Jan. 12-16, 2025

- UTokyo

The 2nd Nuclear Physics Tortoise Lecture Series (NPTLS) 2026

Pairing 1n ultracold atoms
and neutron star

Hiroyuki Tajima
The University of Tokyo, Japan



T7T;IIIIIIIII

Part 5

-Pairing fluctuations
beyond mean-field theory-

* Understanding the basics of BCS-BEC crossover
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=> Let’s try to go beyond mean-field theory at finite temperature
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Feynman diagram for pairing fluctuations
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Why beyond mean-field theory?

Mean-field theory cannot predict a critical temperature T, in the strong coupling regime
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Nozieres-Schmitt-Rink theory

P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195-211 (1985).

Pairing fluctuation correction
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Perturbative expansion and
thermal Green’s function

_ T T T

H = Z $kCroCho T 9 Z Ck+pP/21C—k+P/20C~K'+P/2LCK +P /21
k,c kk',P

In contrast to mean-field theory, we keep

=Ho+V the P summation, leading to Bose dist.

Grand-canonical partition function Z and thermodynamic potential
Z = Tr|e PUHotV)| = ¢=B0 «f =1/T

At this moment, we know only the non-interacting counterpart Z, = Tr[e_ﬁ HO] = ¢~
= perturbative expansion with respect to V

Real-time perturbation theory Imaginary-time perturbation theory
. T=1it(0<7<
() = e w(0)) , O=r=h
—=(8(B)), = > Tr[e F3(B)]

Similar to e ~FHo+V) Zy Zo
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Perturbative expansion of ()
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Perturbative expansion of ()
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Perturbative expansion of ()
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Perturbative expansion of ()
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Perturbative expansion of ()

1s-order perturbation (n =1)
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Perturbative expansion of ()

1s-order perturbation (n =1)
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Equation of motion of 626(1:)
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Perturbative expansion of ()

1s-order perturbation (n =1)
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Perturbative expansion of ()

1s-order perturbation (n =1)
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Perturbative expansion of ()

1s-order perturbation (n =1)
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Perturbative expansion of ()

1s-order perturbation (n =1)
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Ladder approximation

It is found that pair propagator Il,,;, exhibits an UV divergence

Since we cannot sum up all the diagrams, we focus on the ladder-type ones,
Because the UV divergence implies its importance
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NSR thermodynamic potential
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Example of n = 3
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NSR theory with renormalization

1 .
Qg = = ) Inl1 + Ty (P, ive)] 2
Pt
Renormalization relation

1 m mA _ m z m
P o2 - 1.2
g Ama;, 2m dtag |k|sAk

Regularized NSR thermodynamic potential
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NSR 0 ﬁ m mb ) ' kz
Pt | k |

0Qy 0JQNsr
du du

Let’s check the number density: PpnsR = —



dmrag
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Thouless criterion

At T = T, the gap equation is equivalent to the gapless condition of T matrix pole

Renormalized gap equation atT =T,

tanh i
4na5 25k al ZT 2

Infrared divergence of in-medium T matrix atT =T

[Tmp(P = 0,iv, = 0)] 7! =

* (%)

(P =0,ivy =0 z



AtT =

Thouless criterion

T, the gap equation is equivalent to the gapless condition of 7" matrix pole

Renormalized gap equation atT =T,

tanh i
4na5 2§k al 2T 2

* (%)

Infrared divergence of in-medium T matrixatT =T,

[Tmp(P = 0,iv, = 0)]7* =

(P =0,ivy =0 z

M, (P,iv,) = _z 1 — fGr+ps2) = f (S—k+p/2)

- — S$kP/2 ~ S—k+P)2

_om 1—2f() m
—4nas+Z 28 —Zﬁ**)



Summary of NSR theory

Particle number equation

1 oIl . w(P,ivy) .
PNSR = 2 2 fr) — Ez Trb (P, ivp) mba( ) etved
K P H

Thouless criterion

[T, (P = 0,iv, = 0)] ! =47Ta +Z[2—&(tanh<2€;>—g =0

o Critical temperature Chemical potential
. T I T T T T T
/
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Why does the ladder
approximation work well?

Ladder diagram becomes dominant when
1. the system is dilute, 2. the interaction is short-range, or 3. bound state in free space is crucial

Particle-particle ladder

1-£(&) - f(fk) 1
@ Nz B » ~Aeutort = Teff
f(fp) -0

Particle-hole bubble

f($p) — £ (k)
Zlgi)fp , » ~0

f (Ep) — 0  ph bubble becomes important
when the interaction is strong

f (Ep): Distribution function at low energies (e.g., Coulomb)
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Strong pairing fluctuations and pseudogaps
Review: Y. Ohashi, HT, and P. van Wyk, Prog. Part. Nucl. Phys. 111, 103739 (2020).

Phase diagram of from physical quantities Single-particle dispersion and density of states
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Pairing pseudogap effect
across the different energy scales

Dip-like structure in density of states or level density even in the normal phase
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BCS-BEC crossover in LiXZl'NCl Nuclear matter - 8o
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Extension of NSR: 7-matrix approximation
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1
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Self-energy with 7-matrix approximation
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T-matrix approximation

NSR theory 1s obtained as truncation of Dyson equation with respect to X

= Include the self-energy such that the Dyson equation is satisfied

1
PNSR = 5 z |GRs (iwpr) + GRo (iwpr ) Zho (iwp) Grg (iw,r )]
kot

1
= | PTMA = E z [Gl(c)a(iw{”) + Glga(iwe’)zka(iwf’)(;ka(iwe’)]
kot

Dyson equation

Gka(i(‘){”) = Gl(c)a(i(‘){”) + Gl(c)a(iw{”)zka(i(‘){”)Gka(iw{”)




Single-particle spectral weight

Dyson equation

Gro(iwyr) = GRy(iwyr) + GRy(iwp ) kg (iwy ) Gro(iw,r)

1

= - - * This structure is absent in NSR

LWy — gk - Zka(lw{”) due to the truncation of X
Spectral weight
e FEn 4 ¢ PEw t
Aka(w) = 2 7 <Lpnlckallpn’>(q,n’ |Cko'| LI"n>5(w + E, — En’)
i + HWo) = Ep|Wp)
1

= — EIm[Gka(iw{ﬂ - w+i6)] (analytic continuation)



Single-particle spectral weight
Dyson equation
Gro(iwpr) = Grg(iwyr) + G (iwy ) Ero(1wyr) Gro (i)

1
= - - * This structure 1s absent in NSR
LWypr — gk - Zka(lw{”) due to the truncation of ¥

Spectral weight
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Non-interacting case (X = 0) 2
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Single-particle excitation at T

Even without pairing gap (i.e., A = 0), single-particle excitation is gapped =*pseudogap
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Pseudogap affects various observables

e.g., enhanced specific heat
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P. van Wyk, et al., Phys. Rev. A 93, 013621 (2016)



Relation to short-range correlations
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Relation to short-range correlations
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Relation to short-range correlations

. 1 . L
Zio(lwyr) = Ez Tib (P, 1vp) Gp_y5(ive — iwyr)
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Spectral representation
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Relation to short-range correlations

S (i) =ZJ°° 1 2EAp (P, O) _sz 10 2Pk T i) Ap (P, )
ko\tWy Sy iwp +&p_f — O =)o lwp + Ep_j —

_ 1
b(§p-ic+ iwp) = —pe—mmy =7 = ~(pi)

- Z joo 10 LA (P, Q) 4 joo 10  Ep-1)Ab (P, )
(o) = J—co

lwer + $p_g — () lwer + $p_g — )

.



Relation to short-range correlations

S (i) =ZJ°° 1 2EAp (P, O) _sz 10 2Pk T i) Ap (P, )
ko\tWy Sy iwp +&p_f — O =)o lwp + Ep_j —

_ 1
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Analytic continuation (iw,” = w + id)

S (o) = ZP: j_i 10— 24P, D) Q+Z f:o 10 S Gp-)Ap(P, D)

(1)+l.5+6p_k— Cl)+l.6+€p_k—.Q
Short-range correlation Brueckner Hartree-Fock term
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Brueckner Hartree-Fock term

--------------
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Brueckner Hartree-Fock term

----------------
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Single-particle potential (onshell) : Fermi-liquid correction
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Brueckner Hartree-Fock term
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Single-particle potential (onshell) : Fermi-liquid correction
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Form of BHF single-particle potential often used in nuclear physics
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Short-range correlation term
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Short-range correlation term
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----------------

SRC/, \ _ ” b()Ap (P, )
Zio (@) _ZJ_wde+i6+€P_k—Q

Assumption:
The (P, Q) dependence of (w + i6 + &p_j — Q)1 is much weaker than b(Q)A (P, Q)

SRC ~
5SRC () w+l5+§_ ZJ dOb(Q) A, (P, Q)
AZ
B w + i5+€—k

{Pseudogap parameter: A5, = Z J dQb(Q)Ap (P, Q) }
p U™




Short-range correlation term
4 A% )

Approximate SRC term: ySRC ~
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Short-range correlation term
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Approximate SRC term: ySRC ~
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High-momentum tail

Ngg = <CI-(I-0'CkO'> = Ggg(T = —9)



High-momentum tail

Ngg = <C11-0Ck0> = Ggg(T = —9)
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High-momentum tail

Ngg = <C]-(I-O'Ck0'> = Ggg(T = —9)
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Pseudogapped spectrum due to SRC term
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High-momentum tail above T,
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Outline

* Why beyond mean-field approximation?
* Nozieres-Schmitt-Rink theory
* Pseudogap and short-range correlations

* Short summary
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Short summary of Part 5

* Pairing fluctuation effect 1s important to describe the critical
temperature curve throughout the BCS-BEC crossover.

* The Noziceres-Schmitt-Rink theory and its extension have been
presented.

* As an example of pairing fluctuation effect, the relationship between
the pseudogap and the short-range correlations has been discussed.
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~ 02
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Appendix



Variety of diagrammatic approaches

Self-energy diagrams

T-matrix approx. Extended TMA  Self-consistent TMA
(TMA) (ETMA) (SCTMA, LW)

(a) ‘ G0 (b) ‘m'a‘a (¢) O
Lo = I [

Many-body 7-matrix
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Variety of diagrammatic approaches
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