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Part 5 
-Pairing fluctuations 

beyond mean-field theory-
• Understanding the basics of BCS-BEC crossover
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Let’s try to go beyond mean-field theory at finite temperature

Feynman diagram for pairing fluctuations



Outline

• Why beyond mean-field approximation?

• Nozières-Schmitt-Rink theory

• Pseudogap and short-range correlations

• Short summary
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Nozières-Schmitt-Rink theory
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Perturbative expansion and 
thermal Green’s function

𝐻 = ෍

𝒌,𝜎

𝜉𝒌𝑐𝒌𝜎
† 𝑐𝒌𝜎 + 𝑔 ෍

𝒌,𝒌′,𝑷 

𝑐𝒌+𝑷/2↑
† 𝑐−𝒌+𝑷/2↓

† 𝑐−𝒌′+𝑷/2↓𝑐𝒌′+𝑷/2↑

≡ 𝐻0 + 𝑉
In contrast to mean-field theory, we keep 

the 𝑃 summation, leading to Bose dist.
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Grand-canonical partition function 𝒁 and thermodynamic potential 𝛀 

At this moment, we know only the non-interacting counterpart 𝑍0 = Tr 𝑒−𝛽𝐻0 ≡ 𝑒−𝛽Ω0

perturbative expansion with respect to 𝑽

∗ 𝛽 = 1/𝑇
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𝛽
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1

2𝛽
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𝛽
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න
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෠𝑉(𝜏1) ෠𝑉(𝜏2)
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𝒜2c = 𝒜2 −
1

2
𝒜1

2

Connected diagram



Perturbative expansion of Ω
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1st-order perturbation (n =1)
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⋯
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Imaginary-time Green’s function: 
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Equation of motion of 𝑮𝒌𝝈
𝟎 (𝝉)

𝜕

𝜕𝜏
𝐺𝒌𝜎

0 𝜏 ≡ −
𝜕

𝜕𝜏
𝜃 𝜏 𝑐𝒌𝜎 𝜏 𝑐𝒌𝜎

† 0
0

− 𝜃(−𝜏) 𝑐𝒌𝜎
† 0 𝑐𝒌𝜎 𝜏

0

= −𝛿 𝜏 − 𝑇𝜏

𝜕𝑐𝒌𝜎 𝜏

𝜕𝜏
𝑐𝒌𝜎

† 0

0

= −𝛿 𝜏 + 𝜉𝒌 𝑇𝜏𝑐𝒌𝜎(𝜏)𝑐𝒌𝜎
† 0

0

*Heisenberg EOM of 𝑐𝒌𝜎(𝜏)

𝜕

𝜕𝜏
− 𝜉𝒌 𝐺𝒌𝜎

0 𝜏 = −𝛿(𝜏) 𝐺𝒌𝜎
0 𝜏 =

1

𝛽
෍

ℓ

𝐺𝒌𝜎
0 𝑖𝜔ℓ 𝑒−𝑖𝜔ℓ𝜏

Inverse trans.

+
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0 𝜏 + 𝛽 = −𝐺𝒌𝜎

0 (𝜏)

Fermion is anti-periodic for 𝜏

𝒜1c = − ෍

𝑷,ℓ 

𝑔 Πmb 𝑷, 𝑖𝜈ℓ 𝑒𝑖𝜈ℓ𝛿

Πmb 𝑷, 𝑖𝜈ℓ =
1

𝛽
෍

𝒌,ℓ

𝐺𝒌+ Τ𝑷 2↑
0 (𝑖𝜔ℓ′ + 𝑖𝜈ℓ)𝐺−𝒌+ Τ𝑷 2↓

0 (−𝑖𝜔ℓ′)

𝜈ℓ = 2ℓ𝜋/𝛽 : boson Matsubara frequency
Pair propagator 



Perturbative expansion of Ω
1st-order perturbation (n =1)

𝒜1c =
1

𝛽
෍

𝑷,ℓ 

𝑔 Πmb 𝑷, 𝑖𝜈ℓ 𝑒𝑖𝜈ℓ𝛿

Πmb 𝑷, 𝑖𝜈ℓ =
1

𝛽
෍

𝒌,ℓ

𝐺𝒌+ Τ𝑷 2↑
0 (𝑖𝜔ℓ′ + 𝑖𝜈ℓ)𝐺−𝒌+ Τ𝑷 2↓

0 (−𝑖𝜔ℓ′)

Pair propagator 

=
1

𝛽
෍

𝒌,ℓ

1

(𝑖𝜔ℓ′ + 𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2)(−𝑖𝜔ℓ′ − 𝜉−𝒌+𝑷/2)



Perturbative expansion of Ω
1st-order perturbation (n =1)
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෍
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𝑔 Πmb 𝑷, 𝑖𝜈ℓ 𝑒𝑖𝜈ℓ𝛿

Πmb 𝑷, 𝑖𝜈ℓ =
1

𝛽
෍

𝒌,ℓ

𝐺𝒌+ Τ𝑷 2↑
0 (𝑖𝜔ℓ′ + 𝑖𝜈ℓ)𝐺−𝒌+ Τ𝑷 2↓

0 (−𝑖𝜔ℓ′)

Pair propagator 

=
1

𝛽
෍

𝒌,ℓ

1

(𝑖𝜔ℓ′ + 𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2)(−𝑖𝜔ℓ′ − 𝜉−𝒌+𝑷/2)

= ෍

𝒌

ර
𝐶

𝑓 𝑧 𝑑𝑧

2𝜋𝑖

1

(𝑧 + 𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2)(𝑧 + 𝜉−𝒌+𝑷/2)

= − ෍

𝒌

1 − 𝑓(𝜉𝒌+𝑷/2) − 𝑓(𝜉−𝒌+𝑷/2)

𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2 − 𝜉−𝒌+𝑷/2



Perturbative expansion of Ω
1st-order perturbation (n =1)

𝒜1c =
1

𝛽
෍

𝑷,ℓ 

𝑔 Πmb 𝑷, 𝑖𝜈ℓ 𝑒𝑖𝜈ℓ𝛿

Πmb 𝑷, 𝑖𝜈ℓ =
1

𝛽
෍

𝒌,ℓ

𝐺𝒌+ Τ𝑷 2↑
0 (𝑖𝜔ℓ′ + 𝑖𝜈ℓ)𝐺−𝒌+ Τ𝑷 2↓

0 (−𝑖𝜔ℓ′)

Pair propagator 

=
1

𝛽
෍

𝒌,ℓ

1

(𝑖𝜔ℓ′ + 𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2)(−𝑖𝜔ℓ′ − 𝜉−𝒌+𝑷/2)

= ෍

𝒌

ර
𝐶

𝑓 𝑧 𝑑𝑧

2𝜋𝑖

1

(𝑧 + 𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2)(𝑧 + 𝜉−𝒌+𝑷/2)

= − ෍

𝒌

1 − 𝑓(𝜉𝒌+𝑷/2) − 𝑓(𝜉−𝒌+𝑷/2)

𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2 − 𝜉−𝒌+𝑷/2

1 − 𝑓(𝜉𝒌+𝑷/2) − 𝑓(𝜉−𝒌+𝑷/2)

[1 − 𝑓 𝜉𝒌+ Τ𝑷 𝟐 ][1 − 𝑓 𝜉−𝒌+ Τ𝑷 𝟐 ]

− 𝑓(𝜉𝒌+ Τ𝑷 2)𝑓(𝜉−𝒌+ Τ𝑷 2)

Pauli block factor 

= pp – hh 



Perturbative expansion of Ω
1st-order perturbation (n =1)

𝒜1c =
1

𝛽
෍

𝑷,ℓ 

𝑔 Πmb 𝑷, 𝑖𝜈ℓ 𝑒𝑖𝜈ℓ𝛿

Πmb 𝑷, 𝑖𝜈ℓ =
1

𝛽
෍

𝒌,ℓ

𝐺𝒌+ Τ𝑷 2↑
0 (𝑖𝜔ℓ′ + 𝑖𝜈ℓ)𝐺−𝒌+ Τ𝑷 2↓

0 (−𝑖𝜔ℓ′)

Pair propagator 

=
1

𝛽
෍

𝒌,ℓ

1

(𝑖𝜔ℓ′ + 𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2)(−𝑖𝜔ℓ′ − 𝜉−𝒌+𝑷/2)

= ෍

𝒌

ර
𝐶

𝑓 𝑧 𝑑𝑧

2𝜋𝑖

1

(𝑧 + 𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2)(𝑧 + 𝜉−𝒌+𝑷/2)

= − ෍

𝒌

1 − 𝑓(𝜉𝒌+𝑷/2) − 𝑓(𝜉−𝒌+𝑷/2)

𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2 − 𝜉−𝒌+𝑷/2

Πmb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 = ෍

𝒌

1 − 2𝑓(𝜉𝒌)

2𝜉𝒌

𝑇=𝜇=0 
෍

𝒌

𝑚

𝑘2 UV divergence!



Ladder approximation

𝑔

𝑔

Πmb

It is found that pair propagator 𝚷𝐦𝐛 exhibits an UV divergence

Since we cannot sum up all the diagrams, we focus on the ladder-type ones,

Because the UV divergence implies its importance

∼ Λ



Ladder approximation

𝑔

𝑔

Πmb

It is found that pair propagator 𝚷𝐦𝐛 exhibits an UV divergence

Since we cannot sum up all the diagrams, we focus on the ladder-type ones,

Because the UV divergence implies its importance

∼ Λ

NSR thermodynamic potential

∗ 𝑈 = 𝑔, 𝒒 = 𝑷



NSR thermodynamic potential

Ladder approximation

𝑔

𝑔

Πmb

It is found that pair propagator 𝚷𝐦𝐛 exhibits an UV divergence

Since we cannot sum up all the diagrams, we focus on the ladder-type ones,

Because the UV divergence implies its importance

∼ Λ

Why 𝑛 − 1 ?

Example of 𝒏 = 𝟑

𝑔

∗ 𝑈 = 𝑔, 𝒒 = 𝑷



NSR theory with renormalization

𝜌NSR = −
𝜕Ω0

𝜕𝜇
−

𝜕ΩNSR

𝜕𝜇

ΩNSR − Ω0 =
1

𝛽
෍

𝑷,ℓ

ln 1 + 𝑔Πmb 𝑷, 𝑖𝜈ℓ 𝑒𝑖𝜈ℓ𝛿

1

𝑔
=

𝑚

4𝜋𝑎𝑠
−

𝑚Λ

2𝜋2
≡

𝑚

4𝜋𝑎𝑠
− ෍

𝒌 ≤Λ

𝑚

𝑘2

Renormalization relation

ΩNSR − Ω0 =
1

𝛽
෍

𝑷,ℓ

ln 1 +
4𝜋𝑎𝑠

𝑚
Πmb 𝑷, 𝑖𝜈ℓ − ෍

𝒌

𝑚

𝑘2
𝑒𝑖𝜈ℓ𝛿

Regularized NSR thermodynamic potential

Let’s check the number density:



𝜌NSR = 2 ෍

𝒌

𝑓(𝜉𝒌) −
1

𝛽
෍

𝑷,ℓ

4𝜋𝑎𝑠
𝑚

1 +
4𝜋𝑎𝑠

𝑚
Πmb 𝑷, 𝑖𝜈ℓ − σ𝒌

𝑚
𝑘2

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿

𝑇𝑚𝑏 𝑷, 𝑖𝜈ℓ =
1

𝑚
4𝜋𝑎𝑠

+ Πmb 𝑷, 𝑖𝜈ℓ − σ𝒌
𝑚
𝑘2

≡
𝑔

1 + 𝑔Πmb(𝑷, 𝑖𝜈ℓ)

𝑔

𝑔

−=
𝑇mb

Πmb

𝑇mb

In-medium T matrix (G matrix)

Πmb(𝑷, 𝑖𝜈ℓ) = − ෍

𝒌

[1 − 𝑓 𝜉𝒌+ Τ𝑷 𝟐 ][1 − 𝑓 𝜉−𝒌+ Τ𝑷 𝟐 ] − 𝑓(𝜉𝒌+ Τ𝑷 2)𝑓(𝜉−𝒌+ Τ𝑷 2)

𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2 − 𝜉−𝒌+𝑷/2

* In the G-matrix case for nuclear case, the hh part is neglected for simplicity



𝜌NSR = 2 ෍

𝒌

𝑓(𝜉𝒌) −
1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿 ≡ 𝜌0 + 𝛿𝜌



𝜌NSR = 2 ෍

𝒌

𝑓(𝜉𝒌) −
1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿 ≡ 𝜌0 + 𝛿𝜌

In the BEC regime (𝜇 < 0, 𝜇 ≫ 𝑇) 𝑓 𝜉𝒌 ≃ 0, 𝜌0 ≃ 0

Πmb 𝑷, 𝑖𝜈ℓ ≃ − ෍

𝒌

1

𝑖𝜈ℓ −
𝑃2

4𝑚 −
𝑘2

𝑚 + 2𝜇

=
𝑚Λ

2𝜋2
−

𝑚

4𝜋
𝑚

𝑃2

4𝑚
− 𝑖𝜈ℓ − 2𝜇

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
≃

𝑚2

4𝜋

1

𝑚
𝑃2

4𝑚 − 𝑖𝜈ℓ − 2𝜇



𝜌NSR = 2 ෍

𝒌

𝑓(𝜉𝒌) −
1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿 ≡ 𝜌0 + 𝛿𝜌

In the BEC regime (𝜇 < 0, 𝜇 ≫ 𝑇) 𝑓 𝜉𝒌 ≃ 0, 𝜌0 ≃ 0

Πmb 𝑷, 𝑖𝜈ℓ ≃ − ෍

𝒌

1

𝑖𝜈ℓ −
𝑃2

4𝑚 −
𝑘2

𝑚 + 2𝜇

=
𝑚Λ

2𝜋2
−

𝑚

4𝜋
𝑚

𝑃2

4𝑚
− 𝑖𝜈ℓ − 2𝜇

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
≃

𝑚2

4𝜋

1

𝑚
𝑃2

4𝑚 − 𝑖𝜈ℓ − 2𝜇

𝜌NSR ≃ −
2

𝛽
෍

𝑷,ℓ

𝒵b(𝑷, 𝑖𝜈ℓ)

𝑖𝜈ℓ −
𝑃2

4𝑚
+ 2𝜇 + 𝐸b

𝑒𝑖𝜈ℓ𝛿
𝒵b 𝑷, 𝑖𝜈ℓ =

1

2
1 +

𝑎𝑠
−1

𝑚
𝑃2

4𝑚
−𝑖𝜈ℓ−2𝜇



𝜌NSR ≃ −
2

𝛽
෍

𝑷,ℓ

𝒵b(𝑷, 𝑖𝜈ℓ)

𝑖𝜈ℓ −
𝑃2

4𝑚
+ 2𝜇 + 𝐸b

𝑒𝑖𝜈ℓ𝛿
𝒵b 𝑷, 𝑖𝜈ℓ =

1

2
1 +

𝑎𝑠
−1

𝑚
𝑃2

4𝑚
−𝑖𝜈ℓ−2𝜇



𝜌NSR ≃ −
2

𝛽
෍

𝑷,ℓ

𝒵b(𝑷, 𝑖𝜈ℓ)

𝑖𝜈ℓ −
𝑃2

4𝑚
+ 2𝜇 + 𝐸b

𝑒𝑖𝜈ℓ𝛿
𝒵b 𝑷, 𝑖𝜈ℓ =

1

2
1 +

𝑎𝑠
−1

𝑚
𝑃2

4𝑚
−𝑖𝜈ℓ−2𝜇

= −2 ෍

𝑷

ර
𝐶

𝑏(𝑧)𝑑𝑧

2𝜋𝑖

𝒵b(𝑷, 𝑧)

𝑧 −
𝑃2

4𝑚 + 2𝜇 + 𝐸b

𝑒𝑧𝛿

Re[𝑧]

Im[𝑧]
𝑖𝜈ℓ

𝑃2

4𝑚
− 2𝜇 − 𝐸b= 2 ෍

𝑷

𝑏
𝑃2

4𝑚
− 2𝜇 − 𝐸b

𝑏 𝑧 = 𝑒𝛽𝑧 − 1
−1

: Bose distribution function



𝜌NSR ≃ −
2

𝛽
෍

𝑷,ℓ

𝒵b(𝑷, 𝑖𝜈ℓ)

𝑖𝜈ℓ −
𝑃2

4𝑚
+ 2𝜇 + 𝐸b

𝑒𝑖𝜈ℓ𝛿
𝒵b 𝑷, 𝑖𝜈ℓ =

1

2
1 +

𝑎𝑠
−1

𝑚
𝑃2

4𝑚
−𝑖𝜈ℓ−2𝜇

= −2 ෍

𝑷

ර
𝐶

𝑏(𝑧)𝑑𝑧

2𝜋𝑖

𝒵b(𝑷, 𝑧)

𝑧 −
𝑃2

4𝑚 + 2𝜇 + 𝐸b

𝑒𝑧𝛿

Re[𝑧]

Im[𝑧]
𝑖𝜈ℓ

𝑃2

4𝑚
− 2𝜇 − 𝐸b= 2 ෍

𝑷

𝑏
𝑃2

4𝑚
− 2𝜇 − 𝐸b

𝑏 𝑧 = 𝑒𝛽𝑧 − 1
−1

: Bose distribution function

Renormalized gap equation:
𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

1 − 2𝑓(𝐸𝒌)

2𝐸𝒌
−

𝑚

𝑘2

In the BEC regime at Tc (𝜇 < 0, 𝜇 ≫ 𝑇, Δ → 0) 𝑓 𝐸𝒌 → 𝑓(𝜉𝒌) ≃ 0

𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

1

2𝜉𝒌
−

𝑚

𝑘2 𝜇 ≃ −
𝐸b

2
≡

1

2𝑚𝑎𝑠
2



𝜌NSR ≃ −
2

𝛽
෍

𝑷,ℓ

𝒵b(𝑷, 𝑖𝜈ℓ)

𝑖𝜈ℓ −
𝑃2

4𝑚
+ 2𝜇 + 𝐸b

𝑒𝑖𝜈ℓ𝛿
𝒵b 𝑷, 𝑖𝜈ℓ =

1

2
1 +

𝑎𝑠
−1

𝑚
𝑃2

4𝑚
−𝑖𝜈ℓ−2𝜇

= −2 ෍

𝑷

ර
𝐶

𝑏(𝑧)𝑑𝑧

2𝜋𝑖

𝒵b(𝑷, 𝑧)

𝑧 −
𝑃2

4𝑚 + 2𝜇 + 𝐸b

𝑒𝑧𝛿

Re[𝑧]

Im[𝑧]
𝑖𝜈ℓ

𝑃2

4𝑚
− 2𝜇 − 𝐸b= 2 ෍

𝑷

𝑏
𝑃2

4𝑚
− 2𝜇 − 𝐸b

𝑏 𝑧 = 𝑒𝛽𝑧 − 1
−1

: Bose distribution function

Renormalized gap equation:
𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

1 − 2𝑓(𝐸𝒌)

2𝐸𝒌
−

𝑚

𝑘2

In the BEC regime at Tc (𝜇 < 0, 𝜇 ≫ 𝑇, Δ → 0) 𝑓 𝐸𝒌 → 𝑓(𝜉𝒌) ≃ 0

𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

1

2𝜉𝒌
−

𝑚

𝑘2 𝜇 ≃ −
𝐸b

2
≡

1

2𝑚𝑎𝑠
2

= 2 ෍

𝑷

1

𝑒
𝑃2

2 2𝑚 𝑇c − 1

= 2
𝑚𝑇c

𝜋

3
2

𝜁( Τ3 2) Molecular BEC temperature!



Thouless criterion
At 𝑇 = 𝑇c, the gap equation is equivalent to the gapless condition of T matrix pole 

Renormalized gap equation at 𝑻 = 𝑻𝐜

𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

1

2𝜉𝒌
tanh

𝜉𝒌

2𝑇c
−

𝑚

𝑘2

Infrared divergence of  in-medium T matrix at 𝑻 = 𝑻𝐜

𝑇mb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 −1 = 0

=
𝑚

4𝜋𝑎𝑠
+ Πmb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 − ෍

𝒌

𝑚

𝑘2

・・・(★)



Thouless criterion
At 𝑇 = 𝑇c, the gap equation is equivalent to the gapless condition of T matrix pole 

Renormalized gap equation at 𝑻 = 𝑻𝐜

𝑚

4𝜋𝑎𝑠
= − ෍

𝒌

1

2𝜉𝒌
tanh

𝜉𝒌

2𝑇c
−

𝑚

𝑘2

Infrared divergence of  in-medium T matrix at 𝑻 = 𝑻𝐜

𝑇mb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 −1 = 0

=
𝑚

4𝜋𝑎𝑠
+ Πmb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 − ෍

𝒌

𝑚

𝑘2

Πmb(𝑷, 𝑖𝜈ℓ) = − ෍

𝒌

1 − 𝑓(𝜉𝒌+𝑷/2) − 𝑓(𝜉−𝒌+𝑷/2)

𝑖𝜈ℓ − 𝜉𝒌+ Τ𝑷 2 − 𝜉−𝒌+𝑷/2

=
𝑚

4𝜋𝑎𝑠
+ ෍

𝒌

1 − 2𝑓(𝜉𝒌) 

2𝜉𝒌
− ෍

𝒌

𝑚

𝑘2 = (★)

・・・(★)



Summary of NSR theory

𝜌NSR = 2 ෍

𝒌

𝑓(𝜉𝒌) −
1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿

𝑇mb 𝑷 = 𝟎, 𝑖𝜈ℓ = 0 −1 =
𝑚

4𝜋𝑎𝑠
+ ෍

𝒌

1 

2𝜉𝒌
tanh

𝜉𝒌

2𝑇c
−

𝑚

𝑘2
= 0

Particle number equation

Thouless criterion

 

   

   

   

   

       

𝑘F𝑎𝑠
−1

𝑇 c
/𝑇

F

MFMF

NSR

Chemical potentialCritical temperature



Particle-particle ladder

Particle-hole bubble

~ ෍
1 − 𝑓 𝜉𝑝 − 𝑓(𝜉𝑘)

𝐸 − 𝜉𝑝 − 𝜉𝑘

~ ෍
𝑓 𝜉𝑝 − 𝑓(𝜉𝑘)

𝐸 + 𝜉𝑝 − 𝜉𝑘

𝑓 𝜉𝑝 : Distribution function

~Λcutoff ≃
1

𝑟eff

~0

𝑓 𝜉𝑝 → 0

𝑓 𝜉𝑝 → 0

Why does the ladder 
approximation work well?

Ladder diagram becomes dominant when

1. the system is dilute, 2. the interaction is short-range, or 3. bound state in free space is crucial 

ph bubble becomes important 

when the interaction is strong 

at low energies (e.g., Coulomb)



Outline

• Why beyond mean-field approximation?

• Nozières-Schmitt-Rink theory

• Pseudogap and short-range correlations

• Short summary
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Preformed Cooper pair

excited

Hole excitation

Single-particle dispersion and density of states

Pseudogap

S
in

g
le

-p
ar

ti
cl

e 
en

er
g

y
 𝜔

/𝜀
F

momentum 𝑝/𝑘F Density of states 𝜌(𝜔)

Phase diagram of from physical quantities

47

weak coupling                       strong-coupling  

Strong pairing fluctuations and pseudogaps

𝑇s: Spin susceptibility starts to drop

𝑇∗: Density of states starts to show a dip
෨𝑇: Specific heat becomes minimum

Review: Y. Ohashi, HT, and P. van Wyk, Prog. Part. Nucl. Phys. 111, 103739 (2020). 



Pairing pseudogap effect
 across the different energy scales

Y. Nakagawa, et al., Science 

372, 6538 (2021).

BCS-BEC crossover in LixZrNCl

D. Durel, et al., 

Universe 2020, 6(11), 208

A. Schnell, et al., 

PRL 83, 1926 (1999).

M. Kitazawa, et al.,

PRD 70, 056003 (2004).

Neutron matter

Nuclear matter

Color superconductivity

Dip-like structure in density of states or level density even in the normal phase



Extension of NSR: T-matrix approximation

𝜌NSR =
1

𝛽
෍

𝒌,𝜎,ℓ′

𝐺𝒌𝜎
0 (𝑖𝜔ℓ′) −

1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
𝑒𝑖𝜈ℓ𝛿

𝜕Πmb 𝑷, 𝑖𝜈ℓ

𝜕𝜇
= −

1

𝛽
෍

𝒌,𝜎,ℓ′′

𝐺𝒌𝜎
0 𝑖𝜔ℓ′′

2
𝐺𝑷−𝒌ഥ𝜎

0 (𝑖𝜈ℓ − 𝑖𝜔ℓ′′)

=
1

𝛽
෍

𝒌,𝜎,ℓ′

𝐺𝒌𝜎
0 𝑖𝜔ℓ′ + 𝐺𝒌𝜎

0 𝑖𝜔ℓ′ Σ𝒌𝜎(𝑖𝜔ℓ′)𝐺𝒌𝜎
0 𝑖𝜔ℓ′

Σ𝒌𝜎 𝑖𝜔ℓ′ =
1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ 𝐺𝑷−𝒌ഥ𝜎
0 (𝑖𝜈ℓ − 𝑖𝜔ℓ′) 𝑇mb 𝑷, 𝑖𝜈ℓ

Self-energy with T-matrix approximation

ത𝜎: opposite spin of 𝜎



T-matrix approximation
NSR theory is obtained as truncation of Dyson equation with respect to Σ

Include the self-energy such that the Dyson equation is satisfied

𝜌NSR =
1

𝛽
෍

𝒌,𝜎,ℓ′

𝐺𝒌𝜎
0 𝑖𝜔ℓ′ + 𝐺𝒌𝜎

0 𝑖𝜔ℓ′ Σ𝒌𝜎(𝑖𝜔ℓ′)𝐺𝒌𝜎
0 𝑖𝜔ℓ′

𝜌TMA =
1

𝛽
෍

𝒌,𝜎,ℓ′

𝐺𝒌𝜎
0 𝑖𝜔ℓ′ + 𝐺𝒌𝜎

0 𝑖𝜔ℓ′ Σ𝒌𝜎 𝑖𝜔ℓ′ 𝐺𝒌𝜎 𝑖𝜔ℓ′

𝐺𝒌𝜎 𝑖𝜔ℓ′ = 𝐺𝒌𝜎
0 𝑖𝜔ℓ′ + 𝐺𝒌𝜎

0 𝑖𝜔ℓ′ Σ𝒌𝜎 𝑖𝜔ℓ′ 𝐺𝒌𝜎 𝑖𝜔ℓ′

Dyson equation 

≡
1

𝛽
෍

𝒌,𝜎,ℓ′

𝐺𝒌𝜎 𝑖𝜔ℓ′



Single-particle spectral weight

𝐺𝒌𝜎 𝑖𝜔ℓ′ = 𝐺𝒌𝜎
0 𝑖𝜔ℓ′ + 𝐺𝒌𝜎

0 𝑖𝜔ℓ′ Σ𝒌𝜎 𝑖𝜔ℓ′ 𝐺𝒌𝜎 𝑖𝜔ℓ′

Dyson equation 

≡
1

𝑖𝜔ℓ′ − 𝜉𝒌 − Σ𝒌𝜎 𝑖𝜔ℓ′

𝐴𝒌𝜎 𝜔 = ෍

𝑛,𝑛′

𝑒−𝛽𝐸𝑛 + 𝑒−𝛽𝐸
𝑛′

𝑍
⟨Ψ𝑛 𝑐𝒌𝜎 Ψ𝑛′⟩⟨Ψ𝑛′ 𝑐𝒌𝜎

† Ψ𝑛⟩𝛿(𝜔 + 𝐸𝑛 − 𝐸𝑛′)

= −
1

𝜋
Im 𝐺𝒌𝜎 𝑖𝜔ℓ′ → 𝜔 + 𝑖𝛿 (analytic continuation)

∗ 𝐻|Ψ𝑛⟩ = 𝐸𝑛|Ψ𝑛⟩

Spectral weight 

* This structure is absent in NSR

   due to the truncation of Σ



Single-particle spectral weight

𝐺𝒌𝜎 𝑖𝜔ℓ′ = 𝐺𝒌𝜎
0 𝑖𝜔ℓ′ + 𝐺𝒌𝜎

0 𝑖𝜔ℓ′ Σ𝒌𝜎 𝑖𝜔ℓ′ 𝐺𝒌𝜎 𝑖𝜔ℓ′

Dyson equation 

≡
1

𝑖𝜔ℓ′ − 𝜉𝒌 − Σ𝒌𝜎 𝑖𝜔ℓ′

𝐴𝒌𝜎 𝜔 = ෍

𝑛,𝑛′

𝑒−𝛽𝐸𝑛 + 𝑒−𝛽𝐸
𝑛′

𝑍
⟨Ψ𝑛 𝑐𝒌𝜎 Ψ𝑛′⟩⟨Ψ𝑛′ 𝑐𝒌𝜎

† Ψ𝑛⟩𝛿(𝜔 + 𝐸𝑛 − 𝐸𝑛′)

= −
1

𝜋
Im 𝐺𝒌𝜎 𝑖𝜔ℓ′ → 𝜔 + 𝑖𝛿 (analytic continuation)

∗ 𝐻|Ψ𝑛⟩ = 𝐸𝑛|Ψ𝑛⟩

Non-interacting case (𝚺 = 𝟎) 

𝐴𝒌𝜎 𝜔 = −
1

𝜋
Im

1

𝜔 + 𝑖𝛿 − 𝜉𝒌
= 𝛿(𝜔 − 𝜉𝒌)

𝑘/𝑘F

𝜔 = 𝜉𝒌

Spectral weight 

* This structure is absent in NSR

   due to the truncation of Σ



Single-particle excitation at 𝑇c

𝑘F𝑎𝑠
−1 = −0.8 𝑘F𝑎𝑠

−1 = 0 𝑘F𝑎𝑠
−1 = 0.8Free gas

Even without pairing gap (i.e., Δ = 0), single-particle excitation is gapped pseudogap

𝑘/𝑘F

e.g., enhanced specific heat

P. van Wyk, et al., Phys. Rev. A 93, 013621 (2016)

Pseudogap affects various observables



Relation to short-range correlations

O. Hen, et al., PRC 92, 045205 (2015).

High-momentum tail



Relation to short-range correlations

Σ𝒌𝜎 𝑖𝜔ℓ′ =
1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ 𝐺𝑷−𝒌ഥ𝜎
0 (𝑖𝜈ℓ − 𝑖𝜔ℓ′)



Relation to short-range correlations

Σ𝒌𝜎 𝑖𝜔ℓ′ =
1

𝛽
෍

𝑷,ℓ

𝑇mb 𝑷, 𝑖𝜈ℓ 𝐺𝑷−𝒌ഥ𝜎
0 (𝑖𝜈ℓ − 𝑖𝜔ℓ′)

𝑇mb 𝑷, 𝑖𝜈ℓ = න
−∞

∞

𝑑Ω
𝐴b(𝑷, Ω)

𝑖𝜈ℓ − Ω
𝐴b 𝑷, Ω = −

1

𝜋
Im 𝑇mb 𝑷, 𝑖𝜈ℓ → Ω + 𝑖𝛿

Spectral representation

=
1

𝛽
෍

𝑷,ℓ

න
−∞

∞

𝑑Ω
𝐴b(𝑷, Ω)

(𝑖𝜈ℓ − Ω)(𝑖𝜈ℓ − 𝑖𝜔ℓ′ − 𝜉𝑷−𝒌)

= − ෍

𝑷

ර
𝐶

𝑏 𝑧 𝑑𝑧

2𝜋𝑖
න

−∞

∞

𝑑Ω
𝐴b(𝑷, Ω)

(𝑧 − Ω)(𝑧 − 𝑖𝜔ℓ′ − 𝜉𝑷−𝒌)

= − ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

Ω − 𝑖𝜔ℓ′ − 𝜉𝑷−𝒌
− ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(𝜉𝑷−𝒌 + 𝑖𝜔ℓ′)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω



Relation to short-range correlations

Σ𝒌𝜎 𝑖𝜔ℓ′ = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω
− ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(𝜉𝑷−𝒌 + 𝑖𝜔ℓ′)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω

𝑏 𝜉𝑷−𝒌 + 𝑖𝜔ℓ′ =
1

𝑒𝛽𝜉𝑃−𝑘+𝑖(2ℓ′+1) − 1
= −𝑓(𝜉𝑷−𝒌)

= ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω
+ ෍

𝑷

න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω



Relation to short-range correlations

Σ𝒌𝜎 𝑖𝜔ℓ′ = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω
− ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(𝜉𝑷−𝒌 + 𝑖𝜔ℓ′)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω

𝑏 𝜉𝑷−𝒌 + 𝑖𝜔ℓ′ =
1

𝑒𝛽𝜉𝑃−𝑘+𝑖(2ℓ′+1) − 1
= −𝑓(𝜉𝑷−𝒌)

= ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω
+ ෍

𝑷

න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝑖𝜔ℓ′ + 𝜉𝑷−𝒌 − Ω

Analytic continuation (𝑖𝜔ℓ′ → 𝜔 + 𝑖𝛿)

Σ𝒌𝜎 𝜔 = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω
+ ෍

𝑷

න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω

Short-range correlation Brueckner Hartree-Fock term

𝑘→∞
𝑒−𝑘2/2𝑚𝑇

𝑘→∞ #

𝑘2



Brueckner Hartree-Fock term

Σ𝒌𝜎
BHF(𝜔) = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω

Σ𝒌𝜎 𝜔 = Σ𝒌𝜎
SRC 𝜔 + Σ𝒌𝜎

BHF(𝜔)



Brueckner Hartree-Fock term

Re 𝑇mb 𝑷, 𝜉𝒌 + 𝜉𝑷−𝒌 =
1

𝜋
𝑃 න

−∞

∞

𝑑Ω
Im[𝑇𝑚b(𝑷, Ω)]

Ω − 𝜉𝒌 − 𝜉𝑷−𝒌

Σ𝒌𝜎
BHF(𝜔) = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω

Single-particle potential (onshell) : Fermi-liquid correction

𝑈𝒌𝜎 = Re Σ𝒌𝜎
BHF(𝜔 = 𝜉𝒌) = ෍

𝑷

𝑃 න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝜉𝒌 + 𝜉𝑷−𝒌 − Ω

Kramers-Kronig relation:

Σ𝒌𝜎 𝜔 = Σ𝒌𝜎
SRC 𝜔 + Σ𝒌𝜎

BHF(𝜔)



Brueckner Hartree-Fock term

Re 𝑇mb 𝑷, 𝜉𝒌 + 𝜉𝑷−𝒌 =
1

𝜋
𝑃 න

−∞

∞

𝑑Ω
Im[𝑇𝑚b(𝑷, Ω)]

Ω − 𝜉𝒌 − 𝜉𝑷−𝒌

Σ𝒌𝜎
BHF(𝜔) = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω

Single-particle potential (onshell) : Fermi-liquid correction

𝑈𝒌𝜎 = Re Σ𝒌𝜎
BHF(𝜔 = 𝜉𝒌) = ෍

𝑷

𝑃 න
−∞

∞

𝑑Ω
𝑓(𝜉𝑷−𝒌)𝐴b(𝑷, Ω)

𝜉𝒌 + 𝜉𝑷−𝒌 − Ω

Kramers-Kronig relation:

Σ𝒌𝜎 𝜔 = Σ𝒌𝜎
SRC 𝜔 + Σ𝒌𝜎

BHF(𝜔)

𝑈𝒌𝜎 = ෍

𝑷

Re 𝑇mb 𝑷, 𝜉𝒌 + 𝜉𝑷−𝒌 𝑓(𝜉𝑷−𝒌)
𝑇→0

෍

𝑷 ≤𝑘F

Re 𝑇mb 𝑷 + 𝒌, 𝜉𝒌+𝑷 + 𝜉𝑷

Form of BHF single-particle potential often used in nuclear physics



Short-range correlation term
Σ𝒌𝜎 𝜔 = Σ𝒌𝜎

SRC 𝜔 + Σ𝒌𝜎
BHF(𝜔)

Σ𝒌𝜎
SRC 𝜔 = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω



Short-range correlation term
Σ𝒌𝜎 𝜔 = Σ𝒌𝜎

SRC 𝜔 + Σ𝒌𝜎
BHF(𝜔)

Σ𝒌𝜎
SRC 𝜔 = ෍

𝑷

න
−∞

∞

𝑑Ω
𝑏(Ω)𝐴b(𝑷, Ω)

𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω

Assumption: 

The (𝑷, Ω) dependence of  𝜔 + 𝑖𝛿 + 𝜉𝑷−𝒌 − Ω −1 is much weaker than  𝑏(Ω)𝐴b(𝑷, Ω) 

Σ𝒌𝜎
SRC 𝜔 ≃

1

𝜔 + 𝑖𝛿 + 𝜉−𝒌
෍

𝑷

න
−∞

∞

𝑑Ω𝑏(Ω)𝐴b(𝑷, Ω) 

≡
Δpg

2

𝜔 + 𝑖𝛿 + 𝜉−𝒌

Δpg
2 = ෍

𝑷

න
−∞

∞

𝑑Ω𝑏(Ω)𝐴b(𝑷, Ω) Pseudogap parameter:



Short-range correlation term

Σ𝒌𝜎
SRC 𝜔 ≃

Δpg
2

𝜔 + 𝑖𝛿 + 𝜉−𝒌

Δpg
2 = ෍

𝑷

න
−∞

∞
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Pseudogapped spectrum due to SRC term



High-momentum tail above Tc
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O. Hen, et al., PRC 92, 045205 (2015).

High-momentum tail ≃ pseudogap size
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Short summary of Part 5
• Pairing fluctuation effect is important to describe the critical 

temperature curve throughout the BCS-BEC crossover.

• The Nozières-Schmitt-Rink theory and its extension have been 
presented.

• As an example of pairing fluctuation effect, the relationship between 
the pseudogap and the short-range correlations has been discussed. 

BCS BEC
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Appendix



Variety of diagrammatic approaches
Self-energy diagrams

Many-body T-matrix

T-matrix approx.

 (TMA)

Extended TMA

 (ETMA)

Self-consistent TMA

 (SCTMA, LW)

𝐺𝜎𝐺𝜎
0

Σ𝜎 =

𝑔



Variety of diagrammatic approaches
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