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Part 6 
-Exotic superfluid and nucleon superfluid-

• Toward neutron star physics from ultracold atoms

➡ Let’s try to examine nucleon superfluid from an ultracold atom perspective

A. L. Watts, et al., RMP 88, 021001 (2016).

Nucleon superfluid
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Outline

• Difference between a ultracold Fermi gas and 
neutron matter

• Neutron superfluid

• Neutron-proton pairing and proton superconductivity

• Short summary
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Similarities and differences

Low dens. High dens.

6Li (exp.)

PRC, 58, 1804 (1998).

Neutron star and cold atom EOS Similarities:

Many fermions

Strong short-range S-wave interaction

…

Differences:

Internal degrees of freedom (e.g., isospin)

Finite effective range

Higher-partial waves

Three-body force

…
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Low dens. High dens.

6Li (exp.)

PRC, 58, 1804 (1998).

Neutron star and cold atom EOS Similarities:

Many fermions

Strong short-range S-wave interaction

…

Differences:

Internal degrees of freedom (e.g., isospin)

Finite effective range

Higher-partial waves

Three-body force

…

𝑘cot𝛿𝑘 = −
1

𝑎𝑠
+
1

2
𝑘2𝑟effPhase shift (effective range expansion):

𝑎𝑠: s-wave scattering length 𝑟eff: effective range

𝒓𝐞𝐟𝐟 is smaller than |𝒂𝒔|, but non-negligible when it is comparable with 𝒅 ∼ 𝒌𝐅
−𝟏6



Finite-range interaction

෠𝑉 =
𝑔

2
෍

𝒌,𝒌′,𝑷,𝑠z ,𝑠𝑧
′

𝑐𝒌+𝑷/2𝑠𝑧
† 𝑐

−𝒌+𝑷/2𝑠𝑧
′

†
𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

Contact-type interaction

General two-body interaction

*𝑉(𝒌, 𝒌′) does not depend on the CoM momentum 𝑷

Partial-wave decomposition

𝑉 𝒌, 𝒌′ = 4𝜋෍

ℓ,𝑚

𝑉ℓ 𝑘, 𝑘′ 𝑌ℓ,𝑚 ෡𝒌 𝑌ℓ,𝑚
∗ ( ෡𝒌′)

෠𝑉 =
1

2
෍

𝒌,𝒌′,𝑷,𝑠z ,𝑠𝑧
′

𝑉(𝒌, 𝒌′)𝑐𝒌+𝑷/2𝑠𝑧
† 𝑐

−𝒌+𝑷/2𝑠𝑧
′

† 𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

*𝑠𝑧 = ±1/2 : neutron spin

𝑌ℓ,𝑚 ෡𝒌 : spherical harmonics with ෡𝒌 = 𝒌/|𝒌|
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Finite-range interaction
General two-body interaction

෠𝑉 = 2𝜋 ෍

𝒌,𝒌′,𝑷,𝑠z ,𝑠𝑧
′

෍

ℓ,𝑚

𝑉ℓ 𝑘, 𝑘′ 𝑌ℓ,𝑚 ෡𝒌 𝑌ℓ,𝑚
∗ ( ෡𝒌′) 𝑐𝒌+𝑷/2𝑠𝑧

† 𝑐
−𝒌+𝑷/2𝑠𝑧

′
† 𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

𝑠, 𝑠𝑧; 𝑠
′, 𝑠𝑧

′ =෍

𝑆,𝑆𝑧

|𝑆, 𝑆𝑧⟩⟨𝑆, 𝑆𝑧 𝑠, 𝑠𝑧; 𝑠
′, 𝑠𝑧

′

Coupling of two spins

෠𝑉 = 2𝜋 ෍

𝒌,𝒌′,𝑷,𝑠z ,𝑠𝑧
′

෍

𝑆,𝑆𝑧

෍

ℓ,𝑚

𝑉ℓ 𝑘, 𝑘′ 𝑌ℓ,𝑚 ෡𝒌 𝑌ℓ,𝑚
∗ ( ෡𝒌′) ⟨𝑆, 𝑆𝑧 𝑠, 𝑠𝑧; 𝑠

′, 𝑠𝑧
′ 2

× 𝑐𝒌+𝑷/2𝑠𝑧
† 𝑐

−𝒌+𝑷/2𝑠𝑧
′

† 𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

𝑠𝑧 = ±1/2 𝑠𝑧
′ = ±1/2

*tensor force is neglected for simplicity

Clebsch-Gordan coefficient

8



෠𝑉 = 2𝜋 ෍

𝒌,𝒌′,𝑷

෍

𝐽,𝐽𝑧

෍

𝑆,𝑆𝑧

෍

ℓ,𝑚

෍

𝑠z ,𝑠𝑧
′

𝑉ℓ 𝑘, 𝑘′ ⟨𝐽, 𝐽𝑧 ℓ,𝑚; 𝑆, 𝑆𝑧
2 ⟨𝑆, 𝑆𝑧 𝑠, 𝑠𝑧; 𝑠

′, 𝑠𝑧
′ 2

× 𝑌ℓ,𝑚 ෡𝒌 𝑌ℓ,𝑚
∗ ( ෡𝒌′)𝑐𝒌+𝑷/2𝑠𝑧

† 𝑐
−𝒌+𝑷/2𝑠𝑧

′
† 𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

ℓ,𝑚; 𝑆, 𝑆𝑧 =෍

𝐽,𝐽𝑧

|𝐽, 𝐽𝑧⟩⟨𝐽, 𝐽𝑧 ℓ,𝑚; 𝑆, 𝑆𝑧

Finite-range interaction
General two-body interaction with pair spin 𝑺

෠𝑉 = 2𝜋 ෍

𝒌,𝒌′,𝑷,𝑠z ,𝑠𝑧
′

෍

𝑆,𝑆𝑧

෍

ℓ,𝑚

𝑉ℓ 𝑘, 𝑘′ 𝑌ℓ,𝑚 ෡𝒌 𝑌ℓ,𝑚
∗ ( ෡𝒌′) ⟨𝑆, 𝑆𝑧 𝑠, 𝑠𝑧; 𝑠

′, 𝑠𝑧
′ 2

× 𝑐𝒌+𝑷/2𝑠𝑧
† 𝑐

−𝒌+𝑷/2𝑠𝑧
′

† 𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

Coupling of pair spin and angular momentum ℓ
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Example of neutron-neutron pairing

Term symbol: 2𝑆+1ℓ𝐽

Eur. Phys. J. A (2019) 55: 167

Nucleon pairing channel

1𝑆0 (𝑆 = 0, ℓ = 0, 𝐽 = 0)

3𝑃2 (𝑆 = 1, ℓ = 1, 𝐽 = 2)

෠𝑉1𝑆0 = 2𝜋 ෍

𝒌,𝒌′,𝑷

෍

𝑠z ,𝑠𝑧
′

𝑉0 𝑘, 𝑘′ ⟨0, 0 0,0; 0,0 2 ⟨0,0 1/2, 𝑠𝑧; 1/2, 𝑠𝑧
′ 2

× 𝑌0,0 ෡𝒌 𝑌0,0
∗ (෡𝒌′)𝑐𝒌+𝑷/2𝑠𝑧

† 𝑐
−𝒌+𝑷/2𝑠𝑧

′
† 𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

=
1

2
෍

𝒌,𝒌′,𝑷

෍

𝑠z ,𝑠𝑧
′

𝑉0 𝑘, 𝑘′ 𝑐𝒌+𝑷/2𝑠𝑧
† 𝑐

−𝒌+𝑷/2𝑠𝑧
′

† 𝑐−𝒌′+𝑷/2𝑠𝑧′𝑐𝒌′+𝑷/2𝑠𝑧

10



Example of neutron-neutron pairing
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Other pairing channels?

𝟑𝑷𝟎 channel is also attractive

Moreover stronger than 𝟑𝑷𝟐 at low energies

➡ In the spin-polarized case, 3P0 superfluid 

may appear in the dilute regime due to the 

suppression of 1S0 pairing

HT, H. Funaki, Y. Sekino, N. Yasutake, and M. Matsuo, Phys. Rev. C 108, L052802 (2023).
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Other pairing channels?

𝟑𝑷𝟎 channel is also attractive

Moreover stronger than 𝟑𝑷𝟐 at low energies

➡ In the spin-polarized case, 3P0 superfluid 

may appear in the dilute regime due to the 

suppression of 1S0 pairing

HT, H. Funaki, Y. Sekino, N. Yasutake, and M. Matsuo, Phys. Rev. C 108, L052802 (2023).

Ground-state phase diagram
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1S0 channel interaction

෠𝑉1𝑆0 = ෍

𝒌,𝒌′,𝑷

𝑉0 𝑘, 𝑘′ 𝑐𝒌+ Τ𝑷 2↑
† 𝑐−𝒌+ Τ𝑷 2↓

† 𝑐−𝒌′+ Τ𝑷 2↓𝑐𝒌′+ Τ𝑷 2↑

We need to determine 𝑉0 𝑘, 𝑘′ . How can we do that? 

𝑘cot𝛿𝑘 = −
1

𝑎𝑠
+
1

2
𝑘2𝑟eff

➡ Reproduce the phase shift

Once the phase shift is reproduced, two-body 

physics does not depend on the construction 

of the interactions 

(regardless of e.g., chiral EFT, Vlow k,…)

HT, T Hatsuda, P van Wyk, Y Ohashi

Sc. Rep. 9, 18477 (2019).

𝛿 𝑘
[d
eg
.]

𝑘 [fm−1]
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Separable Yamaguchi potential

𝑉0 𝑘, 𝑘′ = 𝑔𝛾𝑘𝛾𝑘′

Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

𝛾𝑘 =
1

1 + Τ𝑘 Λ 2Form factor:

𝑇 𝒌, 𝒌′; 𝜔 = 𝑉0 𝑘, 𝑘′ +෍

𝒑

𝑉0 𝑘, 𝑝
1

𝜔 + 𝑖𝛿 − 𝑝2/𝑚
𝑇 𝒑, 𝒌′; 𝜔

Two-body T matrix

= 𝑔𝛾𝑘𝛾𝑘′ + 𝑔𝛾𝑘෍

𝒑

𝛾𝑝
2

𝜔 + 𝑖𝛿 − 𝑝2/𝑚
𝛾𝑘′ +⋯

All terms are proportional to 𝛾𝑘𝛾𝑘′

➡ 𝑇 𝒌, 𝒌′; 𝜔 = 𝛾𝑘𝒯 𝜔 𝛾𝑘′

*Simplification for offshell component, but 

useful because of analytical form of T matrix
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Separable Yamaguchi potential

𝑉0 𝑘, 𝑘′ = 𝑔𝛾𝑘𝛾𝑘′

Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

𝛾𝑘 =
1

1 + Τ𝑘 Λ 2Form factor:

𝑇 𝒌, 𝒌′; 𝜔 = 𝑉0 𝑘, 𝑘′ +෍

𝒑

𝑉0 𝑘, 𝑝
1

𝜔 + 𝑖𝛿 − 𝑝2/𝑚
𝑇 𝒑, 𝒌′; 𝜔

Two-body T matrix

≡ 𝛾𝑘𝒯 𝜔 𝛾𝑘′ = 𝑔𝛾𝑘𝛾𝑘′ + 𝑔𝛾𝑘𝛾𝑘′෍

𝒑

𝛾𝑝
2

𝜔 + 𝑖𝛿 − 𝑝2/𝑚
𝒯 𝜔

𝒯 𝜔 =
𝑔

1 − 𝑔ΠY(𝜔)
ΠY 𝜔 =෍

𝒑

𝛾𝑝
2

𝜔 + 𝑖𝛿 − 𝑝2/𝑚
=
𝑚Λ3

8𝜋

1

𝑚𝜔 + 𝑖Λ
2
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Separable Yamaguchi potential

HT, T Hatsuda, P van Wyk, Y Ohashi

Sc. Rep. 9, 18477 (2019).
𝛿 𝑘

[d
eg
.]

𝑘 [fm−1]

𝑇 𝒌, 𝒌; 2𝜀𝒌
−1 = 1 +

𝑘

Λ

2 2
1

𝑔
−

𝑚Λ3

8𝜋 𝑘 + 𝑖Λ 2

≃
𝑚

4𝜋
−
1

𝑎𝑠
+
1

2
𝑟eff𝑘

2 − 𝑖𝑘

=
𝑚

4𝜋
𝑘 cot 𝛿𝑘 − 𝑖𝑘

𝑔 = −
4𝜋

𝑚

Λ

2
−

1

𝑎𝑠

−1

Λ =
3

2𝑟eff
1 + 1 −

16𝑟eff
9𝑎𝑠

𝑎𝑠 ≃ −18.5 fm

𝑟eff ≃ 2.75 fm

NN parameter

Phase shift of Yamaguchi potential Reproducing 𝜹𝒌 up to 𝒌 ∼ 𝟏 𝐟𝐦−𝟏

17



Outline

• Difference between a ultracold Fermi gas and 
neutron matter

• Neutron superfluid

• Neutron-proton pairing and proton superconductivity

• Short summary
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BCS-BEC crossover with 
separable finite-range potential

𝐻 = ෍

𝒌𝝈

𝜉𝒌𝑐𝒌𝜎
† 𝑐𝒌𝜎 + ෍

𝒌,𝒌′,𝑷

𝑉0 𝑘, 𝑘′ 𝑐𝒌+ Τ𝑷 2↑
† 𝑐−𝒌+ Τ𝑷 2↓

† 𝑐−𝒌′+ Τ𝑷 2↓𝑐𝒌′+ Τ𝑷 2↑

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′ ⟨𝑐−𝒌′↓𝑐𝒌′↑⟩ Σ𝜎 𝒌 =෍

𝒌′

𝑉0
|𝒌 − 𝒌′|

2
,
|𝒌 − 𝒌′|

2
⟨𝑐
𝒌′ഥ𝜎
† 𝑐𝒌′ഥ𝜎⟩

Hartree term (non-negligible for finite range)Pairing term 
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BCS-BEC crossover with 
separable finite-range potential

𝐻 = ෍

𝒌𝝈

𝜉𝒌𝑐𝒌𝜎
† 𝑐𝒌𝜎 + ෍

𝒌,𝒌′,𝑷

𝑉0 𝑘, 𝑘′ 𝑐𝒌+ Τ𝑷 2↑
† 𝑐−𝒌+ Τ𝑷 2↓

† 𝑐−𝒌′+ Τ𝑷 2↓𝑐𝒌′+ Τ𝑷 2↑

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′ ⟨𝑐−𝒌′↓𝑐𝒌′↑⟩ Σ𝜎 𝒌 =෍

𝒌′

𝑉0
|𝒌 − 𝒌′|

2
,
|𝒌 − 𝒌′|

2
⟨𝑐
𝒌′ഥ𝜎
† 𝑐𝒌′ഥ𝜎⟩

Hartree term (non-negligible for finite range)Pairing term 

𝐻MF =෍

𝒌𝝈

𝜉𝒌 + Σ𝜎(𝒌) 𝑐𝒌𝜎
† 𝑐𝒌𝜎 −෍

𝒌

Δ 𝒌 𝑐𝒌↑
† 𝑐−𝒌↓

† + Δ∗ 𝒌 𝑐−𝒌↓𝑐𝒌↑

−෍

𝒌,𝒌′

𝑉0 𝑘, 𝑘′ ⟨𝑐𝒌↑
† 𝑐−𝒌↓

† ⟩⟨𝑐−𝒌′↓𝑐𝒌′↑⟩ −෍

𝒑,𝒑′

𝑉0
|𝒑 − 𝒑′|

2
,
|𝒑 − 𝒑′|

2
⟨𝑐𝒑↑

† 𝑐𝒑↑⟩⟨𝑐𝒑′↓
†
𝑐𝒑′↓⟩

Mean-field Hamiltonian
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Hartree-Fock-Bogoliubov theory
*but Fock term is absent

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′ 𝑐−𝒌′↓𝑐𝒌′↑ = −𝑔𝛾𝑘෍

𝒌′

𝛾𝑘′ 𝑐−𝒌′↓𝑐𝒌′↑ ≡ Δ𝛾𝑘

Spin unpolarized: Σ 𝒌 = Σ↑ 𝒌 = Σ↓ 𝒌 , 𝑛𝒌 = ⟨𝑐𝒌↑
† 𝑐𝒌↑⟩ = ⟨𝑐𝒌↓

† 𝑐𝒌↓⟩

Separable condition:
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Hartree-Fock-Bogoliubov theory
*but Fock term is absent

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′ 𝑐−𝒌′↓𝑐𝒌′↑ = −𝑔𝛾𝑘෍

𝒌′

𝛾𝑘′ 𝑐−𝒌′↓𝑐𝒌′↑ ≡ Δ𝛾𝑘

𝐻MF = ෍

𝒌

Ψ𝒌
† ෡𝐻BdG(𝒌)Ψ𝒌 −

Δ 2

𝑔
+෍

𝒌

𝜉𝒌 −෍

𝒑

Σ 𝒌 𝑛𝒌

Spin unpolarized: Σ 𝒌 = Σ↑ 𝒌 = Σ↓ 𝒌 , 𝑛𝒌 = ⟨𝑐𝒌↑
† 𝑐𝒌↑⟩ = ⟨𝑐𝒌↓

† 𝑐𝒌↓⟩

Separable condition:

෡𝐻BdG 𝒌 =
𝜉𝒌 + Σ(𝒌) −Δ𝛾𝑘
−Δ∗𝛾𝑘 −𝜉𝒌 − Σ(𝒌) ±𝐸𝒌 = ± 𝜉𝒌 + Σ 𝒌 2 + Δ(𝒌) 2

Eigenenergy:
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Hartree-Fock-Bogoliubov theory
*but Fock term is absent

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′ 𝑐−𝒌′↓𝑐𝒌′↑ = −𝑔𝛾𝑘෍

𝒌′

𝛾𝑘′ 𝑐−𝒌′↓𝑐𝒌′↑ ≡ Δ𝛾𝑘

𝐻MF = ෍

𝒌

Ψ𝒌
† ෡𝐻BdG(𝒌)Ψ𝒌 −

Δ 2

𝑔
+෍

𝒌

𝜉𝒌 −෍

𝒑

Σ 𝒌 𝑛𝒌

Spin unpolarized: Σ 𝒌 = Σ↑ 𝒌 = Σ↓ 𝒌 , 𝑛𝒌 = ⟨𝑐𝒌↑
† 𝑐𝒌↑⟩ = ⟨𝑐𝒌↓

† 𝑐𝒌↓⟩

Separable condition:

෡𝐻BdG 𝒌 =
𝜉𝒌 + Σ(𝒌) −Δ𝛾𝑘
−Δ∗𝛾𝑘 −𝜉𝒌 − Σ(𝒌)

Bogoliubov transformation (same procedure with contact interaction)

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′
Δ(𝒌′)

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

𝜌 = 2෍

𝒌

𝑢𝒌
2𝑓(𝐸𝒌) + 𝑣𝒌

2 1 − 𝑓(𝐸𝒌)

Gap equation Neutron number density

±𝐸𝒌 = ± 𝜉𝒌 + Σ 𝒌 2 + Δ(𝒌) 2

Eigenenergy:
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Self-consistent equations

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′
Δ(𝒌′)

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

𝜌 ≡ 2෍

𝒌

𝑛𝒌 ≡ 2෍

𝒌

𝑢𝒌
2𝑓(𝐸𝒌) + 𝑣𝒌

2 1 − 𝑓(𝐸𝒌)

Gap equation

Neutron number density

Self-energy equation

Σ 𝒌 =෍

𝒑

𝑉0
|𝒌 − 𝒑|

2
,
|𝒌 − 𝒑|

2
𝑛𝒑 = 𝑔෍

𝒑

𝛾 𝒑−𝒌
2

2 𝑛𝒑

𝑚

4𝜋𝑎𝑠
= −෍

𝒌

𝛾𝑘
2 1

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

−
𝑚

𝑘2
𝑚

4𝜋𝑎𝑠
=
1

𝑔
+෍

𝒌

𝑚𝛾𝑘
2

𝑘2
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Self-consistent equations

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′
Δ(𝒌′)

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

𝜌 ≡ 2෍

𝒌

𝑛𝒌 ≡ 2෍

𝒌

𝑢𝒌
2𝑓(𝐸𝒌) + 𝑣𝒌

2 1 − 𝑓(𝐸𝒌)

Gap equation

Neutron number density

Self-energy equation

Σ 𝒌 =෍

𝒑

𝑉0
|𝒌 − 𝒑|

2
,
|𝒌 − 𝒑|

2
𝑛𝒑 = 𝑔෍

𝒑

𝛾 𝒑−𝒌
2

2 𝑛𝒑

𝑚

4𝜋𝑎𝑠
= −෍

𝒌

𝛾𝑘
2 1

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

−
𝑚

𝑘2
𝑚

4𝜋𝑎𝑠
=
1

𝑔
+෍

𝒌

𝑚𝛾𝑘
2

𝑘2

For given 𝝆, 𝒂𝒔, 𝒓𝐞𝐟𝐟

BCS

Τ𝜇 𝜀F ≃ 1
ΤΣ(𝒌) 𝜀F ≃ 0

Δ/𝜀FGap eq. ➡
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Self-consistent equations

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′
Δ(𝒌′)

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

𝜌 ≡ 2෍

𝒌

𝑛𝒌 ≡ 2෍

𝒌

𝑢𝒌
2𝑓(𝐸𝒌) + 𝑣𝒌

2 1 − 𝑓(𝐸𝒌)

Gap equation

Neutron number density

Self-energy equation

Σ 𝒌 =෍

𝒑

𝑉0
|𝒌 − 𝒑|

2
,
|𝒌 − 𝒑|

2
𝑛𝒑 = 𝑔෍

𝒑

𝛾 𝒑−𝒌
2

2 𝑛𝒑

𝑚

4𝜋𝑎𝑠
= −෍

𝒌

𝛾𝑘
2 1

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

−
𝑚

𝑘2
𝑚

4𝜋𝑎𝑠
=
1

𝑔
+෍

𝒌

𝑚𝛾𝑘
2

𝑘2

For given 𝝆, 𝒂𝒔, 𝒓𝐞𝐟𝐟

BCS

Τ𝜇 𝜀F ≃ 1
ΤΣ(𝒌) 𝜀F ≃ 0

Δ/𝜀FGap eq. ➡

HF-BCS
For given 𝝆, 𝒂𝒔, 𝒓𝐞𝐟𝐟

First, HF calculation

Δ/𝜀FThen, Gap eq. ➡

Τ𝜇 𝜀F, ΤΣ(𝒌) 𝜀F (Δ = 0)

27



Self-consistent equations

Δ 𝒌 = −෍

𝒌′

𝑉0 𝑘, 𝑘′
Δ(𝒌′)

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

𝜌 ≡ 2෍

𝒌

𝑛𝒌 ≡ 2෍

𝒌

𝑢𝒌
2𝑓(𝐸𝒌) + 𝑣𝒌

2 1 − 𝑓(𝐸𝒌)

Gap equation

Neutron number density

Self-energy equation

Σ 𝒌 =෍

𝒑

𝑉0
|𝒌 − 𝒑|

2
,
|𝒌 − 𝒑|

2
𝑛𝒑 = 𝑔෍

𝒑

𝛾 𝒑−𝒌
2

2 𝑛𝒑

𝑚

4𝜋𝑎𝑠
= −෍

𝒌

𝛾𝑘
2 1

2𝐸𝒌
tanh

𝛽𝐸𝒌
2

−
𝑚

𝑘2
𝑚

4𝜋𝑎𝑠
=
1

𝑔
+෍

𝒌

𝑚𝛾𝑘
2

𝑘2

For given 𝝆, 𝒂𝒔, 𝒓𝐞𝐟𝐟

Δ/𝜀F 𝜇/𝜀F Σ(𝒌)/𝜀F

obtain 3 quantities

HFB

For given 𝝆, 𝒂𝒔, 𝒓𝐞𝐟𝐟

BCS

Τ𝜇 𝜀F ≃ 1
ΤΣ(𝒌) 𝜀F ≃ 0

Δ/𝜀FGap eq. ➡

HF-BCS
For given 𝝆, 𝒂𝒔, 𝒓𝐞𝐟𝐟

First, HF calculation

Δ/𝜀FThen, Gap eq. ➡

Τ𝜇 𝜀F, ΤΣ(𝒌) 𝜀F (Δ = 0)
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Density-induced BCS-BEC crossover

𝑘F𝑟eff

Neutron matter: 𝑘F𝑟eff 𝑘F𝑎𝑠
−1 = −

2.7

18.5

M. Horikoshi and M. Kuwata-Gonokami,

J. Mod. Phys. E 28, 1930001 (2019)

Generalization to finite range
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Density-induced BCS-BEC crossover

HT and H. Liang, Phys. Rev. A 106, 043308 (2022).

𝑘F𝑟eff

Neutron matter: 𝑘F𝑟eff 𝑘F𝑎𝑠
−1 = −

2.7

18.5

M. Horikoshi and M. Kuwata-Gonokami,

J. Mod. Phys. E 28, 1930001 (2019)

Generalization to finite range
HFB result at unitarity (1/a = 0)

zero-range

➡ Finite range suppresses the pairing
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Pairing fluctuations with zero range

𝜌NSR = 2෍

𝒌

𝑓(𝜉𝒌
∗) −

1

𝛽
෍

𝑷,ℓ

[𝑇mb 𝑷, 𝑖𝜈ℓ − 𝑔]
𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿

𝑇mb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 −1 =
𝑚

4𝜋𝑎𝑠
+෍

𝒌

𝛾𝑘
2 1

2𝜉𝒌
tanh

𝜉𝒌
∗

2𝑇c
−
𝑚

𝑘2
= 0

NSR number density with separable finite-range interaction

𝑇mb 𝑷, 𝑖𝜈ℓ =
𝑔

1 + 𝑔Πmb(𝑷, 𝑖𝜈ℓ)

Thouless criterion

Many-body T matrix

Πmb(𝑷, 𝑖𝜈ℓ) = −෍

𝒌

𝛾𝑘
2
1 − 𝑓(𝜉𝒌+ Τ𝑷 2

∗ ) − 𝑓(𝜉𝒌+ Τ𝑷 2
∗ )

𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2
∗ − 𝜉𝒌+ Τ𝑷 2

∗

𝜉𝒌
∗ = 𝜉𝒌 + Σ(𝒌): Hartree-shifted dispersion

Pair propagator
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Pairing fluctuations with finite range

𝜌NSR = 2෍

𝒌

𝑓(𝜉𝒌
∗) −

1

𝛽
෍

𝑷,ℓ

[𝑇mb 𝑷, 𝑖𝜈ℓ − 𝑔]
𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿

𝑇mb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 −1 =
𝑚

4𝜋𝑎𝑠
+෍

𝒌

𝛾𝑘
2 1

2𝜉𝒌
∗ tanh

𝜉𝒌
∗

2𝑇c
−
𝑚

𝑘2
= 0

NSR number density with separable finite-range interaction

𝑇mb 𝑷, 𝑖𝜈ℓ =
𝑔

1 + 𝑔Πmb(𝑷, 𝑖𝜈ℓ)

Thouless criterion

Many-body T matrix

Πmb(𝑷, 𝑖𝜈ℓ) = −෍

𝒌

𝛾𝑘
2
1 − 𝑓(𝜉𝒌+ Τ𝑷 2

∗ ) − 𝑓(𝜉𝒌+ Τ𝑷 2
∗ )

𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2
∗ − 𝜉𝒌+ Τ𝑷 2

∗

𝜉𝒌
∗ = 𝜉𝒌 + Σ(𝒌): Hartree-shifted dispersion

Pair propagator

1st order (Hartree) term is subtracted
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1S0 critical temperature

𝑉low 𝑘: S. Ramanan and M. Urban, 

Phys. Rev. C 88, 054315 (2013)

● Lattice QMC: T. Abe and R. Seki, 

Phys. Rev. C 79, 054002 (2009).

(𝜌0= 0.17 fm−3)

Neutron Fermi momentum

HT, T. Hatsuda, P. van Wyk, and Y. Ohashi, Sci. Rep. 9, 18477 (2019).
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𝑉low 𝑘: S. Ramanan and M. Urban, 

Phys. Rev. C 88, 054315 (2013)

● Lattice QMC: T. Abe and R. Seki, 

Phys. Rev. C 79, 054002 (2009).

(𝜌0= 0.17 fm−3)

Neutron Fermi momentum Multi-rank with repulsion

1S0 critical temperature
HT, T. Hatsuda, P. van Wyk, and Y. Ohashi, Sci. Rep. 9, 18477 (2019).
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𝑉low 𝑘: S. Ramanan and M. Urban, 

Phys. Rev. C 88, 054315 (2013)

● Lattice QMC: T. Abe and R. Seki, 

Phys. Rev. C 79, 054002 (2009).

(𝜌0= 0.17 fm−3)

Neutron Fermi momentum

Cold-atom-like plot

Multi-rank with repulsion

1S0 critical temperature
HT, T. Hatsuda, P. van Wyk, and Y. Ohashi, Sci. Rep. 9, 18477 (2019).
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≃
1

4𝑒 1/3
𝑇𝑐
(BCS)

Tc is suppressed by a factor ~2.2

Screened attractive interaction 

by particle-hole fluctuations 

A. Chubukov, et al., PRB 93, 174516 (2016)

Latest experimental and theoretical 

results of Tc in the BCS-BEC crossover

M. Link, et al., PRL 130, 203401 (2023).

BCS BEC

Interaction strength

GMB≃BCS/2.2

GMB+pair fluctuations

GMB+pair fluctuations : L. Pisani, A, Perali, P. Pieri, and G. C. Strinati, PRB 97, 014528 (2018).

L. P. Gorkov and T. M. Melik-Barkhudarov, Sov. Phys. JETP 13, 1018 (1961).

≃
1

2.2
𝑇𝑐
(BCS)

36

Another effect beyond BCS:
Gor’kov-Melik-Barkhudanov (GMB)



Another effect beyond BCS:
Gor’kov-Melik-Barkhudanov (GMB)

37

M. Urban et al., PRC 101, 035803 (2020). 

Screening effect in 1S0 neutron superfluid

Understimating Tc compared to QMC?



Another effect beyond BCS:
Gor’kov-Melik-Barkhudanov (GMB)

38

M. Urban et al., PRC 101, 035803 (2020). 

Screening effect in 1S0 neutron superfluid

Understimating Tc compared to QMC?

 

   

 

   

  

    

  

           
  

 
   

 

 
   
 
  

   

G  

Enhanced GMB screening 

near the flat band

Effective mass ratio:

HT, et al., Phys. Rev. B 

109, L140504 (2024)



Short summary of neutron superfluid
• The difference  between an ultracold Fermi gas and neutron matter, 

that is, the non-local interaction has been addressed.

• While it is still challenging to control 𝑟eff in ultracold atom 

experiments, one can bridge two systems by using a reliable theory.

• The finite-range extension of the BCS-Eagles Leggett and NSR 

theories has been presented.
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Outline

• Difference between a ultracold Fermi gas and 
neutron matter

• Neutron superfluid

• Neutron-proton pairing and proton superconductivity

• Short summary
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Outline

• Difference between a ultracold Fermi gas and 
neutron matter

• Neutron superfluid

• Neutron-proton pairing and proton superconductivity

• Short summary
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Difference between cold atoms
and “neutron star matter”

Neutron (↑) Neutron (↓)

𝑉1𝑆0

6Li (↓)

−𝑈𝛿(𝒓 − 𝒓′)

6Li (↑)

Contact-type

Zero-range contact potential

2-component Fermi superfluid

Nuclear force (non-local)

Neutrons (2-component) 
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Difference between cold atoms
and “neutron star matter”

Neutron (↑) Neutron (↓)

Proton (↓)
Proton (↑)

𝑉1𝑆0

6Li (↓)

−𝑈𝛿(𝒓 − 𝒓′)

6Li (↑)

Contact-type

Zero-range contact potential

2-component Fermi superfluid

Nuclear force (non-local)

Neutron+Proton (4-component) 

𝑉1𝑆0

𝑉1𝑆0

𝑉3𝑆1𝑉3𝑆1
𝑉3𝑆1
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Finite proton fraction
in neutron star matter

Yp

Proton fraction

APR, PRC, 58, 1804 (1998)

Typically Yp ≃ 0~0.1

Yp =
𝜌p

𝜌n + 𝜌p

Density 𝜌 [fm−3]

𝜇n = 𝜇p + 𝜇e 𝜌p = 𝜌e

𝜷 equilibrium Charge neutrality

𝜇n =
3𝜋2𝜌n

2/3

2𝑚
𝜇p =

3𝜋2𝜌p
2/3

2𝑚

𝜇e = 3𝜋2𝜌e
1/3

(relativistic, 𝑚e ≃ 0)

Fermi degenerate chemical potential

1 − Yp
2/3

= Yp
2/3

+
2𝑚Yp

1/3

3𝜋2𝜌 1/3

∗ 𝜌 = 𝜌n + 𝜌p

ℏ𝑐 = 1 𝑚 ≃ 939 MeV

Equation for Yp in the non-interacting case
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Finite proton fraction
in neutron star matter

Dineutron      Deuteron 
correlation                     formation

・Cooper pairing  

without the density 

imbalance

・No binding energy

・Large density imbalance 

due to small proton fraction

・Finite binding energy

How strong spin-triplet np pairing 

affects 1S0 superfluidity? 

𝛿
𝑘
[d
eg
.]

𝑘 [fm−1]

𝑟eff = 1.76 fm

𝑎𝑠 = 5.42 fm

𝐸b = 2.22 MeV

𝟑𝑺𝟏 np phase shift

Deuteron binding energy
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● Chemical potential:

𝐻 = ෍

𝜏𝑧

෍

𝑠𝑧

෍

𝒌

𝜉𝒌𝜏𝑧𝑐𝒌𝑠𝑧𝜏𝑧
† 𝑐𝒌𝑠𝑧𝜏𝑧

●Annihilation operator:

+
1

2
෍

𝒌,𝒌′,𝑷

෍

𝑇𝑧=−1

+1

𝐶𝑇𝑧
† (𝒌, 𝑷)𝑉s 𝒌, 𝒌

′ 𝐶𝑇𝑧 (𝒌, 𝑷)

spin-singlet isospin-triplet (isovector) interaction

spin-triplet isospin-singlet (isoscalar) interaction

𝜉𝒌𝜏𝑧 =
𝑘2

2𝑚
− 𝜇𝜏𝑧● Kinetic energy: 𝜇𝜏𝑧

● Nucleon spin and isospin : 𝑠, 𝜏

● Nucleon mass: 𝑚 = 939MeV ● Interaction potential: 𝑉S,T 𝒌, 𝒌′

Neutron-proton mixture

+
1

2
෍

𝒌,𝒌′ ,𝑷

෍

𝑆𝑧=−1

+1

𝐷𝑆𝑧
† (𝒌, 𝑷)𝑉t 𝒌, 𝒌

′ 𝐷𝑆𝑧(𝒌, 𝑷)

𝐶𝑇𝑧 , 𝐷𝑆𝑧: pair operators in their channels

𝑐𝒌𝑠𝑧𝜏𝑧

Hamiltonian
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● Chemical potential:

𝐻 = ෍

𝜏𝑧

෍

𝑠𝑧

෍

𝒌

𝜉𝒌𝜏𝑧𝑐𝒌𝑠𝑧𝜏𝑧
† 𝑐𝒌𝑠𝑧𝜏𝑧

●Annihilation operator:

+
1

2
෍

𝒌,𝒌′,𝑷

෍

𝑇𝑧=−1

+1

𝐶𝑇𝑧
† (𝒌, 𝑷)𝑉s 𝒌, 𝒌

′ 𝐶𝑇𝑧 (𝒌, 𝑷)

spin-singlet isospin-triplet (isovector) interaction

spin-triplet isospin-singlet (isoscalar) interaction

𝜉𝒌𝜏𝑧 =
𝑘2

2𝑚
− 𝜇𝜏𝑧● Kinetic energy: 𝜇𝜏𝑧

● Nucleon spin and isospin : 𝑠, 𝜏

● Nucleon mass: 𝑚 = 939MeV ● Interaction potential: 𝑉S,T 𝒌, 𝒌′

Neutron-proton mixture

+
1

2
෍

𝒌,𝒌′ ,𝑷

෍

𝑆𝑧=−1

+1

𝐷𝑆𝑧
† (𝒌, 𝑷)𝑉t 𝒌, 𝒌

′ 𝐷𝑆𝑧(𝒌, 𝑷)

𝐶𝑇𝑧 , 𝐷𝑆𝑧: pair operators in their channels

𝑐𝒌𝑠𝑧𝜏𝑧

𝐶𝑇𝑧 𝒌, 𝑷 = ෍

𝑠𝑧,𝑠𝑧
′ ,𝜏𝑧,𝜏𝑧

′

1
2 ,
1
2 ; 𝑠𝑧 , 𝑠𝑧

′ 0,0
1
2 ,
1
2 ; 𝜏𝑧 , 𝜏𝑧

′ 1, 𝑇𝑧 𝑐
−𝒌+

𝑷
2
𝑠𝑧𝜏𝑧

𝑐
𝒌+

𝑷
2
𝑠𝑧
′𝜏𝑧
′

𝐷𝑆𝑧 𝒌, 𝑷 = ෍

𝑠𝑧,𝑠𝑧
′ ,𝜏𝑧,𝜏𝑧

′

1
2 ,
1
2 ; 𝑠𝑧 , 𝑠𝑧

′ 1, 𝑆𝑧
1
2 ,
1
2 ; 𝜏𝑧 , 𝜏𝑧

′ 0,0 𝑐
−𝒌+

𝑷
2
𝑠𝑧𝜏𝑧

𝑐
𝒌+

𝑷
2
𝑠𝑧
′𝜏𝑧
′

Hamiltonian
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Neutron-proton mixture

𝐻

𝑠𝑧 = Τ+(−)1 2 ≔↑ (↓) 𝜏𝑧 = Τ+(−)1 2 ≔ n(p)
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Neutron-proton mixture

𝐻

𝑠𝑧 = Τ+(−)1 2 ≔↑ (↓) 𝜏𝑧 = Τ+(−)1 2 ≔ n(p)

𝑛 ↑

𝑛 𝜎

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↓

𝑛 ↑

𝑛 ↓

𝑝 𝜎

𝑛 𝜎

𝑝 𝜎

𝑝 ↑

(𝑝 ↑)

(𝑝 ↓)

(𝑝 ↑)

(𝑝 ↓)

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓
𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓
𝑛 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓49



𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑ 𝑝 ↑

𝑛 ↓ 𝑛 ↓

+ 𝑉s + 𝑉t
2

+
𝑉s + 𝑉t
2

= 𝑉s + 𝑉t

1st
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𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑ 𝑝 ↑

𝑛 ↓ 𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

+

+ + +

𝑉s + 𝑉t
2

+
𝑉s + 𝑉t
2

= 𝑉s + 𝑉t

2
𝑉s + 𝑉t
2

2

Π𝑛𝑝 + 2
𝑉s −𝑉t
2

2

Π𝑛𝑝 = 𝑉s
2 + 𝑉t

2 Π𝑛𝑝

1st

2nd

Π𝑛𝑝Π𝑛𝑝Π𝑛𝑝 Π𝑛𝑝
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𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑ 𝑝 ↑

𝑛 ↓ 𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

𝑝 ↑

𝑛 ↓

𝑛 ↑

𝑝 ↓

𝑝 ↑

𝑛 ↓

+

+ + +

+

+ × 3 + × 3

𝑉s + 𝑉t
2

+
𝑉s + 𝑉t
2

= 𝑉s + 𝑉t

2
𝑉s + 𝑉t
2

2

Π𝑛𝑝 + 2
𝑉s −𝑉t
2

2

Π𝑛𝑝 = 𝑉s
2 + 𝑉t

2 Π𝑛𝑝

2
𝑉s +𝑉t
2

3

Π𝑛𝑝 + 6
𝑉s + 𝑉t
2

𝑉s +𝑉t
2

2

Π𝑛𝑝

= 𝑉s
3 + 𝑉t

3 Π𝑛𝑝
2

1st

2nd

3rd

𝑇𝑛𝑝 =
𝑉s

1 − 𝑉sΠ𝑛𝑝
+

𝑉t
1 − 𝑉𝑡Π𝑛𝑝

Π𝑛𝑝Π𝑛𝑝Π𝑛𝑝 Π𝑛𝑝

𝒏𝒑 T matrix
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NSR theory
in asymmetric nuclear matter

𝜌NSR,n = ෍

𝒌,,𝑠𝑧

𝑓(𝜉𝒌n
∗ ) −

1

𝛽
෍

𝑷,ℓ

[𝑇nn 𝑷, 𝑖𝜈ℓ − 𝑔nn]
𝜕Πnn 𝑷, 𝑖𝜈ℓ

𝜕𝜇n
𝑒𝑖𝜈ℓ𝛿

−
1

𝛽
෍

𝑷,ℓ

[𝑇np
t 𝑷, 𝑖𝜈ℓ − 𝑔np

𝑠 ]
𝜕Πnp

𝑠 𝑷, 𝑖𝜈ℓ

𝜕𝜇n
𝑒𝑖𝜈ℓ𝛿

−
3

𝛽
෍

𝑷,ℓ

[𝑇np
t 𝑷, 𝑖𝜈ℓ − 𝑔np

𝑠 ]
𝜕Πnp

𝑡 𝑷, 𝑖𝜈ℓ

𝜕𝜇n
𝑒𝑖𝜈ℓ𝛿

𝜌NSR,p = ෍

𝒌,,𝑠𝑧

𝑓(𝜉𝒌p
∗ ) −

1

𝛽
෍

𝑷,ℓ

[𝑇pp 𝑷, 𝑖𝜈ℓ − 𝑔pp]
𝜕Πpp 𝑷, 𝑖𝜈ℓ

𝜕𝜇p
𝑒𝑖𝜈ℓ𝛿

−
1

𝛽
෍

𝑷,ℓ

[𝑇np
t 𝑷, 𝑖𝜈ℓ − 𝑔np

𝑠 ]
𝜕Πnp

𝑠 𝑷, 𝑖𝜈ℓ

𝜕𝜇p
𝑒𝑖𝜈ℓ𝛿

−
3

𝛽
෍

𝑷,ℓ

[𝑇np
t 𝑷, 𝑖𝜈ℓ − 𝑔np

𝑠 ]
𝜕Πnp

𝑡 𝑷, 𝑖𝜈ℓ

𝜕𝜇p
𝑒𝑖𝜈ℓ𝛿

Neutron number density

Proton number density

Isovector nn

Isovector np

Isoscalar np

Isovector pp

Isovector np

Isoscalar np
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NSR theory
in asymmetric nuclear matter

Nucleon number densities

Thouless criterion of various pairing channels

𝜌NSR,n 𝜌NSR,p 𝜇n 𝜇p

Nucleon chemical potential

𝑇nn 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 −1 = 0

𝑇pp 𝑷 = 𝟎, 𝑖𝜈ℓ = 0
−1

= 0

𝑇np
𝑠 𝑷 = 𝟎, 𝑖𝜈ℓ = 0

−1
= 0

𝑇np
𝑡 𝑷 = 𝟎, 𝑖𝜈ℓ = 0

−1
= 0

:Isovector neutron superfluid

:Isovector proton superconductivity

:Isovector neutron-proton superconductivity

:Isoscalr neutron-proton superconductivity

➡ Look for the highest one
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Deuteron correlations in uniform matter

• BEC-BCS crossover in symmetric nuclear matter

Deuteron condensation in SNM Plot with cold-atom-like scale

𝑇BEC
d =

𝜋

𝑚

𝜌n
3𝜁 3/2

2
3

Dilute deuteron BEC temperature: 

𝑎𝑡 = 5.42 fm > 0

Low density High density Low densityHigh density

Cooper pair
Molecule

Molecule

Cooper pair

HT, T. Hatsuda, P. van Wyk, and Y. Ohashi, Sci. Rep. 9, 18477 (2019).
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Mean-field v.s. NSR

Fluctuation effects on 𝑻𝐜 in SNM and PNM

PNM (pure neutron matter) SNM (symmetric nuclear matter)

Pairing fluctuation effects 

are more remarkable in np 

pairing than nn pairing
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Interplay of pairing effects in 
asymmetric nuclear matter

Asymmetric nuclear matter: 𝑌p = 0.1

Vnp

Vnp

Vnp

Vnp

Vnp

Vnp

Even without deuteron condensations, proton superconducting critical temperature 

is strongly affected by neutron-proton interaction.

𝜇p
H = 𝜇p − Σp

H ≃ −𝐸b
Signature of deuteron formation
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Proton pairing beyond NSR theory

Thouless criterion of proton superconductivity 𝑇pp 𝑷 = 𝟎, 𝑖𝜈ℓ = 0
−1

= 0

𝑉s
𝑇pp

𝑇pp

𝑉s

Proton

+=

*In the NSR theory, the Thouless criterion of proton superconducting instability itself is 

insensitive to the existence of neutrons.
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Proton pairing beyond NSR theory

Thouless criterion of proton superconductivity 𝑇pp 𝑷 = 𝟎, 𝑖𝜈ℓ = 0
−1

= 0

𝑉s
+=𝑇pp

𝑇pp

𝑉s

But we have more neutrons in neutron star matter!

➡How do many neutrons affect proton SC?

proton
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Neutron-mediated interaction 
between protons

Proton (↓)Proton (↑)

𝑉pp: spin-singlet proton-proton interaction (𝑎s = −17.164 fm)

Close to unitarity (or bound) at subnuclear densities (
1

𝑘F|𝑎𝑠|
≫ 1)

Neutron-mediated proton-proton interaction (𝑽𝐭 ≫ 𝑽𝐬 ≃ 𝟎)

𝑉pp

Proton (↑)
Proton (↓)

𝑉med.
HT, et al., Phys. Lett. B 851, 138567 (2024).
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bound diproton induced by 
neutron density fluctuations 

𝑉pp + 𝑉med.+ polaron effect → bound diproton

Possibly changing the scenarios of clustering in 

neutron-rich nuclei and cooling in neutron stars.

𝑇c
pp

= 0.218
3𝜋2𝜌p

2/3

2𝑀eff

Diproton BEC temperature

arXiv:1302.6626

*Proton superconductivity 

𝑌p → 0

D
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n
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d
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g
 e

n
er

g
y

HT, et al., Phys. Lett. B 851, 138567 (2024).
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bound diproton induced by 
neutron density fluctuations 

𝑉pp + 𝑉med.+ polaron effect → bound diproton

Possibly changing the scenarios of clustering in 

neutron-rich nuclei and cooling in neutron stars.

𝑇c
pp

= 0.218
3𝜋2𝜌p

2/3

2𝑀eff

Diproton BEC temperature

arXiv:1302.6626

*Proton superconductivity 

𝑌p → 0

* But dilute approximation might overestimate 𝑬𝐩𝐩
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n
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g
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HT, et al., Phys. Lett. B 851, 138567 (2024).
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e.g., lack of medium interaction induced by three-body force

Y. Lim and J. W. Holt, Phys. Rev. C 103, 025807 (2021)



Implication of bound protons
in neutron-star matter

63

https://astrobites.org/2017/10/05/nuclear-pasta-in-neutron-stars/

Neutron SF + nuclei Neutron SF + diproton BEC + nuclei Neutron SF + Proton SC



Outline

• Difference between a ultracold Fermi gas and 
neutron matter

• Neutron superfluid

• Neutron-proton pairing and proton superconductivity

• Short summary
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Outline

• Difference between a ultracold Fermi gas and 
neutron matter

• Neutron superfluid

• Neutron-proton pairing and proton superconductivity

• Short summary
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Summary of Part 6
• The difference between a two-component ultracold Fermi gas and neutron star 

matter has been discussed from a viewpoint of the BCS-BEC crossover theory.

• Strong isovector neutron-proton interaction significantly affects proton 
superconductivity even without the neutron-proton pairing (deuteron) 
condensation.

• Proton superconductivity beyond NSR theory has been examined, but more 
detailed investigation is needed.
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Appendix
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Superfluid phase transition 
beyond BCS 

We want to know Neutron density vs. Critical temperature (and Gap) 

𝜌 or 𝑘F 𝑇c and Δ

(e.g. NSR correction) (e.g. GMB correction)

Sci. Rep. 9, 18477 (2019). M. Urban et al., PRC 101, 035803 (2020). 68



Gor’kov-Melik-Barkhudarov screening 

≃
1

4𝑒 1/3
𝑇𝑐
(BCS)

Tc is suppressed by a factor ~2.2

Screened attractive interaction 

by particle-hole fluctuations 

A. Chubukov, et al., PRB 93, 174516 (2016)

Latest experimental and theoretical 

results of Tc in the BCS-BEC crossover

M. Link, et al., PRL 130, 203401 (2023).

BCS BEC

Interaction strength

GMB≃BCS/2.2

GMB+pair fluctuations

GMB+pair fluctuations : L. Pisani, A, Perali, P. Pieri, and G. C. Strinati, PRB 97, 014528 (2018).

L. P. Gorkov and T. M. Melik-Barkhudarov, Sov. Phys. JETP 13, 1018 (1961).

≃
1

2.2
𝑇𝑐
(BCS)
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Generalized GMB approach
GMB screening on critical temperature 

in the single-band BCS-BEC crossover

Z.-Q. Yu, et al., PRA 79, 053636 (2009).

attractive interaction is replaced by the screened interaction

Particle-hole bubble is replaced by the one averaged at the Fermi surface

GMB screening is significant when 

particle-hole fluctuations are strong.

Large Fermi surface (FS) + finite range

BCS BEC
Interaction strength

arXiv:2402.06454

70



GMB corrections and beyond

M. Urban, et al., PRC 101, 035803 (2020). 

L. G. Cao, U. Lombardo, and P. Schuck, 

PRC 74, 064301 (2006). 

Particle-hole bubbles

L. Pisani, et al., PRB 97, 014528 (2018).; 

98, 104507 (2018). 
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NG mode gap and FFLO-like correlations

▶ NG mode gap at critical temperatures ▶ FFLO-like correlations in ANM
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Spin-triplet neutron-proton interaction
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Self-energy of protonic polaron

HT and S. Uchino, NJP, 20, 073048 (2018). 

Many-body T-matrix approach

Reproducing cold atom experiments 

 

    

   

    

   

    

   

                   
     

 
  
  

𝑇MBEC = 0.218𝑇F

BCS BEC

M. Ota, et al., PRA 95,053623 (2017).

Photoemission spectraAtomic polaron energy Critical temperature
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Proton spectral weight in neutron-rich matter

𝐴p𝜎 𝒌 = 𝟎, 𝜔 = −
1

𝜋
Im𝐺p𝜎 𝒌 = 0, 𝜔

Protonic polaron can be stabilized even under the deuteron correlations
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 a)

Deuteron energy

∼ −2.2 MeV

Attractive polaron
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Protonic polaron energy

Τ𝐸 𝐴 = 𝐸PNM + 𝑬𝐩 Τ𝜌p 𝜌n + 𝑂(𝜌p
2)
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 a)

Τ𝐸 𝐴 = 𝐸SNM + 𝑺𝛽 + 𝑂(𝛽2) 𝛽 =
𝜌n − 𝜌p

𝜌n + 𝜌p

Landau-Pomeranchuk energy density (T = 0)

Energy density with symmetry energy
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