), except for the (14!) state
whose k#0 configuration is not allowed. The mixing with
the k#2 values is large and uniform for all of these states.
This type of mixing within the d f space has been discussed
previously for 40Ca !15,16" and 39Ca !17". The collectivity
of the positive-parity ground-state band is better described
by the full ( f p)4 configurations, and one might regard the
higher k admixtures as part of what influences the effective
Hamiltonian in the f p model space.
For the nonyrast states we have to take into account ex-

plicitly the excitations out of the sd shell. The d f model
space gives a ‘‘skeleton’’ picture of what these wave func-
tions are like, but the complete model must eventually also
take into account the full sd and f p shells. The nonyrast
positive-parity states are dominated by the k#4 (8p"4h)
configuration for low-spin and then change over to a k
#2 (6p–2h) dominance at high spin.
We note that the one-body electromagnetic operator can

only connect components of the wave functions with the
same k value. The second 6! state has an unusually large
k#0 component related to the mixing with the relatively
low-lying second ( f 7/2)4 6! state !13", and this mixing is

FIG. 2. Energy level scheme deduced from this experiment for
44Ti. The levels are labeled with the assigned spin and parity as
well as the excitation energy in keV, with widths of arrows propor-
tional to relative gamma-ray intensity. Bracketed spin assignments
are tentative. The states at 1905, 2531, 2886, 3415, and 3980 keV,
observed by Simpson et al. !2", have not been observed in this work
and are shown here as an aid.

NONYRAST HIGH-SPIN STATES IN N#Z 44Ti PHYSICAL REVIEW C 61 064314

064314-3

E. Ideguchi et al., PLB686(2010)18C. D. O’Leary et al., PRC61(2000)064314C. E. Svenson et al., 
PRL85(2000)2693
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discrimination on the signals from the CsI(Tl) scintilla-
tors. With a trigger condition of three or more Compton-
suppressed Ge detectors firing in coincidence, a total of
1.2 3 109 events were collected. From the number of
hits in the charged particle detectors, events were sorted
into an Eg 2 Eg coincidence matrix for each evaporation
channel. However, the channel selection is limited by
the efficiency of the MICROBALL and by the occasional
misidentification of charged particle signals. The 2a gated
g 2 g matrix, therefore, contains contaminations from the
2a1p !39K" and 2a2p !38Ar" channels. Their contribu-
tions were subtracted to obtain a clean data set for 40Ca.

Some of the high-spin structures in 40Ca have previously
been studied [13,14]up to spin 81 at 8.1 MeV. An inter-
esting feature of the previous level schemes is the presence
of second 01

2 and third 01
3 states, which are indications of

shape coexistence [7]. In our work, the level scheme was
extended up to spin 161 at 22.1 MeV. Figure 1 shows a
partial level scheme for 40Ca, where only positive parity
states are reported. An article reporting the complete level
scheme is forthcoming [15]. The cascades ending at the
levels of 5213 (01

3 ) , 3352 (01
2 ) , 8103 (81), and 6030

(31) keV are labeled as bands 1, 2, 3, and 4, respectively.
Attention is focused on band 1 with g-ray transitions be-
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FIG. 1. Partial level scheme of 40Ca; the energy labels are
given in keV, and the widths of the arrows are proportional to
the relative intensities of the g rays. Only the levels below the
dashed line were known prior to this work.

tween 914 and 3563 keV. These are highlighted in Fig. 2.
Transitions above the 9856 keV level of the band are in co-
incidence with the previously known transitions of 3905,
1375, and 1653 keV and appear as strong peaks in the
spectrum.

Since band 1 is connected to the previously reported fast
E2 41 ! 21 transition of 914 keV [B!E2" ! 100 W.u.,
Qt ! 1.69eb] [7], and linked to the ground state by the
5630 keV transition, it is assigned to be built on the 01

3
level. In addition, the newly observed one- and two-step
links (!) to members of band 2 ensure the placement of
the individual transitions !"" in band 1.

Spins of the observed excited levels are assigned on the
basis of angular distributions. The multipolarities of the
in-band transitions of band 1 and band 2 are found to be
consistent with a stretched quadrupole character. The re-
maining transitions also have a quadrupole character, ex-
cept for the 2120, 2004, and 2037 keV transitions from the
7399, 8937 (band 4), and 15 154 keV (band 3) levels, re-
spectively, which are dipole in nature. Assuming that the
quadrupole transitions correspond to an E2 multipolarity,
the parity of the excited states is assigned as positive. All
states for each spin in band 1 lie at higher excitation than
those in band 2 (i.e., band 1 is not “yrast”).

In order to determine the deformation of the bands 1
and 2 in 40Ca, the residual Doppler shifts [16] of the g-ray
energies were measured. The procedure is described in
Ref. [17]. The average recoil velocity #b$ is expressed as
a fraction of the initial recoil velocity to obtain F!t" %
#b$&b0. In Fig. 3, the fractional Doppler shifts F!t" are
plotted as a function of the g-ray energies. The experi-
mental F!t" values are compared with the calculated val-
ues based on the known stopping powers from SRIM-2000
[18]. In this calculation the side feeding into each state is

FIG. 2. A g-ray spectrum obtained by summing coincidence
gates set on all members of band 1 !"" starting from the 21

up to the 161 state, except for the 1432 keV transition. The !
symbols indicate the transitions decaying from the band. The
peaks marked by } are background peaks due to accidental
doublets or identified single-escape peaks.
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This paper deals with the ground state of an interacting electron gas in an external potential v(r). It is
proved that there exists a universal functional of the density, Ft I(r) g, independent of v(r), such that the ex-
pression E—=fs(r)n (r)dr+Ft I(r)j has as its minimum value the correct ground-state energy associated with
s(r). The functional FLn(r)j is then discussed for two situations: (1) n(r) @san(r), 8/ao((1, and
(2) a(r) = q (r/ra) with p arbitrary and 1'p ~~.In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.

INTRODUCTION
' '
&~IJRING the last decade there has been considerable

progress in understanding the properties of a
homogeneous interacting electron gas. ' The point of
view has been, in general, to regard the electrons as
similar to a collection of noninteracting particles
with the important additional concept of collective
excitations.
On the other hand, there has been in existence since

the 7920's a different approach, represented by the
Thomas-Fermi method' and its re6nements, in which
the electronic density n(r) plays a central role and in
which the system of electrons is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems like atoms and impurities in nietals.
Lately there have been also some important advances

along this second line of approach, such as the work of
Kompaneets and Pavlovskii, ' Kirzhnits, ' Lewis, ' Baraff
and Borowitz, ' Bara6, ' and DuBois and Kivelson. ' The
present paper represents a contribution in the same area.
In Part I, we develop an exact formal variational

principle for the ground-state energy, in which the den-
sity tz(r) is the variable function. Into this principle
enters a universal functional PLtr(r)), which applies to
all electronic systems in their ground state no matter
what the external potential is. The main objective of
*Supported in part by the U. S. Once of Naval Research.
f NATO Post Doctoral Fellow.
f Guggenheim Fellow.' For a review see, for example, D. Pines, Elementary E'.'xci tati ons

in Solids (W. A. Benjamin Inc. , New York, 1963).' For a review of work up to 1956, see N. H. March, Advan.
Phys. 6, 1 (1957).

A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksperim. i.
Teor. Fiz. 51, 427 (1956) [English transl. : Soviet Phys.—JETP
4, 328 (1957)j.
D. A. Kirzhnits, Zh. Eksperim. i. Teor. Fiz. 32, 115 (1957)

I English transl. : Soviet Phys.—JETP 5, 64 (1957)j.' H. W. Lewis, Phys. Rev. 111, 1554 (1958).' G. A. 13araff and S. Borowitz, Phys. Rev. 121, 1704 (1961).
7 G. A. BaraG, Phys. Rev. 123, 2087 (1961).'D. F. Du Bois and M. G. Kivelson, Phys. Rev. 127, 1182

(1962).

theoretical considerations is a description of this
functional. Once known, it is relatively easy to deter-
mine the ground-state energy in a given external
potential.
In Part II, we obtain an expression for FLnj when tr

deviates only slightly from uniformity, i.e., n(r)=1'cp
+ts(r), with ts/tss —& 0; In this case FLej is entirely
expressible in terms of the exact ground-state energy
and the exact electronic polarizability n(g) of a uniform
electron gas. This procedure will describe correctly
the long-range Friedel charge oscillations' set up by
a localized perturbation. All previous refinements of the
Thomas-Fermi method have failed to include these.
In Part III we consider the case of a slowly varying,

but +of necessarily almost constant density, tr (r)= p(r/rs), rs —&oo. For this case we derive an expansion
of F)trj in successive orders of rs ' or, equivalently of
the gradient operator V acting on e(r). The expansion
coeKcients are again expressible in terms of the exact
ground-state energy and the exact linear, quadratic,
etc. , electric response functions of a uniform electron
gas to an external potential w(r). In this way we recover,
quite simply, all previously developed refinements of
the Thomas-Fermi method and are able to carry them
somewhat further. Comparison of this case with the
nearly uniform one, discussed in Part II, ,also reveals
why the gradient expansion is intrinsically incapable
of properly describing the Friedel oscillations or the
radial oscillations of the electronic density in an atom
which reQect the electronic shell structure. A partial
summation of the gradient expansion can be carried
out (Sec. III.4), but its usefulness has not yet been
tested.

I. EXACT GENERAL FORMULATION

I. The Density as Basic Variable
Ke shall be considering a collection of an arbitrary

number of electrons, enclosed in a large box and moving

' J. Friedel, Phil. Nag. 45, 155 (1952).

1998

W. Kohn

Hohenberg–Kohn theorem(1964)
The exact ground-state energy of a many-body system can be obtained by variationally minimizing an 
energy density functional (EDF). Moreover, there exists such a functional (existence theorem).
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In quantum mechanics,

energy functional (functional of WF)

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ(r) = ⟨Ψ|ψ†(r)ψ(r)|Ψ⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

O00 = O00[ρ0]

Oα0 = Oα0[δρα]

O(x, x′) = r2δ(r − r′)δσ,σ′δτ,τ ′

rλYλ

r2
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dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

1

ρ(r)

ρ0(r) !→ vext(r)

vext(r) !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

O00 = O00[ρ0]

Oα0 = Oα0[δρα]

1

ρ(r)

ρ0(r) !→ vext(r)

vext(r) !→ |Ψ0⟩ !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

1

A B

variation of 



1. inverse mapping：　　　　　　　　            

2. density variation principle

ρ(r)

ρ0(r) !→ |Ψ0⟩ !→ vext(r)

vext(r) !→ |Ψ0⟩ !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

1

Hohenberg–Kohn theorem (1964)

1.The ground state is not degenerate. 
2.For any given density, there exists at least one external potential for which that density is 

the ground-state density: v-representability

The theorem was generalized to the degenerate system  (W. Kohn, 1985).

A counterexample to Assumption 2 has been found.

In DFT,

under the assumptions



contradict the assumption that                                     is different  by more than a constant

At all points where the wave function                                               does not vanish,

Suppose that external potentials 　　　　　　　　differing by more than a constant 
give rise to an identical wave function　　　.

mapping　　　　　　　　　　　　is one-to-one corresponding.

ρ(r)

ρ0(r) !→ |Ψ0⟩ !→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) !→ |Ψ0⟩ !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

1

Theorem I:

①：

ρ(r)

ρ0(r) !→ |Ψ0⟩ !→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) !→ |Ψ0⟩ !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

1

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) !→ |Ψ0⟩ !→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) !→ |Ψ0⟩ !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

1

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) !→ |Ψ0⟩ !→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) !→ |Ψ0⟩ !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

1

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) #→ |Ψ0⟩ #→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) #→ |Ψ0⟩ #→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

1

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) #→ |Ψ0⟩ #→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) #→ |Ψ0⟩ #→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

1

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

O00 = O00[ρ0]

Oα0 = Oα0[δρα]

O(x, x′) = r2δ(r − r′)δσ,σ′δτ,τ ′

rλYλ

r2

Ô =

∫
dxdx′O(x, x′)ψ̂†(x)ψ̂(x′)

Oαβ = ⟨Ψα|Ô|Ψβ⟩

⟨r1σ1, · · · , rNσN |Ψ0⟩ = Ψ0(r1σ1, · · · , rNσN)

⟨r1σ1, · · · , rZσZ , · · · , rNσN |Ψα⟩

H|Ψα⟩ = Eα|Ψα⟩

H = −
!2

2m

∑

i

∇2
i +

1

2

∑

i,j

v(i, j) + · · ·

2

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) #→ |Ψ0⟩ #→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) #→ |Ψ0⟩ #→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

1

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

O00 = O00[ρ0]

Oα0 = Oα0[δρα]

O(x, x′) = r2δ(r − r′)δσ,σ′δτ,τ ′

rλYλ

r2

Ô =

∫
dxdx′O(x, x′)ψ̂†(x)ψ̂(x′)

Oαβ = ⟨Ψα|Ô|Ψβ⟩

⟨r1σ1, · · · , rNσN |Ψ0⟩ = Ψ0(r1σ1, · · · , rNσN)

⟨r1σ1, · · · , rZσZ , · · · , rNσN |Ψα⟩

H|Ψα⟩ = Eα|Ψα⟩

H = −
!2

2m

∑

i

∇2
i +

1

2

∑

i,j

v(i, j) + · · ·

2

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) !→ |Ψ0⟩ !→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) !→ |Ψ0⟩ !→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

1

• By Assumption 2 , the mapping is surjective.

• Injectivity is proved by contradiction: 

dividing both sides by

constant



Suppose that two wave functions,                              differing by more than a global phase, 
give rise to the same density distribution                 .

②：

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) %→ |Ψ0⟩ %→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) %→ |Ψ0⟩ %→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

1

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) %→ |Ψ0⟩ %→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) %→ |Ψ0⟩ %→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

1

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) &→ |Ψ0⟩ &→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) &→ |Ψ0⟩ &→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

1

 variational principle:

E[Ψ] ≥ E0 = E[Ψ0]

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] = ⟨Ψ|H|Ψ⟩

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ0(r) = ⟨Ψ0|ψ†(r)ψ(r)|Ψ0⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

O00 = O00[ρ0]

Oα0 = Oα0[δρα]

O(x, x′) = r2δ(r − r′)δσ,σ′δτ,τ ′

rλYλ

r2

Ô =

∫
dxdx′O(x, x′)ψ̂†(x)ψ̂(x′)

Oαβ = ⟨Ψα|Ô|Ψβ⟩

2

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) &→ |Ψ0⟩ &→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) &→ |Ψ0⟩ &→ ρ0(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

1

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) &→ |Ψ0⟩ &→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

vext(r) &→ |Ψ0⟩ &→ ρ0(r)

1

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) &→ |Ψ0⟩ &→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r)

1

contradiction with the assumption

similarly,

Adding both sides yields



Hohenberg–Kohn (Theorem I)

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) &→ |Ψ0⟩ &→ vext(r)

vext(r) ⇐⇒ |Ψ0⟩ ⇐⇒ ρ0(r) = ⟨Ψ0|ρ̂(r)|Ψ0⟩

1

unique except the constant (global phase)

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

ρ0(r) &→ |Ψ0⟩ &→ vext(r)

1

ground-state wf is a functional of density

|Ψ0⟩ = |Ψ[ρ0]⟩

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

ρ(r)

1

O[ρ] ≡ ⟨Ψ[ρ]|Ô|Ψ[ρ]⟩

|Ψ0⟩ = |Ψ[ρ0]⟩

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

H|Ψ0⟩ = [T + Vext + W ]|Ψ0⟩ = E0|Ψ0⟩
H ′|Ψ0⟩ = [T + V ′

ext + W ]|Ψ0⟩ = E′
0|Ψ0⟩

vext(r), v
′
ext(r)

1

ground-state expectation values a functional of density

E[ρ] ≡ ⟨Ψ[ρ]|Ĥ|Ψ[ρ]⟩ = F [ρ] +

∫
drρ(r)vext(r)

F [ρ] ≡ ⟨Ψ[ρ]|T̂ + Ŵ |Ψ[ρ]⟩

O[ρ] ≡ ⟨Ψ[ρ]|Ô|Ψ[ρ]⟩

|Ψ0⟩ = |Ψ[ρ0]⟩

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

[Vext − V ′
ext]|Ψ0⟩ = [E0 − E′

0]|Ψ0⟩

1

Density variational principle (Theorem II)
E[ρ0] < E[ρ′0] ⇐⇒ E0 = min

ρ(r)
E[ρ]

ρ0(r) ̸= ρ′0(r)

E[ρ] ≡ ⟨Ψ[ρ]|Ĥ|Ψ[ρ]⟩ = F [ρ] +

∫
drρ(r)vext(r)

F [ρ] ≡ ⟨Ψ[ρ]|T̂ + Ŵ |Ψ[ρ]⟩

O[ρ] ≡ ⟨Ψ[ρ]|Ô|Ψ[ρ]⟩

|Ψ0⟩ = |Ψ[ρ0]⟩

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

1

E[ρ0] < E[ρ′0] ⇐⇒ E0 = min
ρ(r)

E[ρ]

ρ0(r) ̸= ρ′0(r)

E[ρ] ≡ ⟨Ψ[ρ]|Ĥ|Ψ[ρ]⟩ = F [ρ] +

∫
drρ(r)vext(r)

F [ρ] ≡ ⟨Ψ[ρ]|T̂ + Ŵ |Ψ[ρ]⟩

O[ρ] ≡ ⟨Ψ[ρ]|Ô|Ψ[ρ]⟩

|Ψ0⟩ = |Ψ[ρ0]⟩

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

|Ψ0⟩, |Ψ′
0⟩

{Ψi, i = 1, · · · , q (q ≥ 2)}

ρ(r) =
q∑

i

Ciρi(r), 0 ≤ Ci ≤ 1

ri

N∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E′

0

1

universal energy density functional (EDF)



variational principle：

{|Ψ⟩}

E0 = min
{|Ψ⟩}

[⟨Ψ|H|Ψ⟩]

q∑

i,j=1

(ciδij − d∗
idj)⟨Ψi|ρ̂(r)|Ψj⟩ = 0

ρ0(r) =
q∑

i,j=1

d∗
idj⟨Ψi|ρ̂(r)|Ψj⟩

|Ψ0⟩ =
q∑

i=1

di|Ψi⟩,
q∑

i=1

|di|2 = 1

E[ρ0] < E[ρ′0] ⇐⇒ E0 = min
ρ(r)

E[ρ]

ρ0(r) ̸= ρ′0(r)

E[ρ] ≡ ⟨Ψ[ρ]|Ĥ|Ψ[ρ]⟩ = F [ρ] +

∫
drρ(r)vext(r)

F [ρ] ≡ ⟨Ψ[ρ]|T̂ + Ŵ |Ψ[ρ]⟩

O[ρ] ≡ ⟨Ψ[ρ]|Ô|Ψ[ρ]⟩

|Ψ0⟩ = |Ψ[ρ0]⟩

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
0|H ′ + H − H ′|Ψ′

0⟩
= E′

0 + ⟨Ψ′
0|Vext − V ′

ext|Ψ′
0⟩

= E′
0 +

∫
drρ0(r)[vext(r) − v′

ext(r)]

E0 = ⟨Ψ0|H|Ψ0⟩ < ⟨Ψ′
0|H|Ψ′

0⟩

1

{ρ(r)}

{|Ψ⟩}

E0 = min
{|Ψ⟩}

[⟨Ψ|H|Ψ⟩]

q∑

i,j=1

(ciδij − d∗
idj)⟨Ψi|ρ̂(r)|Ψj⟩ = 0

ρ0(r) =
q∑

i,j=1

d∗
idj⟨Ψi|ρ̂(r)|Ψj⟩

|Ψ0⟩ =
q∑

i=1

di|Ψi⟩,
q∑

i=1

|di|2 = 1

E[ρ0] < E[ρ′0] ⇐⇒ E0 = min
ρ(r)

E[ρ]

ρ0(r) ̸= ρ′0(r)

E[ρ] ≡ ⟨Ψ[ρ]|Ĥ|Ψ[ρ]⟩ = F [ρ] +

∫
drρ(r)vext(r)

F [ρ] ≡ ⟨Ψ[ρ]|T̂ + Ŵ |Ψ[ρ]⟩

O[ρ] ≡ ⟨Ψ[ρ]|Ô|Ψ[ρ]⟩

|Ψ0⟩ = |Ψ[ρ0]⟩

|Ψ[ρ]⟩

E0 + E′
0 < E0 + E′

0

E′
0 < ⟨Ψ0|H + H ′ − H|Ψ0⟩
= E0 + ⟨Ψ0|V ′

ext − Vext|Ψ0⟩

= E0 +

∫
drρ0(r)[v

′
ext(r) − vext(r)]

E0 < ⟨Ψ′
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❌

M. Levy, PRA26(1982)1200
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Levy-Lieb EDF

T. L. Gilbert, PRB12(1975)2111
J. E. Harriman, PRA24(1981)680

as a solution to the issue of v-rep.Constrained search formulation
For any given density, there exists at least one wave function giving that density: 
N-representability

set of many-body wave functions



ρ( ⃗r) ≥ 0, ∫ d ⃗rρ( ⃗r) = N, ∫ d ⃗r ∇ ρ( ⃗r)
2

< ∞

non-negativity normalization (particle number) continuous (finite kinetic energy)

v- and N-repsentabilities

condition for the v-rep.

not yet proven mathematically for a general case

condition for the N-rep.



ϕk(x) = σ(x) exp[2πikq(x)]

x1 ≤ x ≤ x2 σ(x) = ρ(x)/N, q(x) = ∫
x

x1

dx′￼σ(x′￼)

k = 0, ± 1, ± 2,⋯

∫
x2

x1

dxϕk(x)ϕk′￼
(x) = δkk′￼

|ϕk(x) |2 = σ(x)

Harriman’s construction

one-dimensional without spin d.o.f for simplicity

density is non-zero in

single-particle orbitals

orbital density

orthonormal

we can construct a many-body wf by the Slater determinant of ϕk
giving any density
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Self-Consistent Equations Including Exchange and Correlation Effects*
W. KOHN AND L. J. SHAM
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(Received 21 June 1965l

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of -';.) Electronic systems at finite temperatures and in
magnetic lelds are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.

I. INTRODUCTION
'N recent years a great deal of attention has been
- - given to the problem of a homogeneous gas of inter-
acting electrons and its properties have been established
with a considerable degree of confidence over a wide
range of densities. Of course, such a homogeneous gas
represents only a mathematical model, since in all real
systeins (atoms, inolecules, solids, etc.) the electronic
density is nonuniform.
It is then a matter of interest to see how properties

of the homogeneous gas can be utilized in theoretical
studies of inhomogeneous systems. The well-known
methods of Thomas-Fermi' and the Slater' exchange
hole are in this spirit. In the present paper we use the
formalism of Hohenberg and Kohn' to carry this
approach further and we obtain a set of self-consistent
equations which include, in an approximate way, ex-
change and correlation effects. They' require only a
knowledge of the true chemical potential, tie(e), of a
homogeneous interacting electron gas as a function of
the density n.
We derive two alternative sets of equations

[Eqs. (2.8) and (2.22)) which are analogous, respec-
tively, to the conventional Hartree and Hartree-Fock.
equations, and, although they also include correlation
effects, they are no more difficult to solve.
The local effective potentials in these equations are

unique in a sense which is described in Sec. II. In par-
ticular, we And that the Slater exchange-hole potential,
besides its omission of correlation effects, is too large
by a factor of —,'.
Apart from work. on the correlation energy of the

homogeneous electron gas, most theoretical many-body
studies have been concerned with elementary excita-
tions and as a result there has been little recent progress
in the theory of cohesive energies, elastic constants,
etc., of real (i.e., inhomogeneous) metals and alloys.
The methods proposed here offer the hope of new
progress in this latter area.
~ Supported in part by the U. S. Ofhce of Naval Research.'L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);E. Fermi, Z. Physik 48, 73 (1928).' J. C. Slater, Phys. Rev. 81, 385 (1951).' P. Hohenberg and W. Kohn, Phys. Rev. 136, 3864 (1964l;

referred to hereafter as HK.

In Secs. III and IV, we describe the necessary Inodid-
cations to deal with the finite-temperature properties
and with the spin paramagnetism of an inhomogeneous
electron gas.
Of course, the simple methods which are here pro-

posed in general involve errors. These are of two general
origins4: a too rapid variation of density and, for 6nite
systems, boundary effects. Refinements aimed at re-
ducing the 6rst type of error are brieQy discussed in
Appendix II.

II. THE GROUND STATE

A. Local Effective Potential
It has been shown' that the ground-state energy of an

interacting inhomogeneous electron gas in a static po-
tential n(r) can be written in the form

1 e(r)e(r')
Z= tt(r)e(r) dr+— dr dr'+G[e),

r r'[—
i:,, (2.1)

where e(r) is the density and G[e) is a universal func-
tional of the density. This expression, furthermore, is a
minimum for the correct density function e(r). In this
section we propose first an approximation for G[e),
which leads to a scheme analogous to Hartree's method
but contains the major part of the effects of exchange
and correlation.
We first write

G[e)=T.[e)yZ, [e), (2.2)
where T,[e) is the kinetic energy of a system of non-
interacting electrons with density e(r) and F,[e) is,
by our definition, the exchange and. correlation energy
of an interacting system with density e(r). For an arbi-
trary e(r), of course, one can give no simple exact ex-
pression for E,[e). However, if e(r) is sufliciently
slowly varying, one can show' that

F,[e)= e(r)e, (e(r)) dr, (2.3)

4 W. Kohn and L. J. Sham, Phys. Rev. 137, A1697 (1965).
~ For such a system it follows from HK that the kinetic energy

is in fact a unique functional of the density.
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F [ρ] = Ts[ρ] + {F [ρ] − Ts[ρ]}
= Ts[ρ] + Veff [ρ]

Ts[ρ] =
N∑

i=1

⟨φi| −
!2

2m
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−

!2
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}
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]
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ρ0(r) =
q∑

i,j=1

d∗
idj⟨Ψi|ρ̂(r)|Ψj⟩

|Ψ0⟩ =
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δρ(r)
=
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δρ(r)
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ρ(r)

E[ρ]

ρ0(r) ̸= ρ′0(r)

1

density variational principle
Interacting system

exact ground-state density of the 
interacting systemvs[ρ](r) ≡ vext(r) +

δVeff [ρ]

δρ(r)
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Kohn–Sham eq.

”Reference system” (independent particle motion in a unknown potential)
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δVeff [ρ]

δρ(r)

vs[ρ](r) = −
δTs[ρ]

δρ(r)

δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+ vext(r) +

δVeff [ρ]

δρ(r)
= 0

F [ρ] = Ts[ρ] + {F [ρ] − Ts[ρ]}
= Ts[ρ] + Veff [ρ]

Ts[ρ] =
N∑

i=1

⟨φi| −
!2

2m
|φi⟩ =

N∑

i=1

ϵi −
∫

drvs[ρ](r)ρ(r)

ρ(r) = ⟨Ψ0|ρ̂(r)|Ψ0⟩ =
N∑

i=1

|φi(r)|2

ρ(r) = ⟨0|ρ̂(r)|0⟩ =
N∑

i=1

|φi(r)|2

{
−

!2

2m
∇2 + vs[ρ](r)

}
φi(r) = ϵi(r)

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vs[ρ](r)ψ(x)

=T + Vs[ρ]

E[ρ] ≡ min
{|Ψ⟩}ρ(r)

[⟨Ψ|H|Ψ⟩]

ρ(r) = ⟨Ψ|ψ†(r)ψ(r)|Ψ⟩

{ρ(r)}

{|Ψ⟩}

E0 = min
{|Ψ⟩}

[⟨Ψ|H|Ψ⟩] = min
{ρ(r)}

[
min

{|Ψ⟩}ρ(r)

[⟨Ψ|H|Ψ⟩]
]

q∑

i,j=1

(ciδij − d∗
idj)⟨Ψi|ρ̂(r)|Ψj⟩ = 0

1

Practical way of DFT calculation: Kohn–Sham method



What is different from the mean-field approximation

H = −
!2

2m

∫
dxψ†(x)∇2ψ(x) +

∫
dxψ†(x)vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)w(r, r′)ψ(x′)ψ(x)

=T + Vext + W

E[Ψ] ≥ E0

δE[Ψ] = 0

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩ = N

E[Ψ] =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

H =

∫
dxψ†(x)

(
−

∇2

2m

)
ψ(x) +

∫
dxψ†(x)Vext(r)ψ(x)

+
1

2

∫
dxdx′ψ†(x)ψ†(x′)

e2

|r − r′|
ψ(x′)ψ(x)

E0 = min
ρ(r)

E[ρ]

E[ρ] =
∫

drVext(r)ρ(r) + F [ρ]

ρ(r) = ⟨Ψ|ψ†(r)ψ(r)|Ψ⟩

ρ0(x, x
′) = ⟨Ψ0|ψ̂†(x′)ψ̂(x)|Ψ0⟩

δρα(x, x
′) = ⟨Ψα|ψ̂†(x′)ψ̂(x)|Ψ0⟩

O00 = O00[ρ0]

Oα0 = Oα0[δρα]

O(x, x′) = r2δ(r − r′)δσ,σ′δτ,τ ′

rλYλ

r2

1

two-body interaction

neglect of the fluctuation

∫ dxx1x2Γ(x1, x2) : ψ†(x1)ψ(x2) :

: ψ†ψ†ψψ :

some part of the interaction are only included in the mean field Γ



v(x1, x2) =

[
t0(1 + x0Pσ) +

t3

6
(1 + x3Pσ)ρ

α(r1)

]
δ(r1 − r2)

−
!2

2m
∇2φi(r) +

∫
dr [ΓH(r, r′) + ΓF(r, r

′)]φi(r
′) = ϵiφi(r)

{
−

!2

2m
∇2 +

δ

δρ
[F [ρ] − Ts[ρ]]

}
φi(r) = ϵiφi(r)

h(x1, x2) = −
!2

2m
∇2δ(x1 − x2) + ΓH(x1, x2) + ΓF(x1, x2)

ΓH(x, y) = δ(x − y)

∫
dx1v(x, x1)ρ(x1)

ΓF(x, y) = −v(x, y)ρ(y, x)

w(x1, y1;x2, y2) = v(x1, x2)δ(x1 − x2)δ(y1 − y2)

H = HMF + Vres

HMF =

∫
dx1dx2

[
t(x1, x2) +

∫
dy1dy2ρ(y2, y1){w(x1, y1;x2, y2) − w(x1, y1; y2, y1)}

]
ψ†(x1)ψ(x2)

=

∫
dx1dx2h(x1, x2)ψ

†(x1)ψ(x2)

ρ(x2, x1)

ψ†(x1)ψ(x2) = ⟨ψ†(x1)ψ(x2)⟩ + {ψ†(x1)ψ(x2) − ⟨ψ†(x1)ψ(x2)⟩}

H =

∫
dx1dx2ψ

†(x1)t(x1, x2)ψ(x2)

+
1

2

∫
dx1dx2dy1dy2ψ

†(x1)ψ
†(y1)w(x1, y1;x2, y2)ψ(y2)ψ(x2)

vs[ρ](r) ≡ vext(r) +
δVeff [ρ]

δρ(r)

vs[ρ](r) = −
δTs[ρ]

δρ(r)

δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+ vext(r) +

δVeff [ρ]

δρ(r)
= 0

1

An example

HF potential Γq =
t0(2 + x0)

2
ρ −

t0(1 + 2x0)
2

ρq +
t3(2 + x3)

12
ρα+1 −

t3(1 + 2x3)
12

ρqρα

Energy density functional F[ρ] = ⟨ϕ |v |ϕ⟩ = ∫ d ⃗rℋ[ρ]

ℋ =
t0(2 + x0)

4
ρ2 −

t0(1 + 2x0)
4

(ρ2
ν + ρ2

π) +
t3(2 + x3)

24
ρα+2 −

t3(1 + 2x3)
24

αρα(ρ2
ν + ρ2

π)

vs =
δF
δρ

=
t0(2 + x0)

2
ρ −

t0(1 + 2x0)
2

ρq +
t3(2 + x3)

24
(α + 2)ρα+1 −

t3(1 + 2x3)
24

[αρα−1(ρ2
ν + ρ2

π) + 2ραρq]

rearrangement

considered as many-body correlations beyond the HF approximation

KS potential

neglecting spin-dependent parts



Nuclear Energy-Density Functional (EDF)

E = E[ρ] + E[ρ, κ]

An EDF is derived from an (effective) interaction E[ρ] = ⟨Φ | ̂V |Φ⟩ = ∫ d ⃗rℋ[ρ]

: Slater determinant WF|Φ⟩but, E[ρ] ⇏ ̂V

In some calculation using the Skyrme-type EDF, 
different types of interaction are employed in the ph and pp channels 

Skyrme-HF(B) calculation is not the Hartree–Fock one but the EDF one.



̂v( ⃗r12) = t0(1 + x0
̂Pσ)δ( ⃗r12) +

t1
2

(1 + x1
̂Pσ)( ̂ ⃗k′￼2 + ̂ ⃗k2)δ( ⃗r12)

+t2(1 + x2
̂Pσ) ̂ ⃗k′￼* ⋅ ̂ ⃗kδ( ⃗r12) +

t3
6

(1 + x3
̂Pσ)δ( ⃗r12)ρα

0 ( ⃗R )

+iW0( ⃗σ1 + ⃗σ2) ⋅ ̂ ⃗k′￼* × δ( ⃗r12)
̂ ⃗k

⃗r12 = ⃗r1 − ⃗r2,
̂ ⃗k =

1
2i

( ⃗∇1 − ⃗∇2),

̂Pσ =
1
2

(1 + ⃗σ1 ⋅ ⃗σ2), ̂Pτ =
1
2

(1 + ⃗τ1 ⋅ ⃗τ2),

̂⃗k′￼ =
1
2i

( ⃗∇′￼1 − ⃗∇′￼2),

Skyrme interaction energy functional

ESky = ⟨Φ | ̂V |Φ⟩

χeven
t = Cρ

t [ρ0]ρ2
t + CΔρ

t ρtΔρt + Cτ
t ρtτt + C∇J

t ρt∇ ⋅ Jt + CJ
t J 2

t

χodd
t = Cs

t [ρ0]s2
t + CΔs

t st ⋅ Δst + Cj
t j2

t + C∇j
t st ⋅ (∇ × jt) + CT

t st ⋅ Tt + C∇s
t (∇ ⋅ st)2

= ∑
t=0,1

∫ d ⃗rχt
⃗R =

⃗r1 + ⃗r2

2

10 parameters



The coupling constants ( ) are expressed by the combination ofCρ
t , Cs

t , ⋯
the Skyrme parameters ( ).t0, x0, ⋯

Skyrme interaction energy functional

Cτ
0 =

1
16

(3t1 + 5t2 + 4t2x2) Cj
0 = −

1
16

(3t1 + 5t2 + 4t2x2) = − Cτ
0

(time-even) (time-odd)

Galilean inv. 

Cj
1 = − Cτ

1

CT
t = − CJ

t , C∇j
t = C∇J

t

reduces the # of coupling constants



Skyrme interaction energy functional

χt = Cρ
t [ρ0]ρ2

t + CΔρ
t ρtΔρt + Cτ

t (ρtτt − j2
t ) + C∇J

t [ρt∇ ⋅ Jt + st ⋅ (∇ × jt)] + CJ
t (st ⋅ Tt − J 2

t )

+Cs
t [ρ0]s2

t + CΔs
t st ⋅ Δst + C∇s

t (∇ ⋅ st)2

Cρ
0 =

3
8

t0 +
3
48

t3ρα

Cρ
1 = −

1
8

t0(2x0 + 1) −
1
48

t3(2x3 + 1)ρα

Cs
0 =

1
8

t0(2x0 − 1) +
1
48

t3(2x3 − 1)ρα

Cs
1 = −

1
8

t0 −
1
48

t3ρα

(time-even) (time-odd)

determined by the int. parameters
fixed by the static properties!

16 coupling constants



Skyrme energy-density functional

ℰ =
ℏ2

2m
τ0 +

1

∑
t=0

(χeven
t + χodd

t ) + ∑
τ=n,p

χ̃τ + ℰCoul

 iso-scalart = 0 :
 iso-vectort = 1 :

χeven
t = Cρ

t [ρ0]ρ2
t + CΔρ

t ρtΔρt + Cτ
t ρtτt + CJ0

t J2
t + CJ1

t J2
t + CJ2

t 𝖩2
t + C∇J

t ρt∇ ⋅ Jt

χodd
t = Cs

t [ρ0]s2
t + CΔs

t st ⋅ Δst + CT
t st ⋅ Tt + Cj

t j2
t + C∇j

t st ⋅ (∇ × jt) + C∇s
t (∇ ⋅ st)2 + CF

t st ⋅ Ft

neutron + proton

neutron - proton



Skyrme energy-density functional
time-even densities

̂ρ(rst, r′￼s′￼t′￼) = ⟨Φ |ψ†(r′￼s′￼t′￼)ψ(rst) |Φ⟩

ρt(r) = ρt(r, r)

τt(r) = (∇ ⋅ ∇′￼)ρt(r, r′￼)
r=r′￼

J t(r) =
1
2i

(∇ − ∇′￼) ⊗ st(r, r′￼)
r=r′￼

density

kinetic density

tensor density

Jt = ∑
a

Jtaa

Jt = ∑
bc

ϵabcJtbc

𝖩tab =
1
2

Jkab +
1
2

Jtba −
1
3

Jtδab

time-odd densities

st(r) = st(r, r)
spin density

spin kinetic density
Tt(r) = (∇ ⋅ ∇′￼)st(r, r′￼)

r=r′￼

current density

jt(r) =
1
2i

(∇ − ∇′￼)ρt(r, r′￼)
r=r′￼

tensor kinetic density

Ft(r) =
1
2

(∇ ⊗ ∇′￼+ ∇′￼⊗ ∇)st(r, r′￼)
r=r′￼

ρk(r, r′￼) = ∑
stt′￼

̂ρ(rst, r′￼st′￼)τk
t′￼t

sk(r, r′￼) = ∑
ss′￼tt′￼

̂ρ(rst, r′￼s′￼t′￼)σs′￼sτk
t′￼t



Skyrme EDF for nuclear DFT

χt = Cρ
t ρ2

t + CΔρ
t ρtΔρt + Cτ

t (ρtτt − j2
t ) + C∇J

t [ρt∇ ⋅ Jt + st ⋅ (∇ × jt)] + CJ
t (st ⋅ Tt − J 2

t )

+Cs
t s2

t + CΔs
t st ⋅ Δst + C∇s

t (∇ ⋅ st)2 16 coupling constants
independent

A pioneering work toward this direction:
Bender–Dobaczewski–Engel–Nazarewicz, PRC65(2002)054322

 as a free coupling constantCs
1 Cs

1 = −
1
8

t0 −
1
48

t3ρα

g′￼0 = N0(2Cs
1 + 2CT

1 βρ2/3)

g′￼1 = − 2N0CT
1 βρ2/3

β = (3π2/2)2/3

related to the Landau parameters
−1

Cs
1 =

1
2N0

(g′￼0 + g′￼1)



Examples of Skyrme-type EDD
J. Bartel et al., NPA386 (1982) 79✓SkM*

✓SGII

✓SLy4

Excitation energy of Gamow–Teller resonance in 208Pb

rare-earth and actinides

E. Chabanat et al., NPA635 (1998) 231
E. Chabanat et al., NPA627 (1997) 710

Microscopic EoS of neutron matter
R.B. Wiringa et al., PRC38 (1988) 1010

neutron-rich nuclei

H. Sagawa and N.V. Giai, PLB106 (1981) 379

Fission barrier height of 240Pu

spin-isospin response

726 E. Chabanat  et a l . /Nuc lear  Physics A 627 (1997) 710-746  
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Fig. 7. Skyrme energy per particle of  neutron matter compared with the two realistic models UV14+UVII 
and AV14+UVII. Two new forces (for two values of  the K-enhancement factor) are given and also several 
standard Skyrme forces for comparison. 

lowering tr: we thus keep the value o- = 1/6, and leave its possible variation for future 
work (in progress). 

3.6. A constraint on ferromagnetic neutron matter 

As we have explained in Section 2, the velocity-dependent terms of the standard 
Skyrme energy density functional, involve only four parameters q,  xl, t2 and x2. How- 
ever, only two combinations of these parameters are fixed, namely Os and Or. Kutschera 
and W6jcik [ 16] have shown that the x2 Skyrme parameter must be in the range: 

5 
- -  < x2 ~< - 1 ,  (3.26) 

4 

otherwise fully polarized neutron-matter would collapse. All our first fits converge sys- 
tematically to parametrizations with x2 -~ -0.95.  In order to satisfy the condition 
Eq. (3.26), we have decided to fix x2 to - 1  in all further developments. Out of the 
four q,  xl, t2 and x2 initial parameters, we are left with only one additional degree of 
freedom to adjust onto finite nuclei properties. 

3. 7. Semi-infinite matter and surface properties 

Surface properties of effective interactions play an important role in the description 
of many dynamical phenomena such as fission barriers, shape isomerism, superdeforma- 
tions, namely for all properties related to large deformations and thus depending strongly 
upon the surface tension. 

Within a liquid drop-like expansion, two different coefficients, surface and surface- 
symmetry, characterize these properties. Many models have been developed by different 



UNEDF project

Building a Universal Nuclear Energy-Density Functional

NUCLEI(Nuclear Computational Low-Energy Initiative)

χ2(x) =
1

nd − nx

DT∑

i=1

ni∑

j=1

(
si,j(x)− di,j

wi

)2

nd =
DT∑

i

ni

DT = 5, nd = 130, nx = 14

!2

2m∗
q

=
!2

2m
+ b1ρ− b′1ρq

Uq =b0ρ− b′0ρq + b1τ − b′1τq +
b3

3
(α+ 2)ρα+1 −

b′3
3

[
αρα−1

∑

q

ρ2q + 2ραρq

]

−b4∇ · J − b′4∇ · Jq − b2∇2ρ+ b′2∇2ρq +
δF

δρ

∑

q

ρ̃2q

Bq =b′1Jq + b4∇ρ+ b′4∇ρq

hq = −∇ ·
!2

2m∗
q

∇+ Uq + UCδq,π − iBq · (∇× σ),

h̃q =
V (q)
0

2
F (r)ρ̃q

∑

σ′

(
hq(r,σ,σ′)− λq h̃q(r,σ,σ′)

h̃q(r,σ,σ′) −(hq(r,σ,σ′)− λq)

)(
ϕq

1,α(r,σ
′)

ϕq
2,α(r,σ

′)

)
= Eα

(
ϕq

1,α(r,σ)
ϕq

2,α(r,σ)

)

δE[ρ, ρ̃, τ, J ] = 0

1

m∗
ν

= (1 + η)
1

m∗
S

− η
1

m∗
V

η =
N − Z

A
=
ρν − ρπ

ρ

S0 = Ē(ρ0, η = 0)− Ē(ρ0, η = 1)

K∞ = 9ρ20
∂2Ē
∂ρ2

∣∣∣
ρ0

0 =
∂Ē
∂ρ

∣∣∣
ρ=ρ0

Ē =
E
ρ

1

mass of spherical (29) and deformed (47) nuclei 
charge radius (28) 
odd-even staggering (13) 
fission isomer (4) 
spin-orbit splitting in spe (9) 

130 experimental data

M. Kortelainen et al., PRC89 (2014) 054314

M. KORTELAINEN et al. PHYSICAL REVIEW C 89, 054314 (2014)

TABLE X. RMSDs from experiment for various observables
calculated with UNEDF0, UNEDF1, and UNEDF2. The last column gives
the number of data points used to compute the RMSD.

Observable UNEDF0 UNEDF1 UNEDF2 No.

E 1.428 1.912 1.950 555
E (A < 80) 2.092 2.566 2.475 113
E (A ! 80) 1.200 1.705 1.792 442

S2n 0.758 0.752 0.843 500
S2n (A < 80) 1.447 1.161 1.243 99
S2n (A ! 80) 0.446 0.609 0.711 401

S2p 0.862 0.791 0.778 477
S2p (A < 80) 1.496 1.264 1.309 96
S2p (A ! 80) 0.605 0.618 0.572 381

!̃(3)
n 0.355 0.358 0.285 442

!̃(3)
n (A < 80) 0.401 0.388 0.327 89

!̃(3)
n (A ! 80) 0.342 0.350 0.273 353

!̃(3)
p 0.258 0.261 0.276 395

!̃(3)
p (A < 80) 0.346 0.304 0.472 83

!̃(3)
p (A ! 80) 0.229 0.248 0.194 312

Rp 0.017 0.017 0.018 49
Rp (A < 80) 0.022 0.019 0.020 16
Rp (A ! 80) 0.013 0.015 0.017 33

Figure 11 shows the residuals obtained in UNEDF2 for two-
neutron and two-proton separation energies. When compared
with the prediction of UNEDF1 [15], the slightly worse RMSD
reported in Table X primarily comes from larger deviations
at the ends of each isotopic chain. As far as S2p values are
concerned, UNEDF1 yields values that are systematically too
high. This trend is much less pronounced with UNEDF2.

Table X lists the RMSDs for binding energies, two-particle
separation energies, pairing gaps, and proton radii of even-
even nuclei. Compared with UNEDF1, UNEDF2 is slightly less
predictive for binding energies, S2n values, and proton radii, but
offers better reproduction of two-proton separation energies
and neutron pairing gaps. The differences are, however, small.

E. Fission Barriers and Deformation Properties

One of the major differences between the original version
of the UNEDF optimization protocol, used to determine the
UNEDF0 parametrization, and its successive incarnations used
to produce UNEDF1 and UNEDF2, is the inclusion of data on
fission isomer excitation energies. This was motivated by
the realization that surface properties of the energy density
play a critical role in the EDF’s ability to predict fission
properties such as barriers and, consequently, spontaneous
fission half-lives [79–81]. It was later shown that adding
data corresponding to large nuclear deformations provides an
effective constraint on the surface terms [82].

In Fig. 12, we present the residuals for the inner fission
barrier heights, fission isomer excitation energies, and outer
fission barrier heights in the actinide region calculated with
UNEDF1, UNEDF2, the Gogny D1S model [81], and the
finite-range liquid droplet model (FRLDM) [85]. Although
excitation energies of fission isomers are observables, fission
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FIG. 12. (Color online) The residuals of the inner fission barriers,
!EA, panels (a)–(d); fission isomer excitation energies, !EII, panels
(e)–(h); and outer fission barriers, !EB , panels (i)–(l), for various
actinide nuclei. Residuals are defined as the difference between the
computed values with UNEDF2, UNEDF1, D1S, and FRLDM models
and the empirical values [83,84]. The shaded area represents an
average experimental uncertainty for each quantity.

barriers are not. Furthermore, the uncertainty on the empirical
barrier heights ranges from 0.3 MeV [83] to 1 MeV, while the
uncertainty for fission isomer energies ranges from 0.5 keV
for 238U to 0.5 MeV for 240Pu (due to two different values
reported in the literature) [84]. To keep the figure legible
while conveying information on experimental uncertainties,
the shaded area shows the average empirical error over the
isotopes considered. All calculations were performed with
the DFT solver HFODD of Ref. [86]. Details of the numerical
implementation are discussed in Refs. [87,88].

As seen in Fig. 12, the deformation properties of the UNEDF2
functional are slightly degraded as compared to UNEDF1,
especially for the outer barrier. The overall trend is that both
barrier heights tend to be overestimated. This is quantified in
Table XI, which lists the calculated RMSDs for the calculated
first and second barrier heights, and fission isomer bandheads.
The deviation from empirical values has increased by nearly
50% for the first barrier, and has doubled for the second barrier.
The overall quality of UNEDF2 is now comparable to the SkM*
parametrization [79].

As discussed in Ref. [82], the surface and surface-symmetry
coefficients of the leptodermous expansion of the nuclear

TABLE XI. The RMSDs for the inner barrier height EA, fission
isomer bandhead EII, and inner barrier height EB calculated with
UNEDF1, UNEDF2, SkM* [79], and FRLDM [85] for the selected even-
even actinides (in MeV).

UNEDF2 UNEDF1 FRLDM SkM* D1S

EA 1.470 1.030 1.520 1.610 0.709
EII 0.515 0.357 0.675 0.351 0.339
EB 1.390 0.690 1.130 1.390 1.140
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effective mass: finite range of the interaction (momentum dependence)

rearrangement

Ground state properties
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30 points for each direction

a few tens to hundred iterations are needed to get the convergence

✓Expansion with the basis function
HO basis "HFODD"

two-basis method

E. Teran et al., PRC67 (2003) 064314

HFB Hamiltonian in the HF basis
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states are required to 
describe the drip-line nuclei
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Niigata
H. Oba and M. Matsuo, PTP120 (2008) 143KY and N.V. Giai, PRC78 (2008) 014305
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Application to deformed nuclei

(the reflection sym.)
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FIG. 1. (Color online) Two-neutron separation energies for the
neutron-rich zirconium isotopes. The drip line is located where the
separation energy becomes zero. The 122Zr isotope is the last stable
nucleus against two-neutron emission.

Calculations performed with the HFB-2D-THO code used 20
transformed harmonic oscillator shells. Figure 1 shows the
calculated two-neutron separation energies for the zirconium
isotope chain. The two-neutron separation energy is defined as

S2n(Z,N ) = Ebind(Z,N ) − Ebind(Z,N − 2). (4)

Note that in using this equation, all binding energies must be
entered with a positive sign. The position of the two-neutron
drip line is defined by the condition S2n(Z,N ) = 0, and nuclei
with negative two-neutron separation energy are unstable
against the emission of two neutrons. As one can see, both
methods (HFB-2D-THO and HFB-2D-LATTICE) are in excellent
agreement for the two-neutron separation energy for the entire
isotope chain. Particularly, the 122Zr isotope is predicted in
both calculations as the drip-line nucleus. In addition, we
also give a comparison with the latest experimental data,
available only up to the isotope 110Zr [17]. As shown on Fig. 1,
the separation energy values obtained from the experiment are
somewhat larger than the theoretical calculations although the
trend remains the same.

In Fig. 2, we compare the intrinsic proton and neutron
quadrupole moments calculated with the LATTICE code and
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FIG. 2. (Color online) Intrinsic quadrupole moments for protons
and neutrons.
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FIG. 3. (Color online) Mass quadrupole parameter β2 comparison
for neutrons. Calculations by Lalazissis et al. [19], HFB-2D-LATTICE,
and Möller et al. [18] (FRDM) (β2 total is shown).

the THO code. Available experimental data [16] are also given.
Generally, we observe a nearly perfect agreement between the
two codes as well as with the experiment. The deformations
(for neutrons ) in terms of the deformation parameter β2 for
those nuclei, namely, for the 102−112Zr isotopes range from
β2 = 0.42 to β2 = 0.47. Both the basis-spline lattice code and
the HFB-2D-THO code predict the 112Zr isotope to have the
largest ground state deformation. For mass numbers larger
than 112, we observe a transition to spherical ground state
shape. This phenomenon had been also found in calculations
performed by Möller et al. [18] [finite range droplet model
calculations (FRDM)] and in relativistic mean-field calcula-
tions by Lalazissis et al. [19]. We depict this comparison in
Fig. 3 . Experimental deformations for protons are available
for two isotopes, 102Zr and 104Zr [16]. Calculations agree
with the experiment reasonably well and give β2 values
of 0.42, 0.43; while the experiment predicts β102

2 = 0.42,
β104

2 = 0.45.
In Fig. 4, we compare the root-mean-square radii of protons

and neutrons predicted by the LATTICE code and the THO
code. Both codes give nearly identical results for the whole
isotope chain. Only one experimental data point is available,
the proton rms radius of 102Zr [12]. The experiment yields a
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FIG. 4. (Color online) Root-mean-square radii for the chain of
zirconium isotopes.
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Calculations performed with the HFB-2D-THO code used 20
transformed harmonic oscillator shells. Figure 1 shows the
calculated two-neutron separation energies for the zirconium
isotope chain. The two-neutron separation energy is defined as

S2n(Z,N ) = Ebind(Z,N ) − Ebind(Z,N − 2). (4)

Note that in using this equation, all binding energies must be
entered with a positive sign. The position of the two-neutron
drip line is defined by the condition S2n(Z,N ) = 0, and nuclei
with negative two-neutron separation energy are unstable
against the emission of two neutrons. As one can see, both
methods (HFB-2D-THO and HFB-2D-LATTICE) are in excellent
agreement for the two-neutron separation energy for the entire
isotope chain. Particularly, the 122Zr isotope is predicted in
both calculations as the drip-line nucleus. In addition, we
also give a comparison with the latest experimental data,
available only up to the isotope 110Zr [17]. As shown on Fig. 1,
the separation energy values obtained from the experiment are
somewhat larger than the theoretical calculations although the
trend remains the same.
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the THO code. Available experimental data [16] are also given.
Generally, we observe a nearly perfect agreement between the
two codes as well as with the experiment. The deformations
(for neutrons ) in terms of the deformation parameter β2 for
those nuclei, namely, for the 102−112Zr isotopes range from
β2 = 0.42 to β2 = 0.47. Both the basis-spline lattice code and
the HFB-2D-THO code predict the 112Zr isotope to have the
largest ground state deformation. For mass numbers larger
than 112, we observe a transition to spherical ground state
shape. This phenomenon had been also found in calculations
performed by Möller et al. [18] [finite range droplet model
calculations (FRDM)] and in relativistic mean-field calcula-
tions by Lalazissis et al. [19]. We depict this comparison in
Fig. 3 . Experimental deformations for protons are available
for two isotopes, 102Zr and 104Zr [16]. Calculations agree
with the experiment reasonably well and give β2 values
of 0.42, 0.43; while the experiment predicts β102

2 = 0.42,
β104

2 = 0.45.
In Fig. 4, we compare the root-mean-square radii of protons

and neutrons predicted by the LATTICE code and the THO
code. Both codes give nearly identical results for the whole
isotope chain. Only one experimental data point is available,
the proton rms radius of 102Zr [12]. The experiment yields a
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FIG. 5. (Color online) Average neutron pairing gap for the chain
of zirconium isotopes.

proton rms radius of 4.54 fm while the HFB codes predict a
value of 4.45 fm (HFB-2D-LATTICE) and 4.46 fm (HFB-2D-THO).
The difference between theory and experiment is quite small,
about 2%. We can clearly observe the presence of the neutron
skin manifested by the large differences between the neutron
and proton rms radii for all of the isotopes in the chain. As
expected, the neutron skin becomes “thicker” as we approach
the drip line. Starting at the mass number A = 114 and up
to the drip line, the nuclei prefer a spherical ground state
shape (Fig. 2), which results in a sudden shrinking of the
rms radius at A = 114. Figures 5 and 6 depict the average
pairing gaps for neutrons and protons. Generally, both HFB
codes show the same trend for the pairing gaps as a function
of neutron number; the agreement is noticeably better for
neutrons. The two HFB codes predict a small value of the
neutron pairing gap for the 112Zr isotope which on the other
hand has the largest prolate deformation (Fig. 2) among the
calculated nuclei. Coincidentally, the drip line turns out to
be at the neutron magic number (N = 82) and, as expected,
both codes yield a pairing gap of zero for the 122Zr isotope.
The differences observed in the neutron and proton pairing
gaps can be attributed to different approaches in representing
the continuum states, namely discretized continuum states in
the HFB-2D-LATTICE versus positive energy bound states in a
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FIG. 6. (Color online) Average proton pairing gap for the chain
of zirconium isotopes.
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FIG. 7. (Color online) Contour plots of the 110Zr normal densities,
for protons (left) and neutrons (right). Densities are shown as a
function of the cylindrical coordinates (r, z), where z is the symmetry
axis. The scale ranges from 9.7 × 10−2 fm−3 (dark red), through
5.0 × 10−2 (light green), 3.0 × 10−3 (light blue), to 3.4 × 10−15 (dark
blue).

stretched harmonic oscillator. In general, the pairing gap is the
one observable that is most sensitive to the properties of the
continuum states. In addition, two approaches use different
methods for representing differential operators as well as
calculating the Coulomb potential.

B. Density studies

In this section, we focus on the normal and pairing densities
for the selected isotopes. In Fig. 7, we show a contour plot of
normal densities for protons and neutrons for the 110Zr isotope.
It is the last deformed isotope with a significant value of the
pairing gap for neutrons (Fig. 5); therefore, it is possible to
show plots of both normal and pairing densities. The results
obtained for the neutron normal and pairing densities (Figs. 7
and 8) clearly exhibit a large prolate deformation. The normal
density for neutrons (Fig. 7) is concentrated in the region that
extends from 0 to 2 fm in the r direction and from −5 to +5 fm
in the z direction. Within this region, we find an enhancement
in the neutron density with a shape that resembles the figure
“eight.” In comparing the neutron and proton densities, one
notices that in the former, both the center of the nucleus and
the surface is dominated by neutrons. The pairing density for
neutrons in Fig. 8 shows a richer structure than the normal
density. This quantity describes the probability of correlated
nucleon pair formation with opposite spin projection, and it
determines the pair transfer form factor. We can see that most
correlated pair formation takes place in the four closed shaped
structured areas near the z axis. We may conclude that neutrons
dominate the pairing properties of this nucleus, which is a
consequence of !n being larger than !p. A similar argument
applies to normal densities (N > Z), yet the difference
between neutrons and protons is more pronounced in the
case of the pairing densities. A graph depicting the single-
particle energy spectrum of the pairing density for the 104Zr
isotope has been published in Ref. [6]. In Figs. 9 and 10,
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FIG. 8. (Color online) Contour plots of the 110Zr pairing densities,
for protons (left) and neutrons (right). The densities are shown as a
function of the cylindrical coordinates (r, z), where z is the symmetry
axis. The scale ranges from 9.0 × 10−3 fm−3 (dark red), through
4.9 × 10−3 (light green), 8.0 × 10−4 (light blue), to 9.3 × 10−14 (dark
blue).

we show plots of normal densities as a function of the
distance from the center, r =

√
ρ2 + z2. For a given value

of r, the density is single-valued for a spherical nucleus
and multi-valued for a deformed density distribution because
in the latter case different combinations of lattice points zi

and ρj give rise to the same r-value. In Fig. 9 we compare
three different calculations of the neutron normal density for
the most deformed 112Zr isotope. The plot on a logarithmic
scale shows that the density distribution predicted by the
HFB-2D-THO and HFB-2D-LATTICE codes is deformed for almost
all values of the distance from the nuclear center r. At very large
distances, the densities become less deformed since nuclear
potentials go to zero and HFB equations lead to a spherical
asymptotic solution. Figure 9 also shows for comparison the
HFB-2D-HO result as an illustration of the shortcomings of
the pure harmonic oscillator basis calculations to reproduce
density distributions asymptoticlally at very large distances.

FIG. 9. (Color online) Logarithmic plot of the normal neutron
density for the most deformed isotope 112Zr as a function of the
distance r =

√
ρ2 + z2.

FIG. 10. (Color online) Linear plots of the normal neutron and
proton densities for the drip line nucleus 122Zr as a function of distance
r =

√
ρ2 + z2. Comparison between the HFB-2D-THO code and the

HFB-2D-LATTICE code.

One can see its too rapid decay beyond distances of about
12 fm. Clearly, the pure harmonic oscillator basis calculations
cannot represent properly the density asymptotic for nuclei
close to the neutron drip line. Neutron and proton normal
densities for the drip-line nucleus 122Zr are shown in Fig. 10.
From the single-valued plot as a function of r =

√
ρ2 + z2, one

can immediately conclude that both neutron and proton normal
densities are spherical. Another feature is the strong neutron
enhancement at the center and a corresponding depletion in
the proton density, which is due to occupied (unoccupied) s
orbitals near the Fermi level. We also note that the neutron
density is substantially larger than the proton density for all
values of r.

IV. CONCLUSIONS

In this paper, we performed Skyrme-HFB calculations
in coordinate space for the neutron-rich zirconium isotopes
up to the two-neutron drip line. We calculated the ground
state properties (even-even nuclei) for the zirconium isotopes
(Z = 40), starting from N = 62 up to the two-neutron drip
line, which our HFB codes predict to be N = 82. In particular,
we calculated the two-neutron separation energies, quadrupole
moments, rms radii, average pairing gaps, and densities. In
comparing HFB-2D-LATTICE theoretical calculations for the
two-neutron separation energies (Fig. 1) with the HFB-2D-THO
code, we find the same results. Particularly, both codes predict
the 122Zr isotope to be the drip line nucleus. We find very large
prolate deformations for the 102−112Zr isotopes and a spherical
ground state shape for the 114−122Zr nuclei. The β2 value for the
most deformed nucleus 112Zr in the calculated chain reaches an
impressive value of 0.47. The root-mean-square radii clearly
show the existence of a “neutron skin” in the neutron-rich
zirconium isotopes. We can also observe a sudden shrinking
of the rms radius at A = 114 due to a change of the prolate
ground state deformation into the spherical shape. In Sec. III B,
we studied normal and pairing densities. In particular, Figs. 7
and 8 show that for N > Z and #n > #p both normal
and pairing densities are dominated by neutrons. The density

054321-5

tail structure

SLy4 density distribution



The spin and parity of the parent nucleus 106
39 Y67 are

possibly 2þ or 3þ, because the ground states of 99;101Y
are indicated to have the same proton configuration,
5=2þ[422], as 101;103;105Nb [18–20] and the spin and parity
of 10841 Nb67 is suggested to be 2

þ or 3þ [21]. The 4þ1 and the
second 2þ (2þ2 ) states of

106Zr are likely to be populated in
the ! decay of 106Y by comparison with the population of
the 4þ1 and 2þ2 states of 108Mo in the ! decay of 108Nb [21].
If the 324 keV " ray is the transition to the 2þ1 state, the
excited-state energy is 477 keV. Since Eð2þ1 Þ of 106Zr is
slightly larger than that of 104Zr (Fig. 2), Eð4þ1 Þ is expected
to increase gradually and to be 450–500 keV. The energies
of the 4þ1 and 2þ2 states of 106Zr are predicted by using the
interacting boson model [22]. The parameters of the inter-
acting boson model are obtained from a least-squares fit to
the known level energies of 108Mo, 110Ru, and 112Pd along
the isotonic chain (N ¼ 66). The largest deviations be-
tween the experimental and theoretical Eð4þ1 Þ and Eð2þ2 Þ
are 34 keVand 76 keV, respectively. The Eð4þ1 Þ and Eð2þ2 Þ
of 106Zr are extrapolated to be 455 keV and 618 keV,
respectively. Therefore, the excited states at 477 keV and
607 keV were tentatively assigned as the 4þ1 and 2þ2 states
in 106Zr, respectively. The transition from the 2þ2 state to
the 2þ1 state is expected, but no "-ray peak at 455 keV was
observed due to the low statistics.

The " rays emitted from a new isomeric state of 108Zr
were observed within 4 #s after the implantation of 108Zr
as shown in Fig. 1(b). Five "-ray peaks at energies of 174,
279, 348, 478, and 606 keV were unambiguously mea-
sured. A half-life of 620% 150 ns was derived from the
sum of time spectra for these five " rays. Some low-
intensity "-ray peaks from the 108Zr isomer might not
have been identified, and no information on "-" coinci-
dences was obtained due to the low statistics. Nevertheless,
it can be estimated that the energy of the isomeric state
is likely more than 1 MeV. The ground-state band is
populated up to 4þ; thus, the spin is likely more than or

equal to 4. Before discussing possible structures of the
observed isomer, low-lying states of 108Zr are discussed.
If a spherical ground state would appear around 110Zr

due to the predicted N ¼ 70 subshell gap [7], then Eð2þ1 Þ
would have to suddenly increase and R4=2 drop to & 2.
However, Eð2þ1 Þ of 106Zr is similar to that of Zr isotopes
with A ¼ 100–104, which are well deformed with !2 ¼
0:355ð10Þ, 0.43(4), and 0.47(7) for A ¼ 100, 102, and 104,
respectively [4,5]. Because the "-ray energies of 174 and
348 keV in 108Zr are slightly larger than those of 152 and
324 keV in 106Zr and the relevant energies smoothly
change from 100Zr to 108Zr (Fig. 2), the 174 and 348 keV
" rays were tentatively assigned as the transitions from the
2þ1 state to the ground state and from the 4þ1 state to the 2þ1
state, respectively. R4=2 gradually changes with values of
2.57, 3.15, 3.25, 3.13, and 3.00 for A ¼ 100, 102, 104, 106,
and 108, respectively. Values of R4=2, which is close to 3.3
for a rigid rotor, indicate the rotational character of a
deformed nucleus. The ground state of 108Zr is most likely
as deformed as 106Zr. Therefore, the spherical subshell gap
at N ¼ 70 seems not to be large enough to change the
ground state of 108Zr to spherical shape.
The structural evolution around the neutron-rich Zr iso-

topes can be visualized using 1=Eð2þ1 Þ [14]. Figure 3 shows
1=Eð2þ1 Þ as a function of the neutron number. The values of
1=Eð2þ1 Þ suddenly increase at N ¼ 60 for Kr, Sr, Zr, and
Mo isotopes because of the onset of deformation. 1=Eð2þ1 Þ
reaches a maximum at N ¼ 64 for both Zr and Mo iso-
topes. Another remarkable behavior at N ¼ 64 has been
observed for Mo isotopes. Hua et al. observed a band
crossing due to the rotation alignment of an h11=2 neutron
pair [23]. The shift of the band crossing to higher rotational
frequency in 106Mo is interpreted as a consequence of the
deformed subshell closure at N ¼ 64. The maximum of
1=Eð2þ1 Þ at N ¼ 64 can also be interpreted as being due
to the deformed subshell closure at N ¼ 64 with !2 &
0:47ð7Þ [5] for 104Zr.
The r-process path between A ¼ 110 and A ¼ 125 may

be affected by the weakening of the spin-orbit force, which
is associated with the neutron skin [24]. The harmonic-
oscillator-like doubly magic nucleus of 110Zr [24] or the

100Zr
0 0 0 0 0

212.5

546.5

1061.6

1687.2

0+

2+

4+

6+

8+

102Zr

151.8

478.3

964.8

1594.9

104Zr

139.3

452.1

925.8

1550.2

106Zr

152.1

476.5

0+

2+

(4+)

108Zr

173.7

521.6

0+

(2+)

(4+)

212.5

334.0

515.1

625.6

151.8

326.5

486.5

630.1

139.3

312.8

473.7

624.4

152.1

324.4 347.9

173.7
0+

2+

4+

6+

8+

0+

2+

4+

6+

8+

FIG. 2. Ground-state bands of neutron-rich even-even Zr iso-
topes with N ' 60. The energies of 100–104Zr are taken from the
ENSDF database [27].

8

6

4

2

0

1/
E

(2
+ 1)

  (
M

eV
–1

)

80706050
Neutron Number

Kr (Z = 36)
Sr (Z = 38)
Zr (Z = 40)
Mo (Z = 42)
Ru (Z = 44)
Pd (Z = 46)
Cd (Z = 48)
Sn (Z = 50)

FIG. 3 (color online). 1=Eð2þ1 Þ as a function of the neutron
number. The present results are for Zr isotopes with N ¼ 66 and
68. Others are taken from the ENSDF database [27].

PRL 106, 202501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
20 MAY 2011

202501-3

Zr isotopes: strong deformation at N=64
T. Sumikama et al., PRL106 (2011) 202501
exp. @ RIBF
R4

2

2
2.4
2.8
3.2
3.6

4

60 62 64 66 68

The spin and parity of the parent nucleus 106
39 Y67 are

possibly 2þ or 3þ, because the ground states of 99;101Y
are indicated to have the same proton configuration,
5=2þ[422], as 101;103;105Nb [18–20] and the spin and parity
of 10841 Nb67 is suggested to be 2

þ or 3þ [21]. The 4þ1 and the
second 2þ (2þ2 ) states of

106Zr are likely to be populated in
the ! decay of 106Y by comparison with the population of
the 4þ1 and 2þ2 states of 108Mo in the ! decay of 108Nb [21].
If the 324 keV " ray is the transition to the 2þ1 state, the
excited-state energy is 477 keV. Since Eð2þ1 Þ of 106Zr is
slightly larger than that of 104Zr (Fig. 2), Eð4þ1 Þ is expected
to increase gradually and to be 450–500 keV. The energies
of the 4þ1 and 2þ2 states of 106Zr are predicted by using the
interacting boson model [22]. The parameters of the inter-
acting boson model are obtained from a least-squares fit to
the known level energies of 108Mo, 110Ru, and 112Pd along
the isotonic chain (N ¼ 66). The largest deviations be-
tween the experimental and theoretical Eð4þ1 Þ and Eð2þ2 Þ
are 34 keVand 76 keV, respectively. The Eð4þ1 Þ and Eð2þ2 Þ
of 106Zr are extrapolated to be 455 keV and 618 keV,
respectively. Therefore, the excited states at 477 keV and
607 keV were tentatively assigned as the 4þ1 and 2þ2 states
in 106Zr, respectively. The transition from the 2þ2 state to
the 2þ1 state is expected, but no "-ray peak at 455 keV was
observed due to the low statistics.

The " rays emitted from a new isomeric state of 108Zr
were observed within 4 #s after the implantation of 108Zr
as shown in Fig. 1(b). Five "-ray peaks at energies of 174,
279, 348, 478, and 606 keV were unambiguously mea-
sured. A half-life of 620% 150 ns was derived from the
sum of time spectra for these five " rays. Some low-
intensity "-ray peaks from the 108Zr isomer might not
have been identified, and no information on "-" coinci-
dences was obtained due to the low statistics. Nevertheless,
it can be estimated that the energy of the isomeric state
is likely more than 1 MeV. The ground-state band is
populated up to 4þ; thus, the spin is likely more than or

equal to 4. Before discussing possible structures of the
observed isomer, low-lying states of 108Zr are discussed.
If a spherical ground state would appear around 110Zr

due to the predicted N ¼ 70 subshell gap [7], then Eð2þ1 Þ
would have to suddenly increase and R4=2 drop to & 2.
However, Eð2þ1 Þ of 106Zr is similar to that of Zr isotopes
with A ¼ 100–104, which are well deformed with !2 ¼
0:355ð10Þ, 0.43(4), and 0.47(7) for A ¼ 100, 102, and 104,
respectively [4,5]. Because the "-ray energies of 174 and
348 keV in 108Zr are slightly larger than those of 152 and
324 keV in 106Zr and the relevant energies smoothly
change from 100Zr to 108Zr (Fig. 2), the 174 and 348 keV
" rays were tentatively assigned as the transitions from the
2þ1 state to the ground state and from the 4þ1 state to the 2þ1
state, respectively. R4=2 gradually changes with values of
2.57, 3.15, 3.25, 3.13, and 3.00 for A ¼ 100, 102, 104, 106,
and 108, respectively. Values of R4=2, which is close to 3.3
for a rigid rotor, indicate the rotational character of a
deformed nucleus. The ground state of 108Zr is most likely
as deformed as 106Zr. Therefore, the spherical subshell gap
at N ¼ 70 seems not to be large enough to change the
ground state of 108Zr to spherical shape.
The structural evolution around the neutron-rich Zr iso-

topes can be visualized using 1=Eð2þ1 Þ [14]. Figure 3 shows
1=Eð2þ1 Þ as a function of the neutron number. The values of
1=Eð2þ1 Þ suddenly increase at N ¼ 60 for Kr, Sr, Zr, and
Mo isotopes because of the onset of deformation. 1=Eð2þ1 Þ
reaches a maximum at N ¼ 64 for both Zr and Mo iso-
topes. Another remarkable behavior at N ¼ 64 has been
observed for Mo isotopes. Hua et al. observed a band
crossing due to the rotation alignment of an h11=2 neutron
pair [23]. The shift of the band crossing to higher rotational
frequency in 106Mo is interpreted as a consequence of the
deformed subshell closure at N ¼ 64. The maximum of
1=Eð2þ1 Þ at N ¼ 64 can also be interpreted as being due
to the deformed subshell closure at N ¼ 64 with !2 &
0:47ð7Þ [5] for 104Zr.
The r-process path between A ¼ 110 and A ¼ 125 may

be affected by the weakening of the spin-orbit force, which
is associated with the neutron skin [24]. The harmonic-
oscillator-like doubly magic nucleus of 110Zr [24] or the
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Cr–Fe isotopes: deformation at N=40–50

the collectivity from N ¼ 44. This change, occurring at the
g9=2 midshell, is observed for the first time in the N ¼ 40
island of inversion. Although this behavior would be typical
for an isolated g9=2 single shell, the actual situation turns out
to be more subtle. To further quantify the collectivity in
neutron-richCr andFe isotopes beyondN ¼ 40, shellmodel
calculations were carried out in the valence space that
successfully described the new IOI at N ¼ 40 [28]. This
valence space was composed of the pf proton orbitals and
p1=2, f5=2, g9=2, and d5=2 neutron orbitals. The effective

Hamiltonian used in this work, called LNPS-m, was based
on the LNPS Hamiltonian from Ref. [28]. Minor modifi-
cations to the LNPS interaction were applied on the
monopole and pairing parts of the effective Hamiltonian
to describe a broader region [43–45]. In addition, LNPS
calculations underpredict the 2þ1 excitation energies of the
most neutron-rich Cr and Fe isotopes, which were inter-
preted as missing intruder configurations in their ground
state. This mechanism is cured and validated by introducing
150 keVadditional gd-gd monopole strength in the present
LNPS-m interaction. The physics at N ¼ 40 remains
unchanged with respect to the LNPS Hamiltonian (see for
example occupancies and wave function decomposition for
64Cr in Table I and Table II of Ref. [28]) but the root mean
square for all the states in Fig. 3 amounts to 49 keV with the
present LNPS-m Hamiltonian against 89 keV with the
original LNPS. More detailed results with the LNPS-m
interaction will be discussed elsewhere. The need and
impact of this extra term are discussed hereafter. The overall
2þ1 , 4

þ
1 systematics and observed plateaus are reproduced by

the calculations. The collectivity of these nuclei can be
estimated using the rotational limit where a connection
between the laboratory and intrinsic frames is established
using relations (1) and (2) of Ref. [28]. The quadrupole
properties of these nuclei are summarized in Table I. The
calculated BðE2Þ↓ values, quadrupole moments, and defor-
mations are consistent with a first-order description of the
studied isotopes as prolate deformed rotational nuclei. An
interesting feature for the studied nuclei is that the intrinsic
wave functions for the ground, 2þ, and 4þ states for all
studied nuclei are shown to be similar with a relative
variation of neutron occupancy nνðg9=2 þ d5=2Þ of less than
3% along the band states. In the Cr chain, the calculations
show that the deformation is nearly constant with a maxi-
mum achieved at N ¼ 40 where the quadrupole collectivity
translates into the development of an intrinsic shape of

TABLE I. Quadrupole deformation properties of Cr and Fe isotopes. Energies are in MeV, BðE2Þ↓ in e2fm4, and Q in efm2.
Experimental energies are the same as Fig. 3.

62Cr 64Cr 66Cr 68Cr 66Fe 68Fe 70Fe 72Fe

E%ð2þ1 Þ experiment 0.44 0.42 0.39 & & & 0.57 0.52 0.48 0.52
E%ð2þ1 Þ theo. 0.46 0.43 0.42 0.41 0.54 0.49 0.49 0.51
Qspec −38 −38 −39 −38 −37 −40 −39 −33
BðE2Þ↓ theory 378 388 389 367 372 400 382 279
Qint from Qspec 135 136 137 132 131 140 135 116
Qint from BðE2Þ 138 140 140 136 137 142 139 118
hβi 0.33 0.33 0.32 0.30 0.29 0.30 0.28 0.24
E%ð4þ1 Þ experiment 1.17 1.13 1.07 & & & 1.41 1.39 1.35 1.33
E%ð4þ1 Þ theo. 1.18 1.13 1.06 1.15 1.34 1.34 1.36 1.36
Qspec −49 −49 −46 −47 −47 −51 −48 −40
BðE2Þ↓ theory 562 534 562 530 553 608 574 377
Qint from Qspec 135 134 134 130 129 141 132 111
Qint from BðE2Þ 141 140 141 137 139 146 142 115
hβi 0.34 0.33 0.32 0.31 0.29 0.30 0.29 0.23
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FIG. 3 (color online). Systematics of Eð2þ1 Þ and Eð4þ1 Þ energies
and R4=2 ¼ Eð4þ1 Þ=Eð2þ1 Þ for Cr and Fe isotopes. Experimental
energies from Refs. [21,24,46] and from the present work are
compared to large-scale shell model calculations. Most error bars
are too small to be seen.
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Fig. 4. Quadrupole deformation energy curves of neutron-rich Cr isotopes calculated with SkM*.
The energy is arbitrarily shifted for the sake of comparison.

fm−3. V0 is adjusted to reproduce the odd-even mass difference in 56−66Cr, which
are between 1.5 and 2.0 MeV. The ground-state values of β, ∆n and ∆p are shown in
Table II. The calculated deformation energy curves of neutron-rich Cr isotopes are
plotted in Fig. 4. It is seen that the deformation energy curve becomes soft toward
the prolate direction with increasing neutron number from N = 32. In 60Cr, the
deformation energy is almost flat between β = −0.1 and 0.3. In 62,64,66Cr(N = 38–
42), the energy minimum with a large quadrupole deformation appears at around β
= 0.25 – 0.3, but then the deformation of the energy minimum decreases for N ≥42.
The calculated isotopic tendency is consistent with the observed trend of E2 from
N = 32 to N = 38. Note, however, that the energy difference between the spherical
configuration (β = 0) and the quadrupole deformed minimum is small. In the case of
62Cr, the difference is about 290 keV. If we estimate the zero-point energy in terms
of the experimental E2 = 446 keV, the deformation and the zero-point energies have
comparable magnitudes. Thus, it is suggested, within the SkM* model, that even in
62−64Cr exhibiting largely deformed minima no well-developed static deformation is
realized, and that a large-amplitude quadrupole motion of a transitional character is
expected. The transitional nature seems to be consistent with the observed E4/E2

ratio7) of 2.65 in 62Cr which lies between the vibrator and the rotor limits 2 and
3.33.

Next, we analyse the mechanism of deformation. For this purpose, we plot
Hartree-Fock single-particle energy as a function of β. Single-particle orbits are
obtained by rediagonalising the HF Hamiltonian associated with the constrained
Skyrme-HFB solution. The result is shown in Figs. 5(a) and (b). By observing the
Fermi energy of N = 38 (the thick solid line in Fig. 5(a)), the neutron subshell gap
N = 40 between the f 5

2
and g 9

2
orbits in the spherical region and an energy gap N =

38 in the prolate region at β ∼0.25 – 0.5 are notable. Because the magnitude of the
deformed N = 38 gap is comparable to that of the spherical N = 40 subshell gap,
it is easy to deduce that the deformed N = 38 gap may drive the nucleus toward

(p,2p)γ @ RIBF
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Fig. 5. Single-particle energies obtained with SkM*(top panels (a)(b)) and SLy4(bottom panels
(c)(d)) for 62Cr. The left panels (a)(c) are for neutrons, and the right panels (b)(d) are for
protons. The thick solid line denotes the Fermi energy. The horizontal axis is the quadrupole
deformation parameter β.

prolate deformation with β ∼0.3. We also note that the neutron g 9
2

orbit plays an
important role in forming the deformed states. In particular, the Ω = 1

2 and 3
2

orbits that stem from the deformation splitting of νg 9
2

are relevant as they exhibit
the steepest downsloping at β ≥ 0. If neutrons occupy these νg 9

2
orbits, they cause

a strong driving force toward prolate deformation. This situation can be realized for
β ! 0.20. We show in Table II the occupation number for all the νg 9

2
orbits. Here,

we evaluate the occupation number at the minimum solution for each quasi-particle
state by integrating the square of the lower component of the quasi-particle wave
function. We list, in Table II, numbers summed over the quasi-particle states arising
from the deformation splitting of the spherical νg 9

2
state. The occupation numbers

∼3.0–3.8 in 62Cr and 64Cr, where the largest ground state deformation is realized,
are consistent with the interpretation that the νg 9

2
Ω = 1

2 and 3
2 orbitals are largely

occupied. As neutron number exceeds N = 38, the occupation number of νg 9
2

still
increases slightly (3.8 in 64Cr with N = 40 and 4.4 in 66Cr with N = 42). However,
the extent of quadrupole deformation then decreases at N = 42 since the upsloping
orbits [303 5

2 ] and [3011
2 ] stemming from νf 5

2
and νp 1

2
are occupied. This explains

the reason for the largest quadrupole deformation in 62,64Cr with N = 38–40. The

Nilsson diagram

neutrons start to occupy the g9/2  orbital beyond N=40

42

high deformation at N=42
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HFBRAD spherical HFB in radial mesh

HOSPHE spherical HFB in HO basis

HFBTHO

HOODD

axial-sym. HFB in 2D HO basis
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+: proton 
-: neutron



HFBTHO axially-symmetric transformed HO (THO) basis

v2.00d: Stoitsov et al., Comp. Phys. Commun. 184, 1592 (2013)
this is not the latest version, but you can enjoy the physics

https://data.mendeley.com/datasets/f8n37xtbmg/1

tar zxvf adui_v2_0.tar.gz

Homework



including libraries such as lapack and blas

Open the Makefile

ACML_LIBRARY = TRUE

FALSE

Let’s try the HFB calculation by using HFBTHO

one can find the source files (codes) in 
”hfbtho” directory



then, make to prepare the executable file “main”

Let’s try the HFB calculation by using HFBTHO

you can find it if successful

you can find some examples in the “examples” directory



examples/test_spherical/run_0an example
input file: hfbtho_NAMELIST.dat 
you can execute the job: ./main

208Pb(Z=82, N=126)

Skyrme SLy5 interaction

Let’s try the HFB calculation by using HFBTHO



one will obtain

lambda: chemical potential
pairing gap and pairing energy

radius, charge radius, and moments

breakdown of the energy

total energy：−B



154Sm (Z=62, N=92)
away from the magic numbers

modify the input file: hfbtho_NAMELIST.dat

proton_number = 62
neutron_number = 92
functional = SKM*

often used in the structure calculations

quadrupole moment

deformation beta2

Let’s try the HFB calculation by using HFBTHO

Question: is this nucleus deformed? what is the deformation?


